Eigenstate correlations in spatially extended chaotic many-body quantum systems

John Chalker

Physics Department, Oxford University

Based on:

Dominik Hahn, David Luitz & JTC, arXiv:2309.12982

Takato Yoshimura, Sam Garratt & JTC, arXiv:2312.14234

Related work: Amos Chan, Andrea De Luca & JTC, PRL (2019)

Outline

Single particle systems

Eigenstate correlations and dynamics in chaotic/disordered systems

Many-body systems

Characterising quantum dynamics in spatially extended systems

Implications for eigenstate correlations

Capturing correlations with Ansatz for joint eigenvector distribution

Quantum chaos in low-D systems

Semiclassical limit for chaotic systems

Berry's random wave conjecture:

wavefunctions

 \sim random superposition of plane waves

Model eigenfunctions as
$$
\psi(r) \propto \sum_{k, |k|=k_F}' a_k \cos(k \cdot r + \varphi_k)
$$

with random a_k, φ_k

$$
Implies \quad [\psi(r_1)\psi(r_2)]_{\rm av} \propto J_0(k_{\rm F}|r_1-r_2|)
$$

Eigenstate correlations in spatially extended system

Disordered conductor

$$
H = -\frac{\hbar^2}{2m}\nabla^2 + V(r) \quad \text{with} \quad H|n\rangle = E_n|n\rangle \quad \& \ V(r) \text{ random}
$$

Lowest order

$$
[\langle r_1 | n \rangle \langle n | r_2 \rangle]_{\rm av} \sim J_0(|r_1-r_2|) e^{-|r_1-r_2|/\ell} \quad \text{short-range}
$$

Lowest interesting order

 $[\langle r_1|n\rangle\langle n|r_2\rangle\langle r_2|m\rangle\langle m|r_1\rangle]_{\rm av}$ and $[\langle r_1|n\rangle\langle n|r_1\rangle\langle r_2|m\rangle\langle m|r_2\rangle]_{\rm av}$ long-range in metal (& gauge-invariant)

Relation to dynamics

Consider spreading wavepacket $\langle r_2|e^{-iHt}|r_1\rangle$

$$
|\langle r_2|e^{-iHt}|r_1\rangle|^2 = \sum_{nm} \langle r_2|n\rangle \langle n|r_1\rangle \langle r_2|m\rangle \langle m|r_2\rangle e^{i(E_n - E_m)t}
$$

$$
\propto t^{-d/2} e^{-|r_1 - r_2|^2/4Dt} \quad \text{in diffusive conductor}
$$

Many-body eigenstate correlations?

Analogue of Berry's random wave conjecture?

Semiclassical limit: dilute hard spheres, numerically inaccessible

E.g. for disordered spin chain in ergodic phase, couplings $\sim J$

$$
H = J \sum_{n} \vec{\sigma}_n \cdot \vec{\sigma}_{n+1} + \sum_{n} \vec{h}_n \cdot \vec{\sigma}_n \qquad \vec{h}_n \text{ small & random}
$$

Eigenstate thermalisation hypothesis (ETH)

Deutsch (1991), Srednicki (1994), Rigol (2008) [also Peres et al. (1984)]

Eigenstate thermalisation hypothesis (ETH)

Local observable $O(x)$ e.g. spin operator at site x of spin chain

Matrix elements

$$
\langle m|O(x)|n\rangle = \delta_{mn}\langle O(x)\rangle_E + \mathcal{N}^{-1/2}f(E,\omega)R_{mn}
$$

 $E = (E_m + E_n)/2$ $\omega = F_p - F_m$ N = e ^S S = entropy R_{mn} ∼ random matrix

Generic state $|\psi\rangle = \sum_{n} c_n |n\rangle$

- Stat mech from diagonal elements $\langle \psi|O(x)|\psi \rangle$ fixed by $\langle \psi|H|\psi \rangle$
- Dynamics from off-diagonal elements $f(E, \omega)$ encodes $[O(x, t)O(x)]_{av}$

Many-body correlations and dynamics in spatially extended systems?

