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Quantum chaos in low-D systems

Semiclassical limit for chaotic systems

Berry’s random wave conjecture:

wavefunctions
∼ random superposition of plane waves

Model eigenfunctions as ψ(r) ∝
∑′

k,|k|=kF
ak cos(k · r + ϕk)

with random ak, ϕk

Implies [ψ(r1)ψ(r2)]av ∝ J0(kF|r1 − r2|)



Eigenstate correlations in spatially extended system

Disordered conductor

H = − ~2

2m
∇2 + V (r) with H|n〉 = En|n〉 & V (r) random

Lowest order

[〈r1|n〉〈n|r2〉]av ∼ J0(|r1 − r2|)e−|r1−r2|/` short-range

Lowest interesting order

[〈r1|n〉〈n|r2〉〈r2|m〉〈m|r1〉]av and [〈r1|n〉〈n|r1〉〈r2|m〉〈m|r2〉]av
long-range in metal (& gauge-invariant)

Relation to dynamics

Consider spreading wavepacket 〈r2|e−iHt |r1〉

|〈r2|e−iHt |r1〉|2 =
∑

nm〈r2|n〉〈n|r1〉〈r2|m〉〈m|r2〉e
i(En−Em)t

∝ t−d/2e−|r1−r2|2/4Dt in diffusive conductor



Many-body eigenstate correlations?

Analogue of Berry’s random wave conjecture?

Semiclassical limit: dilute hard spheres, numerically inaccessible

E.g. for disordered spin chain in ergodic phase, couplings ∼ J

H = J
∑
n

~σn · ~σn+1 +
∑
n

~hn · ~σn ~hn small & random

Eigenstate thermalisation hypothesis (ETH)

Deutsch (1991), Srednicki (1994), Rigol (2008) [also Peres et al. (1984)]

Picture:

Two similar systems A & B

Hamiltonians HA & HB

eigenstates E EA B

quasi−random

superposition



Eigenstate thermalisation hypothesis (ETH)

Local observable O(x) e.g. spin operator at site x of spin chain

Matrix elements

〈m|O(x)|n〉 = δmn〈O(x)〉E +N−1/2f (E , ω)Rmn

E = (Em + En)/2
ω = En − Em

N = eS S = entropy
Rmn ∼ random matrix

Generic state |ψ〉 =
∑

n cn|n〉

• Stat mech from diagonal elements

〈ψ|O(x)|ψ〉 fixed by 〈ψ|H|ψ〉

• Dynamics from off-diagonal elements

f (E , ω) encodes [O(x , t)O(x)]av



Many-body correlations and dynamics in spatially
extended systems?

Fock space spreading? fast process – limited information

Conserved densities

diffusively spreading or ballistically propagating modes

– reflected in [O(x , t)O(x)]av & f (E , ω)

Study Floquet systems

avoid all conserved densities (even energy)

retain fixed evolution operator



Dynamics at long times & distances

Operator spreading

O(x , t) = e iHtO(x) e−iHt

O(x , t) = sum over strings of operators acting at many sites

How do lengths of operator strings grow with time?

probe via |[O(y , t),O(x)]|2 and out-of-time order correlator (OTOC)

C(x , y ; t) ≡ [O(y , t)O(x)O(y , t)O(x)]av

E.g. with TrO(x) = 0
and O(x)2 = 1
& likewise for O(y)

C(x,y;t)

t

t=|x−y|/v

butterfly velocity: v



OTOC implies correlations beyond ETH

Spectral decomposition

C(x , y , t) = N−1
∑
abcd

〈a|O(y)|b〉〈b|O(x)|c〉〈c|O(y)|d〉〈d |O(x)|a〉e it(Ea−Eb+Ec−Ed )

ETH (in its simplest form) suggests (wrongly!)

C(x , y , t) ∼ O(N−2) average +O(N−1) fluctuations



Comparing single pcle and many-body cases

Equivalent roles played by

wavepacket spreading in single-particle systems

& operator spreading in many-body systems

Compare orders of correlators involved

using e−iHt ≡
∑

n |n〉e
−iEnt〈n|

Wavepacket |〈r2|e−iHt |r1〉|2

4th order in |n〉 & 〈n|

OTOC [O(y , t)O(x)O(y , t)O(x)]av

8th order in |n〉 & 〈n|



Identifying minimal eigenfuction correlators – I

Simplify the OTOC
remove dependence on operator choice

– avge over complete sets of operators {Oj(x)} & {Ok(y)} acting at x & y

Outcome: scalars constructed from many-body eigenfunctions



Identifying minimal eigenfuction correlators – II

Direct approach to constructing scalars

Schmidt decomposition of eigenfunction |a〉

subsystems x & x with |a〉 =
∑

lm alm|l〉x ⊗ |m〉x

Central object: Schmidt matrix alm size 2`x × 2`x

Pictorially

〈b| ≡ b†nk = b

_

x

x

|a〉 ≡ alm =
x

_
a

x

Combine e.g. |a〉, |b〉, |c〉 & |d〉 as Tr[ab†cd†] ≡ Mabcd(x)

