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Single particle systems

Eigenstate correlations and dynamics in chaotic/disordered systems

Many-body systems
Characterising quantum dynamics in spatially extended systems
Implications for eigenstate correlations

Capturing correlations with Ansatz for joint eigenvector distribution



Quantum chaos in low-D systems

Semiclassical limit for chaotic systems

Berry’s random wave conjecture:

wavefunctions
~ random superposition of plane waves

Model eigenfunctions as  9(r) ZLM:kF axcos(k - r + @)

with random ay, @«

Implies  [¥(r1)¥(r2)]av o Jo(kr|r1 — r2|)



Eigenstate correlations in spatially extended system

Disordered conductor

2
H= —;—Vz + V(r) with Hin) = E,|n) & V/(r) random
m

Lowest order

[<r1|n><n‘r2>]av ~ JO("'I - r2|)€’_|r1_r2|/Z short-range

Lowest interesting order
[(rafm)(nlr2) (r2|m)(mlri)]ay  and  [(rifn)(nfry) (r2[m) (mirz)]a
long-range in metal (& gauge-invariant)
Relation to dynamics
Consider spreading wavepacket (ra|e™"|r;)
[{rale™ " |r0)[2 = 32, (raln)(nlry) (r2| m) {mrz) /5 —En)t
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Many-body eigenstate correlations?

Analogue of Berry’s random wave conjecture?
Semiclassical limit: dilute hard spheres, numerically inaccessible

E.g. for disordered spin chain in ergodic phase, couplings ~ J

H:ngn'a_:nJrl“'ZEn'&n hn small & random
n n

Eigenstate thermalisation hypothesis (ETH)

Deutsch (1991), Srednicki (1994), Rigol (2008) [also Peres et al. (1984)]

. eigenstates E A E B
Picture:

Two similar systems A & B quasi-random

superposition

Hamiltonians Ha & Hp



Eigenstate thermalisation hypothesis (ETH)

Local observable O(x) e.g. spin operator at site x of spin chain

Matrix elements

(m|O(x)|n) = 8mn(O(x)) e + N 2F(E,w)Ronn

E=(En+Ey))/2
w=E, - E, Generic state  [¢)) =) ca|n)
N =e° S = entropy
Rmn ~ random matrix
e Stat mech from diagonal elements

(Y]0(x)|¢) fixed by (¢[H[)

e Dynamics from off-diagonal elements

f(E,w) encodes [O(x, t)O(x)]av



Many-body correlations and dynamics in spatially
extended systems?

Fock space spreading? fast process — limited information

Conserved densities

diffusively spreading or ballistically propagating modes

— reflected in [O(x, t)O(x)]av & f(E,w)

Study Floquet systems
avoid all conserved densities (even energy)

retain fixed evolution operator



Dynamics at long times & distances

Operator spreading
O(x,t) = e™O(x) e ™
O(x, t) = sum over strings of operators acting at many sites

How do lengths of operator strings grow with time?

probe via |[O(y, t), O(x)]|* and out-of-time order correlator (OTOC)
Clxy:it) = [O(y; 1) O(x)O(y; 1) O(x)]ay
Clx,y3t)

E.g. with TrO(x) =0
and O(x)*=1
& likewise for O(y) t

I t=|xly|/v

butterfly velocity: v



OTOC implies correlations beyond ETH

Spectral decomposition
Clx,y,t) =N (a|O(y)|b) (b|O(x)[c)(c| O(y)|d)(d|O(x)|a) e~ ErtEe—Ea)
abcd

ETH (in its simplest form) suggests (wrongly!)
C(x,y,t) ~ O(N™?) average + O(N 1) fluctuations



Comparing single pcle and many-body cases

Equivalent roles played by
wavepacket spreading in single-particle systems

& operator spreading in many-body systems

Compare orders of correlators involved

using e =3 |nyeEnt(n|
Wavepacket  |(ra|e™™|r)|?
4th order in |n) & (n|

0TOC  [O(y, t)O(x)O(y, t) O(x)]av
8th order in |n) & (n|



Identifying minimal eigenfuction correlators — |

Simplify the OTOC
remove dependence on operator choice
— avge over complete sets of operators {O;(x)} & {Ok(y)} acting at x & y

Outcome: scalars constructed from many-body eigenfunctions



Identifying minimal eigenfuction correlators — ||

Direct approach to constructing scalars
Schmidt decomposition of eigenfunction |a)
subsystems x & X with |a) = ", am|l)x ® |m)x

Central object: Schmidt matrix aj,, size 2& x 26

Pictorially

X X
bl=bl= @ H=am= Y@
X X

Combine e.g. |a), |b), |c) & |d) as Tr[ab'cd!] = M.peq(x)

require invariance under |a) — e/®|a)

must combine a & af, b & bt etc

hence (uniquely) [M,, 4 (x)M;pcq(¥)]av



Relation to OTOC

Avge OTOC over complete sets of operators with fixed supports

Notation:
Ok(x) — kth operator from orthonormal set with support x.