Fock space spreading? fast process – limited information

Conserved densities

diffusively spreading or ballistically propagating modes

– reflected in $[O(x, t)O(x)]_{av}$ & $f(E, \omega)$

Study Floquet systems

avoid all conserved densities (even energy)

retain fixed evolution operator

Dynamics at long times & distances

Operator spreading

$$
O(x,t) = e^{iHt} O(x) e^{-iHt}
$$

 $O(x, t)$ = sum over strings of operators acting at many sites

How do lengths of operator strings grow with time?

probe via $\left|[O(\mathcal{Y},t),O(\mathcal{x})]\right|^2$ and out-of-time order correlator (OTOC)

$$
C(x, y; t) \equiv [O(y, t)O(x)O(y, t)O(x)]_{\text{av}}
$$

E.g. with $\text{Tr}O(x)=0$ and $O(x)^2 = 1$ & likewise for $O(y)$

OTOC implies correlations beyond ETH

Spectral decomposition

$$
C(x,y,t) = \mathcal{N}^{-1} \sum_{abcd} \langle a|O(y)|b\rangle \langle b|O(x)|c\rangle \langle c|O(y)|d\rangle \langle d|O(x)|a\rangle e^{it(E_a - E_b + E_c - E_d)}
$$

ETH (in its simplest form) suggests (wrongly!)

 $C(x, y, t) \sim \mathcal{O}(\mathcal{N}^{-2})$ average $+ \mathcal{O}(\mathcal{N}^{-1})$ fluctuations

Comparing single pcle and many-body cases

Equivalent roles played by

wavepacket spreading in single-particle systems

& operator spreading in many-body systems

Compare orders of correlators involved

using
$$
e^{-iHt} \equiv \sum_n |n\rangle e^{-iE_n t} \langle n|
$$

Wavepacket $|\langle r_2|e^{-iHt}|r_1\rangle|^2$

4th order in $|n\rangle$ & $\langle n|$

OTOC $[O(y,t)O(x)O(y,t)O(x)]_{av}$ 8th order in $|n\rangle$ & $\langle n|$

Identifying minimal eigenfuction correlators – I

Simplify the OTOC

remove dependence on operator choice

– avge over complete sets of operators $\{O_i(x)\}\&\{O_k(y)\}\$ acting at x & y

Outcome: scalars constructed from many-body eigenfunctions

Identifying minimal eigenfuction correlators – II

Direct approach to constructing scalars

Schmidt decomposition of eigenfunction $|a\rangle$

subsystems x & \overline{x} with $|a\rangle = \sum_{lm} a_{lm} |l\rangle_x \otimes |m\rangle_{\overline{x}}$

Central object: Schmidt matrix a_{lm} size $2^{\ell_x} \times 2^{\ell_{\bar{x}}}$ **Pictorially**

$$
\langle b| \equiv b_{nk}^{\dagger} = \overbrace{\mathbf{b}}_{\overline{\mathbf{x}}}^{\mathbf{x}}
$$
 $|a\rangle \equiv a_{lm} = \overbrace{\mathbf{x}}^{\mathbf{x}}$

Combine e.g. $|a\rangle$, $|b\rangle$, $|c\rangle$ & $|d\rangle$ as $\text{Tr}[a b^\dagger c d^\dagger]\equiv M_{abcd}(x)$

require invariance under $\; |a\rangle \rightarrow e^{i\alpha} |a\rangle$ must combine *a* & a^{\dagger} , *b* & b^{\dagger} etc hence (uniquely) $[M_{abcd}(x)M^*_{abcd}(y)]_{av}$

Relation to OTOC

Avge OTOC over complete sets of operators with fixed supports Notation:

 $O_k(x)$ – kth operator from orthonormal set with support x.

