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Effective non-Hermitian many-body Hamiltonians attracted recently a lot of
attention, e.g. a time-reversal invariant many-body version of Hatano-Nelson model
of hardcore bosons:

H =
∑L

k=1

[
−t

(
egc†kck+1 + e−gc†k+1ck

)
+ hknk + V nknk+1

]
with nk = c†kck = (0, 1) counting the number of particles on a lattice site k, while
hk ∈ [−h, h] being random on-site potentials and V being non-random nearest-
neighbour interaction. It has been shown to have a complex-real transition in
eigenvalues as well as an MBL transition as the disorder strength increases:

Hamazaki, Kawabata, Ueda ’19.

Alternatively, non-time-reversal invariant manybody gain-loss model:

H =
∑L

k=1

[
−t

(
c†kck+1 + c†k+1ck

)
+
(
hk − iγ(−1)k

)
nk + V nknk+1

]
Natural reference point: Ginibre Ensembles, real for I and complex for II.



Left-right eigenvectors and eigenvalue condition numbers:

A (square) matrix X is non-normal if it does not commute with its Hermitian adjoint:
XX∗ ̸= X∗X . Generically, non-Hermitian random matrices are non-normal.
To each eigenvalue of a non-normal matrix λi, real or complex, correspond two
eigenvectors: left li and right ri. The corresponding eigenproblems are

Xri = λiri and X∗li = λili.

The two sets can always be chosen bi-orthogonal: (l∗i rj) = δij.

Consider now a perturbed matrix X ′ = X+ϵP , with ϵ > 0 controlling the magnitude
of the perturbation P . To the leading order in ϵ the eigenvalues are shifted by

|λi(ϵ)− λi(0)| = ϵ|l∗iPri| ≤ ϵ||P ||2
√
(l∗i li)(r

∗
i ri) ,

showing that the sensitivity of eigenvalues is mainly controlled by the eigenvalue
condition numbers:

κi =
√
(l∗i li)(r

∗
i ri) ≥ 1,

with κ = 1 only when X is normal. Thus, non-normal matrices are much more
sensitive to perturbations of the matrix entries than their normal counterparts - “ill-
conditioned eigenvalues".



Ginibre Gaussian Ensembles:
It is natural to ask how well-conditioned are eigenvalues of a ‘typical’ N × N non-
normal matrix randomly chosen according to a probability measure or “ensemble".

The simplest choice: all entries are i.i.d. normals Xj,k ∼ N−1/2N (0, 1) for the real
Ginibre or ℜXj,k ∼ ℑXj,k ∼ N−1/2N (0, 1/2) for the complex Ginibre ensembles.

For the real Ginibre Ensemble of the order
√
N eigenvalues are typically purely

real, with the uniform density E [ρ(|z ∈ R| < 1] = 1√
2π

, the rest of eigenvalues
coming in complex-conjugate pairs and forming the uniformly filled in unit circle. For
the complex Ginibre ensemble all eigenvalues are with probability one complex.



‘Diagonal’ eigenvector overlaps for complex Ginibre matrices:

Characteristics of non-orthogonality in the set of left & right eigenvectors of
complex Ginibre matrices have been originally addressed more than two decades
ago by J. Chalker and B. Mehlig (’98, ’00) who introduced the matrix of inner
products Oij = (l∗i lj)(r

∗
jri), which they called “eigenvector overlaps”. The

diagonal ‘overlaps’ are simply the squared eigenvalue condition numbers.

They further associated with the diagonal elements of the overlap matrix the following
single-point correlation function:

O1(z) =
〈

1
N2

∑N
i=1Oiiδ(z − λi)

〉
C.G.

where the angular brackets stand for the expectation with respect to the complex
Ginibre ensemble, and then proceeded to computing the "bulk" value:

limN→∞O1(z) =
1
π(1− |z|2) for |z| < 1 ,

implying that the typical eigenvalue condition number in the bulk has the order

κ2
i := Oii ∼ O(N) as N ≫ 1

so is parametrically larger than for the normal matrices.