Find
> iklOi(y; t) Ok(x) Oj(y, t) Ok (x)]av
o Zab‘:d[/\/labcd()<)l\/l‘;kbcd(_y)]3\/eit(Ea_Eb"l'Ec—Ed)
-0-0-0-0 0000000000

eyt [xoy| T N
Q) o)



ETH & eigenstate correlations
ETH Ansatz

(alOk(x)[b) = 8ap(O(x))e + N /2 F(E, w)Rat
f(E,w) encodes autocorrelation function

C(x,t) = [Ok(x, 1) Ou(x)] , =N~ 1Z| a|O(x)|b)|?e e

Take avge of autocorrelation function over operators Ok(x) with fixed support x

Z [Ok(X t Ok X) X Z Mabba(x

k

Pictorially

Mbba (X)




Calculations: Floquet quantum circuits

e H = H(t) periodic in t
e No conserved densities
e Random gates = ensemble of systems

e Choices: local Hilbert space dimension g
- .x + circuit architecture

Numerical results: g = 2 brickwork circuit with Haar gates

Analytical results: g — oo for:

Wz{ w W> — nearest-neighbour coupling, strength ¢
Wl{ Wi — single-site Haar scramblers



Expected behaviour

Operator-averaged OTOC
> 10y, ) Ok(x) Oj(y £) Ok(x)]av
ik

with

Cmd S Xy T N
Q) o)

C(x,y;t)

Recall form of OTOC \ ;

' t=ixCylv



Results for solvable Floquet quantum circuit circuit

Clx.y;t) Curve: error function
(Dt)"”2 Parameters:
velocity v=1—p
i t diffusion constant D = (1 — p)
Ix=yl/iv with p = e72° &: nn coupling

Same behaviour in RUCs (circuits random in time, not Floquet):

Nahum, Vijay & Haah (2018)
von Keyserlingk, Rakovszky, Pollmann & Sondhi (2018)



Exact diagonalisation: time domain
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Operator-averaged OTOC [O;(y, t)Ok(x)Oj(y, t) Ok(x)]av vs time t
fors=0,1,...6



Exact diagonalisation: energy domain

1.0

F4(X7 Y) 9)
(e}
ot
T

0.0

Normalised [M,, ,(xX)M;pcq(¥)]av vs E = (Ea — E» + Ec — Eq)
fors=0,1,...6

Sharp structure in E for large s



Alternative to ETH

complementary to Free Probability theory, Pappalardi et al. (2022 & 2023)
Recall formulation of ETH

Statistical Ansatz for matrix elements

(a|O(X)|b) = 8ap(O(x))e + N V2F(E,w)Rup

Replace with statistical Ansatz for joint eigenvector distribution

Individual many-body eigenvectors 3
Floquet = (O(x))e indept of E = isotropic distribution for &
Pairs of eigenvectors 3 and b

Floquet circuit models f(E,w) ~ w-indept = &, b ~ uncorrelated

Maximum entropy form for joint distribution of four vectors

- -

P(3, b, €, d) oc e 2 MibcaICCr EMancy ) s Py, (3, b, €, d)

— correlations parameterised via G(x,y,E) vs E = E, — En + Ec — Eq4



Testing the Ansatz
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Normalised [M,, ,(x)M3ycq(¥)]av vs E = (Es — E» + Ec — Eq)

for separation s = 0,1,...6 between subsystems x & y

Monte Carlo sampling of Ansatz (points)
vs exact diagonalisation (lines)



Summary

Many-body quantum dynamics in chaotic systems

e Characterised by operator growth (and entanglement spreading)
e Encoded in correlator between sets of 4 eigenfunctions

e Unique correlator at this order
with structure at long-distance/small energy

M, g )Y Mpca(¥)]av

e Joint distribution of eigenvectors builds in these correlations
and is replacement for ETH



