Eigenstate correlations in spatially extended chaotic many-body quantum systems

John Chalker

Physics Department, Oxford University

Based on:

Dominik Hahn, David Luitz & JTC, arXiv:2309.12982

Takato Yoshimura, Sam Garratt & JTC, arXiv:2312.14234

Related work: Amos Chan, Andrea De Luca & JTC, PRL (2019)

Outline

Single particle systems

Eigenstate correlations and dynamics in chaotic/disordered systems

Many-body systems

Characterising quantum dynamics in spatially extended systems

Implications for eigenstate correlations

Capturing correlations with Ansatz for joint eigenvector distribution

Quantum chaos in low-D systems

Semiclassical limit for chaotic systems

Berry's random wave conjecture:

wavefunctions

 \sim random superposition of plane waves

Model eigenfunctions as
$$\psi(\mathbf{r}) \propto \sum_{\mathbf{k}, |\mathbf{k}| = \mathbf{k}_{\mathrm{F}}}' a_{\mathbf{k}} \cos(\mathbf{k} \cdot \mathbf{r} + \varphi_{\mathbf{k}})$$

with random a_k, φ_k

Implies
$$[\psi(\mathsf{r}_1)\psi(\mathsf{r}_2)]_{\mathrm{av}} \propto J_0(k_{\mathrm{F}}|\mathsf{r}_1-\mathsf{r}_2|)$$

Eigenstate correlations in spatially extended system

Disordered conductor

$$H = -rac{\hbar^2}{2m}
abla^2 + V(\mathbf{r})$$
 with $H|n\rangle = E_n|n\rangle$ & $V(\mathbf{r})$ random

Lowest order

$$[\langle \mathsf{r}_1| \mathsf{n}\rangle \langle \mathsf{n}|\mathsf{r}_2\rangle]_{\rm av} \sim J_0(|\mathsf{r}_1-\mathsf{r}_2|)e^{-|\mathsf{r}_1-\mathsf{r}_2|/\ell} \quad \text{ short-range}$$

Lowest interesting order

 $[\langle \mathbf{r}_1 | n \rangle \langle n | \mathbf{r}_2 \rangle \langle \mathbf{r}_2 | m \rangle \langle m | \mathbf{r}_1 \rangle]_{av} \quad \text{and} \quad [\langle \mathbf{r}_1 | n \rangle \langle n | \mathbf{r}_1 \rangle \langle \mathbf{r}_2 | m \rangle \langle m | \mathbf{r}_2 \rangle]_{av}$ long-range in metal (& gauge-invariant)

Relation to dynamics

Consider spreading wavepacket $\langle r_2 | e^{-iHt} | r_1 \rangle$

$$\begin{split} |\langle \mathbf{r}_2|e^{-iHt}|\mathbf{r}_1\rangle|^2 &= \sum_{nm} \langle \mathbf{r}_2|n\rangle \langle n|\mathbf{r}_1\rangle \langle \mathbf{r}_2|m\rangle \langle m|\mathbf{r}_2\rangle e^{i(\mathcal{E}_n - \mathcal{E}_m)t} \\ &\propto t^{-d/2} e^{-|\mathbf{r}_1 - \mathbf{r}_2|^2/4Dt} \quad \text{in diffusive conductor} \end{split}$$

Many-body eigenstate correlations?

Analogue of Berry's random wave conjecture?

Semiclassical limit: dilute hard spheres, numerically inaccessible

E.g. for disordered spin chain in ergodic phase, couplings $\sim J$

$$H = J \sum_{n} \vec{\sigma}_{n} \cdot \vec{\sigma}_{n+1} + \sum_{n} \vec{h}_{n} \cdot \vec{\sigma}_{n}$$
 small & random

Eigenstate thermalisation hypothesis (ETH)

Deutsch (1991), Srednicki (1994), Rigol (2008) [also Peres et al. (1984)]

Eigenstate thermalisation hypothesis (ETH)

Local observable O(x) e.g. spin operator at site x of spin chain

Matrix elements

$$\langle m|O(x)|n\rangle = \delta_{mn}\langle O(x)\rangle_E + \mathcal{N}^{-1/2}f(E,\omega)R_{mn}$$

$$\begin{split} E &= (E_m + E_n)/2\\ \omega &= E_n - E_m\\ \mathcal{N} &= e^S \quad S = \text{entropy}\\ R_{mn} \sim \text{random matrix} \end{split}$$

Generic state $|\psi\rangle = \sum_{n} c_{n} |n\rangle$

- Stat mech from diagonal elements
 - $\langle \psi | O(x) | \psi
 angle$ fixed by $\langle \psi | H | \psi
 angle$
- Dynamics from off-diagonal elements $f(E, \omega)$ encodes $[O(x, t)O(x)]_{av}$

Many-body correlations and dynamics in spatially extended systems?