Find

$$
\sum_{jk} [O_j(y, t)O_k(x)O_j(y, t)O_k(x)]_{av}
$$

$$
\propto \sum_{abcd} [M_{abcd}(x)M^*_{abcd}(y)]_{av} e^{it(E_a - E_b + E_c - E_d)}
$$

ETH & eigenstate correlations

ETH Ansatz

$$
\langle a|O_k(x)|b\rangle = \delta_{ab}\langle O_k(x)\rangle_E + \mathcal{N}^{-1/2}f(E,\omega)R_{ab}
$$

 $f(E, \omega)$ encodes autocorrelation function

$$
C(x,t) = \big[O_k(x,t)O_k(x)\big]_{\text{av}} = \mathcal{N}^{-1} \sum_{ab} |\langle a|O(x)|b\rangle|^2 e^{i(E_a - E_b)t}
$$

Take avge of autocorrelation function over operators $O_k(x)$ with fixed support x

$$
\sum_{k} [O_k(x,t)O_k(x)]_{\text{av}} \propto \sum_{ab} M_{abba}(x)e^{i(E_a-E_b)t}
$$

Pictorially

 $M_{abba}(x) \equiv$

Calculations: Floquet quantum circuits

- $H \Rightarrow H(t)$ periodic in t
- No conserved densities
- Random gates \Rightarrow ensemble of systems
- Choices: local Hilbert space dimension q $+$ circuit architecture

Numerical results: $q = 2$ brickwork circuit with Haar gates

Analytical results: $q \rightarrow \infty$ for:

- W_2 nearest-neighbour coupling, strength ε
- W_1 single-site Haar scramblers

Expected behaviour

Operator-averaged OTOC

$$
\sum_{jk} [O_j(y, t) O_k(x) O_j(y, t) O_k(x)]_{av}
$$

with

Recall form of OTOC

Results for solvable Floquet quantum circuit circuit

Curve: error function Parameters: velocity $v = 1 - \rho$ diffusion constant $D=\frac{1}{2}$ $rac{1}{2}\rho(1-\rho)$ with $\rho=e^{-2\varepsilon}$ ε : nn coupling

Same behaviour in RUCs (circuits random in time, not Floquet):

Nahum, Vijay & Haah (2018) von Keyserlingk, Rakovszky, Pollmann & Sondhi (2018)

Exact diagonalisation: time domain

Operator-averaged OTOC $[O_j(y, t)O_k(x)O_j(y, t)O_k(x)]_{av}$ vs time t for $s = 0, 1, ... 6$

Exact diagonalisation: energy domain

Normalised $[M_{abcd}(x)M^*_{abcd}(y)]_{av}$ vs $E=(E_a-E_b+E_c-E_d)$ for $s = 0, 1, ... 6$

Sharp structure in E for large s

Alternative to ETH

complementary to Free Probability theory, Pappalardi et al. (2022 & 2023) Recall formulation of ETH

Statistical Ansatz for matrix elements

$$
\langle a|O(x)|b\rangle = \delta_{ab}\langle O(x)\rangle_E + \mathcal{N}^{-1/2}f(E,\omega)R_{ab}
$$

Replace with statistical Ansatz for joint eigenvector distribution

Individual many-body eigenvectors \vec{a}

Floquet $\Rightarrow (O(x))_E$ indept of $E \Rightarrow$ isotropic distribution for \vec{a}

Pairs of eigenvectors \vec{a} and \vec{b}

Floquet circuit models $f(E, \omega) \sim \omega$ -indept $\Rightarrow \vec{a},\ \vec{b} \sim$ uncorrelated

Maximum entropy form for joint distribution of four vectors

$$
P(\vec{a}, \vec{b}, \vec{c}, \vec{d}) \propto e^{-\sum_{xy} M_{abcd}^*(x)G(x,y,\vec{E})M_{abcd}(y)} \times P_{Haar}(\vec{a}, \vec{b}, \vec{c}, \vec{d})
$$

– correlations parameterised via $G(x, y, E)$ vs $E = E_a - E_b + E_c - E_d$

Testing the Ansatz

Normalised $[M_{abcd}(x)M^*_{abcd}(y)]_{av}$ vs $E=(E_a-E_b+E_c-E_d)$ for separation $s = 0, 1, \ldots 6$ between subsystems x & y

Monte Carlo sampling of Ansatz (points) vs exact diagonalisation (lines)

Summary

Many-body quantum dynamics in chaotic systems

- Characterised by operator growth (and entanglement spreading)
- Encoded in correlator between sets of 4 eigenfunctions
- Unique correlator at this order with structure at long-distance/small energy

 $[M_{abcd}(x)M^*_{abcd}(y)]_{av}$

• Joint distribution of eigenvectors builds in these correlations and is replacement for ETH