x

_

x
_

a

c

b

d

x

x require invariance under |a〉 → e iα|a〉
must combine a & a†, b & b† etc

hence (uniquely) [Mabcd(x)M∗abcd(y)]av



Relation to OTOC

Avge OTOC over complete sets of operators with fixed supports

Notation:
Ok(x) – kth operator from orthonormal set with support x .

Find∑
jk [Oj(y , t)Ok(x)Oj(y , t)Ok(x)]av

∝
∑

abcd [Mabcd(x)M∗abcd(y)]ave
it(Ea−Eb+Ec−Ed )

{ {x−y|

O(x)

|

k
O(y)

j



ETH & eigenstate correlations

ETH Ansatz

〈a|Ok(x)|b〉 = δab〈Ok(x)〉E +N−1/2f (E , ω)Rab

f (E , ω) encodes autocorrelation function

C(x , t) =
[
Ok(x , t)Ok(x)

]
av

= N−1
∑
ab

|〈a|O(x)|b〉|2e i(Ea−Eb)t

Take avge of autocorrelation function over operators Ok(x) with fixed support x∑
k

[
Ok(x , t)Ok(x)

]
av
∝
∑
ab

Mabba(x)e i(Ea−Eb)t

Pictorially

Mabba(x) ≡

a

_

x
_

ab

xx

b

x



Calculations: Floquet quantum circuits

x

t

• H ⇒ H(t) periodic in t

• No conserved densities

• Random gates ⇒ ensemble of systems

• Choices: local Hilbert space dimension q
+ circuit architecture

Numerical results: q = 2 brickwork circuit with Haar gates

Analytical results: q →∞ for:

W2 – nearest-neighbour coupling, strength ε

W1 – single-site Haar scramblers



Expected behaviour

Operator-averaged OTOC∑
jk

[Oj(y , t)Ok(x)Oj(y , t)Ok(x)]av

with
{ {x−y|

O(x)

|

k
O(y)

j

Recall form of OTOC

C(x,y;t)

t

t=|x−y|/v



Results for solvable Floquet quantum circuit circuit

|x−y|/v

t

C(x,y;t)

(Dt)
1/2

Curve: error function

Parameters:

velocity v = 1− ρ
diffusion constant D = 1

2ρ(1− ρ)

with ρ = e−2ε ε: nn coupling

Same behaviour in RUCs (circuits random in time, not Floquet):

Nahum, Vijay & Haah (2018)

von Keyserlingk, Rakovszky, Pollmann & Sondhi (2018)



Exact diagonalisation: time domain
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Operator-averaged OTOC [Oj(y , t)Ok(x)Oj(y , t)Ok(x)]av vs time t
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Exact diagonalisation: energy domain
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Alternative to ETH
complementary to Free Probability theory, Pappalardi et al. (2022 & 2023)

Recall formulation of ETH

Statistical Ansatz for matrix elements

〈a|O(x)|b〉 = δab〈O(x)〉E +N−1/2f (E , ω)Rab

Replace with statistical Ansatz for joint eigenvector distribution

Individual many-body eigenvectors ~a

Floquet ⇒ 〈O(x)〉E indept of E ⇒ isotropic distribution for ~a

Pairs of eigenvectors ~a and ~b

Floquet circuit models f (E , ω) ∼ ω-indept ⇒ ~a, ~b ∼ uncorrelated

Maximum entropy form for joint distribution of four vectors

P(~a, ~b, ~c, ~d) ∝ e−
∑

xy M∗
abcd (x)G(x,y,E)M

abcd
(y) × PHaar(~a, ~b, ~c, ~d)

– correlations parameterised via G(x , y ,E) vs E ≡ Ea − Eb + Ec − Ed



Testing the Ansatz
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Summary

Many-body quantum dynamics in chaotic systems

• Characterised by operator growth (and entanglement spreading)

• Encoded in correlator between sets of 4 eigenfunctions

• Unique correlator at this order
with structure at long-distance/small energy

[Mabcd(x)M∗abcd(y)]av

• Joint distribution of eigenvectors builds in these correlations
and is replacement for ETH