Fock space spreading? fast process – limited information

Conserved densities

diffusively spreading or ballistically propagating modes

- reflected in $[O(x,t)O(x)]_{av}$ & $f(E,\omega)$

Study Floquet systems

avoid all conserved densities (even energy)

retain fixed evolution operator

Dynamics at long times & distances

Operator spreading

$$O(x,t) = e^{iHt}O(x) e^{-iHt}$$

O(x, t) = sum over strings of operators acting at many sites

How do lengths of operator strings grow with time?

probe via $|[O(y, t), O(x)]|^2$ and out-of-time order correlator (OTOC)

$$C(x,y;t) \equiv [O(y,t)O(x)O(y,t)O(x)]_{\rm av}$$

E.g. with $\operatorname{Tr} O(x) = 0$ and $O(x)^2 = \mathbb{1}$ & likewise for O(y)

butterfly velocity: v

OTOC implies correlations beyond **ETH**

Spectral decomposition

$$C(x, y, t) = \mathcal{N}^{-1} \sum_{abcd} \langle a|O(y)|b\rangle \langle b|O(x)|c\rangle \langle c|O(y)|d\rangle \langle d|O(x)|a\rangle e^{it(E_a - E_b + E_c - E_d)}$$

ETH (in its simplest form) suggests (wrongly!)

 $\mathcal{C}(x,y,t)\sim \mathcal{O}(\mathcal{N}^{-2})$ average $+ \mathcal{O}(\mathcal{N}^{-1})$ fluctuations

Comparing single pcle and many-body cases

Equivalent roles played by

wavepacket spreading in single-particle systems

& operator spreading in many-body systems

Compare orders of correlators involved

using
$$e^{-iHt} \equiv \sum_n |n\rangle e^{-iE_n t} \langle n|$$

Wavepacket $|\langle \mathbf{r}_2|e^{-iHt}|\mathbf{r}_1\rangle|^2$

4th order in $|n\rangle \& \langle n|$

OTOC $[O(y,t)O(x)O(y,t)O(x)]_{av}$ 8th order in $|n\rangle \& \langle n|$

Identifying minimal eigenfuction correlators - I

Simplify the OTOC

remove dependence on operator choice

- avge over complete sets of operators $\{O_j(x)\}$ & $\{O_k(y)\}$ acting at x & y

Outcome: scalars constructed from many-body eigenfunctions

Identifying minimal eigenfuction correlators – II

Direct approach to constructing scalars

Schmidt decomposition of eigenfunction |a
angle

subsystems x & \overline{x} with $|a
angle=\sum_{\textit{lm}}a_{\textit{lm}}|I
angle_{x}\otimes|m
angle_{\overline{x}}$

Central object: Schmidt matrix a_{lm} size $2^{\ell_x} \times 2^{\ell_{\overline{x}}}$ **Pictorially**

$$\langle b| \equiv b_{nk}^{\dagger} =$$
 $b_{\overline{x}}^{\star}$ $|a\rangle \equiv a_{lm} =$ $x_{\overline{x}}^{\star}$

Combine e.g. $|a\rangle$, $|b\rangle$, $|c\rangle$ & $|d\rangle$ as ${\rm Tr}[ab^{\dagger}cd^{\dagger}]\equiv M_{abcd}(x)$

require invariance under $|a\rangle \rightarrow e^{i\alpha}|a\rangle$ must combine $a \& a^{\dagger}, b \& b^{\dagger}$ etc hence (uniquely) $[M_{abcd}(x)M^*_{abcd}(y)]_{av}$

Relation to OTOC

Avge OTOC over complete sets of operators with fixed supports Notation:

 $O_k(x) - k$ th operator from orthonormal set with support x.

