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Effective non-Hermitian many-body Hamiltonians attracted recently a lot of
attention, e.g. a time-reversal invariant many-body version of Hatano-Nelson model
of hardcore bosons:

H = Zé:l [—t (echckH + e_gc,tﬂck) + hrng + VnknkJrl}

with np = c,tck = (0, 1) counting the number of particles on a lattice site k, while
hy € |—h,h] being random on-site potentials and V' being non-random nearest-
neighbour interaction. It has been shown to have a complex-real transition in
eigenvalues as well as an MBL transition as the disorder strength increases:
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Alternatively, non-time-reversal invariant manybody gain-loss model:

H = 2521 {—t (c,tckﬂ + c,zﬂck) + (hk — iw(—l)k) ng + Vngnegi

Natural reference point: Ginibre Ensembles, real for | and complex for |l.



Left-right eigenvectors and eigenvalue condition numbers:

A (square) matrix X is non-normal if it does not commute with its Hermitian adjoint:
XX* % X*X. Generically, non-Hermitian random matrices are non-normal.
To each eigenvalue of a non-normal matrix \;, real or complex, correspond two
eigenvectors: left 1; and right r,. The corresponding eigenproblems are

XI’Z' = )\Z'I'Z' and X*lz = lez
The two sets can always be chosen bi-orthogonal: (I7r;) = J;,.

Consider now a perturbed matrix X’ = X +¢eP, with ¢ > 0 controlling the magnitude
of the perturbation P. To the leading order in € the eigenvalues are shifted by

IXi(€) = Xi(0)] = €|lf Pr| < €| Pllay/(1;L)(r}rs) ,
showing that the sensitivity of eigenvalues is mainly controlled by the eigenvalue
condition numbers:

ki =/ (L) (rjr;) > 1,
with = 1 only when X is normal. Thus, non-normal matrices are much more

sensitive to perturbations of the matrix entries than their normal counterparts - “ill-
conditioned eigenvalues”.



Ginibre Gaussian Ensembles:

It is natural to ask how well-conditioned are eigenvalues of a ‘typical’ N x N non-
normal matrix randomly chosen according to a probability measure or “ensemble”.

The simplest choice: all entries are i.i.d. normals X, ~ N~2A (0, 1) for the real
Ginibre or X, ~ X, ~ N"Y?N (0, 1/2) for the complex Ginibre ensembles.

For the real Ginibre Ensemble of the order v/ N eigenvalues are typically purely
real, with the uniform density E [p(|z € R| < 1] = \/%7 the rest of eigenvalues

coming in complex-conjugate pairs and forming the uniformly filled in unit circle. For
the complex Ginibre ensemble all eigenvalues are with probability one complex.
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‘Diagonal’ eigenvector overlaps for complex Ginibre matrices:

Characteristics of non-orthogonality in the set of left & right eigenvectors of
complex Ginibre matrices have been originally addressed more than two decades
ago by J. Chalker and B. Mehlig ('98, '00) who introduced the matrix of inner

products O;; = (I71;)(r’r;), which they called “eigenvector overlaps”. The

diagonal ‘overlaps’ are simply the squared eigenvalue condition numbers.

They further associated with the diagonal elements of the overlap matrix the following
single-point correlation function:

O1(z) = <# >y Oiib(z — /\i)>c.c;.
where the angular brackets stand for the expectation with respect to the complex
Ginibre ensemble, and then proceeded to computing the "bulk" value:
im0 O1(2) = (1 — |2]?) for |2] < 1
implying that the typical eigenvalue condition number in the bulk has the order
k2 :=0;; ~0O(N)as N > 1
so is parametrically larger than for the normal matrices.



Distribution of ‘diagonal’ eigenvector overlaps for Ginibre ensembles:

Chalker and Mehlig also conjectured that the distribution of diagonal overlaps O;; for
complex Ginibre case is heavy-tailed: P (O;;) ~ O;.®. This conjecture has been
settled in 2018 by Bourgade & Doubach and YF, the latter paper further addressing
overlaps for real eigenvalues of real Ginibre matrices.

Theorem:
Consider the (conditional) probability density function Py(z,t) of the (scaled)
‘diagonal overlap’ factor t = (O;; — 1)/N for eigenvectors corresponding to

eigenvalues in the vicinity of a point z = = + 2y in the complex plane for 8 = 2
or on the real axis for 3 = 1. Then

O(B)(Z) (8) B
limn oo Py (2, 1) = D~ T (ngg) <1

where for 8 = 1 (p(z)) = \/ﬁ for the interval |z| < 1, whereas for § =

(p(2)) = m~1 inside the unit circle |z| < 1. Further O](Lﬁ )(z) =711 — |z|?) and
0(5 1)( ) = 2\/%(1 — |2|?) provide ’typical scale’ value for the diagonal overlap.

Note: For 5 = 2 ‘typical scalezmean’, whereas for § = 1 the mean does not
exist!




Eigenvector overlaps in Ginibre: further works and applications:

Studies of Chalker-Mehlig overlaps in all scaling regimes of the complex plane:

(i) at the edge, where non-orthogonality is parametrically weaker: O;; ~ Vv N

(if) in the depletion regime of GinOE close to the real axis, and in the weak non-
Hermiticity regimes. YF, Tarnowski’21, Wurfel- Crumpton-YF'23

In the bulk more general off-diagonal correlation function has been evaluated
in various regimes (Chalker & Mehlig'99, Walters & Simm’15 Bourgade &
Doubach’18)

02(21, Z2) = <% ch\;él Okl5(z1 — )\k)é(ZQ — Al)>GC .
Numerics shows those eigenvector correlations are markedly different between the
delocalized and localized phases: Ghosh, Kulkarni, Roy’23

It was argued eigenvector non-orthogonality may lead to a violation of Eigenstates
Thermalization : Cipolloni & Kudler-Flam’23.

Enhancement of entropy production for driven multivariate linear systems:
dxr; = Z;V: LAz dt + dW,(t) YF,Gudowska-Nowak,Nowak, Tarnowski’23

Applications to quantum chaotic scattering, both theoretically (Schomerus et al. '00,
YF, Savin ’12; YF, Osman '22) and experimentally Gros et al. 14, Davy, Genack ’19.



Non-orthogonality factors for rank-one non-Hermitian deformations:

Theorem YVF, M. Osman , '21:

Consider H = H — ive ® e, with H € GUE or H € GOE and define the (conditional)
probability density of the non-orthogonality factort = O,,,, — 1 corresponding to eigenvalues in the
vicinity ofapoint z = X — 1Y, Y > 0 in the complex plane

Pt;2) = (4 5L, 8(0m — 1 = 1)6(z — 20) )

Then for H € GUE as N — oo the limiting density P (t) = limy o 5P (t; 2 =
X — i’y ) takes the following form

P(t) = 15 e 2V Ly e 20v(1H7) I, (4Ty\/(92 —1)(1 + t))

where we defined g = W (7 + ) I,,(x) stands for the modified Bessel function
and L, is a differential operator acting on functions f(y) as

Laf = {1+ (22) 4 4 (1- o) £ ((22) 1) &) vro),

Similar explicit result is also available for H € GOE.

The heavy-tail asymptotics 7?@52)(15) ~ t73 seems the most universal feature of
statistics of diagonal overlaps in the complex plane.