Distribution of ‘diagonal’ eigenvector overlaps for Ginibre ensembles:

Chalker and Mehlig also conjectured that the distribution of diagonal overlaps Oii for
complex Ginibre case is heavy-tailed: P (Oii) ∼ O−3

ii . This conjecture has been
settled in 2018 by Bourgade & Doubach and YF, the latter paper further addressing
overlaps for real eigenvalues of real Ginibre matrices.

Theorem:
Consider the (conditional) probability density function PN(z, t) of the (scaled)
‘diagonal overlap’ factor t = (Oii − 1)/N for eigenvectors corresponding to
eigenvalues in the vicinity of a point z = x + iy in the complex plane for β = 2
or on the real axis for β = 1. Then

limN→∞PN(z, t) = ⟨ρ(z)⟩
t e

−
O
(β)
1 (z)

t⟨ρ(z)⟩

(
O

(β)
1 (z)

t⟨ρ(z)⟩

)β

, |z| < 1.

where for β = 1 ⟨ρ(z)⟩ = 1√
2π

for the interval |z| < 1, whereas for β = 2

⟨ρ(z)⟩ = π−1 inside the unit circle |z| < 1. Further O(β=2)
1 (z) = π−1(1− |z|2) and

O
(β=1)
1 (z) = 1

2
√
2π
(1− |z|2) provide ’typical scale’ value for the diagonal overlap.

Note: For β = 2 ‘typical scale=mean’, whereas for β = 1 the mean does not
exist!



Eigenvector overlaps in Ginibre: further works and applications:

Studies of Chalker-Mehlig overlaps in all scaling regimes of the complex plane:
(i) at the edge, where non-orthogonality is parametrically weaker: Oii ∼

√
N

(ii) in the depletion regime of GinOE close to the real axis, and in the weak non-
Hermiticity regimes. YF, Tarnowski’21, Würfel- Crumpton-YF’23

In the bulk more general off-diagonal correlation function has been evaluated
in various regimes (Chalker & Mehlig’99, Walters & Simm’15 Bourgade &
Doubach’18)

O2(z1, z2) =
〈

1
N

∑N
k ̸=lOklδ(z1 − λk)δ(z2 − λl)

〉
GC

.

Numerics shows those eigenvector correlations are markedly different between the
delocalized and localized phases: Ghosh, Kulkarni, Roy’23

It was argued eigenvector non-orthogonality may lead to a violation of Eigenstates
Thermalization : Cipolloni & Kudler-Flam’23.

Enhancement of entropy production for driven multivariate linear systems:
dxi =

∑N
j=1Aijxj dt+ dWj(t) YF,Gudowska-Nowak,Nowak,Tarnowski’23

Applications to quantum chaotic scattering, both theoretically (Schomerus et al. ’00,
YF, Savin ’12; YF, Osman ’22) and experimentally Gros et al.’14, Davy, Genack ’19.



Non-orthogonality factors for rank-one non-Hermitian deformations:

Theorem YVF, M. Osman , ’21:

Consider H = H − iγe ⊗ eT , with H ∈ GUE or H ∈ GOE and define the (conditional)

probability density of the non-orthogonality factor t = Onn − 1 corresponding to eigenvalues in the

vicinity of a point z = X − iY, Y > 0 in the complex plane

P(t; z) =
〈

1
N

∑N
i=1 δ(Onn − 1 − t)δ(z − zn)

〉
Then for H ∈ GUE as N → ∞ the limiting density P(2)

y (t) := limN→∞
1

πρNP(t; z =

X − i y
πρN ) takes the following form

P(2)
y (t) = 16

t3
e−2gy L2 e

−2gy(1+2
t)I0

(
4y
t

√
(g2 − 1)(1 + t)

)
where we defined g = 1

2πρsc(x)

(
γ + 1

γ

)
, Iν(x) stands for the modified Bessel function

and L2 is a differential operator acting on functions f(y) as

L2 f(y) =

{
1 +

(
sinh 2y

2y

)2

+ 1
2y

(
1 − sinh 4y

4y

)
d
dy + 1

4

((
sinh 2y

2y

)2

− 1

)
d2

dy2

}
y2f(y).

Similar explicit result is also available for H ∈ GOE.

The heavy-tail asymptotics P(2)
y (t) ∼ t−3 seems the most universal feature of

statistics of diagonal overlaps in the complex plane.