Find

$$\sum_{jk} [O_j(y,t)O_k(x)O_j(y,t)O_k(x)]_{av}$$
$$\propto \sum_{abcd} [M_{abcd}(x)M^*_{abcd}(y)]_{av} e^{it(E_a - E_b + E_c - E_d)}$$

ETH & eigenstate correlations

ETH Ansatz

$$\langle a|O_k(x)|b
angle = \delta_{ab}\langle O_k(x)
angle_E + \mathcal{N}^{-1/2}f(E,\omega)R_{ab}$$

 $f(E, \omega)$ encodes autocorrelation function

$$C(x,t) = \left[O_k(x,t)O_k(x)\right]_{\mathrm{av}} = \mathcal{N}^{-1}\sum_{ab}|\langle a|O(x)|b\rangle|^2 e^{i(E_a - E_b)t}$$

Take avge of autocorrelation function over operators $O_k(x)$ with fixed support x

$$\sum_{k} \left[O_k(x,t) O_k(x)
ight]_{\mathrm{av}} \propto \sum_{ab} M_{abba}(x) e^{i(E_a - E_b)t}$$

Pictorially

 $M_{abba}(x) \equiv$

Calculations: Floquet quantum circuits

- $H \Rightarrow H(t)$ periodic in t
- No conserved densities
- \bullet Random gates \Rightarrow ensemble of systems
- Choices: local Hilbert space dimension *q* + circuit architecture

Numerical results: q = 2 brickwork circuit with Haar gates

Analytical results: $q \rightarrow \infty$ for:

- W_2 nearest-neighbour coupling, strength arepsilon
- W_1 single-site Haar scramblers

Expected behaviour

Operator-averaged OTOC

$$\sum_{jk} [O_j(y,t)O_k(x)O_j(y,t)O_k(x)]_{av}$$

with

Recall form of OTOC

Results for solvable Floquet quantum circuit circuit

Curve: error function Parameters: velocity $v = 1 - \rho$ diffusion constant $D = \frac{1}{2}\rho(1 - \rho)$ with $\rho = e^{-2\varepsilon} \quad \varepsilon$: nn coupling

Same behaviour in RUCs (circuits random in time, not Floquet):

Nahum, Vijay & Haah (2018)

von Keyserlingk, Rakovszky, Pollmann & Sondhi (2018)

Exact diagonalisation: time domain

Operator-averaged OTOC $[O_j(y, t)O_k(x)O_j(y, t)O_k(x)]_{av}$ vs time t for $s = 0, 1, \dots 6$

Exact diagonalisation: energy domain

Normalised $[M_{abcd}(x)M^*_{abcd}(y)]_{av}$ vs $E = (E_a - E_b + E_c - E_d)$ for $s = 0, 1, \dots 6$

Sharp structure in *E* for large *s*

Alternative to ETH

complementary to Free Probability theory, Pappalardi *et al.* (2022 & 2023) Recall formulation of ETH

Statistical Ansatz for matrix elements

$$\langle a|O(x)|b\rangle = \delta_{ab}\langle O(x)\rangle_E + \mathcal{N}^{-1/2}f(E,\omega)R_{ab}$$

Replace with statistical Ansatz for joint eigenvector distribution

Individual many-body eigenvectors \vec{a}

Floquet $\Rightarrow \langle O(x) \rangle_E$ indept of $E \Rightarrow$ isotropic distribution for \vec{a}

Pairs of eigenvectors \vec{a} and \vec{b}

Floquet circuit models $f(E,\omega) \sim \omega$ -indept $\Rightarrow \vec{a}, \vec{b} \sim$ uncorrelated

Maximum entropy form for joint distribution of four vectors

$$P(\vec{a}, \vec{b}, \vec{c}, \vec{d}) \propto e^{-\sum_{xy} M^*_{abcd}(x)G(x, y, E)M_{abcd}(y)} \times P_{\text{Haar}}(\vec{a}, \vec{b}, \vec{c}, \vec{d})$$

- correlations parameterised via G(x, y, E) vs $E \equiv E_a - E_b + E_c - E_d$

Testing the Ansatz

Normalised $[M_{abcd}(x)M_{abcd}^*(y)]_{av}$ vs $E = (E_a - E_b + E_c - E_d)$ for separation $s = 0, 1, \dots 6$ between subsystems x & y

Monte Carlo sampling of Ansatz (points) vs exact diagonalisation (lines)

Summary

Many-body quantum dynamics in chaotic systems

- Characterised by operator growth (and entanglement spreading)
- Encoded in correlator between sets of 4 eigenfunctions
- Unique correlator at this order with structure at long-distance/small energy

 $[M_{abcd}(x)M^*_{abcd}(y)]_{av}$

• Joint distribution of eigenvectors builds in these correlations and is replacement for ETH