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In recent papers D. Agostini et al. [1,2] and T. Ichikawa [3] have proven that real theta 

functions associated with periods of tropical curves have tropical limits as KP solutions.   

In a series of papers in collaboration with P.G. Grinevich [4-8] we have used the combinatorial 

structure of the totally non-negative real Grassmannians to explicitly construct the spectral 

data for the family of real regular KP multi-line solitons on reducible rational M-curves and 

we have proven that the desingularization of such data leads to real regular quasi-periodic 

solutions to the KP equation on smooth M-curves.  

More precisely, each real regular KP soliton family is represented by a positroid cell in the 

totally non-negative part of a real Grassmannian. Each planar bicolored graph representing 

this positroid cell in Postnikov’s classification [9] is dual to the topological model of the 

reducible M-curve. The KP divisor for the soliton solution is then obtained solving a system of 

relations on such graph. Finally, Dubrovin-Natanzon theorem [10], which characterizes the 

reality and regularity of the desingularized KP solution, holds true if and only the soliton data 

are in the totally non-negative part of the Grassmannian. 

Thus, we have proven that each graph in Postnikov classification can be used to provide the 

model of the tropical limit of a smooth M-curve. 
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Poincaré and Picard Bundles on Moduli Spaces of Vector Bundles on
Nodal Curves

C. Arusha1, Usha N. Bhosle2, and Sanjay Kumar Singh3

1Indian Institute of Technology Bombay
2Indian Statistical Institute Bangalore

3Indian Institute of Science Education and Research Bhopal

S. Ramanan proved that a universal family (also called a Poincaré bundle) exists for the moduli
problem of vector bundles on a smooth curve if and only if the rank and degree are coprime [2].
One of the key elements in his proof is the computation of the Picard group of the moduli space.
In this talk, we first discuss the non-existence of a Poincaré bundle for the moduli problem of
vector bundles on nodal curves when the degree and rank are not coprime closely following [2].

When the degree is sufficiently high, the pushforward of a Poincaré bundle to the moduli
space is a vector bundle, called the Picard bundle. Although the existence of Poincaré bundles
(hence Picard bundles) depend on the rank and degree being relatively prime, there always
exists a universal family of projective bundles; called the projective Poincaré bundle. Similarly,
there is a projective Picard bundle. Next, we discuss the stability of these bundles.

On the way to achieve these goals, we compute the codimension of a few closed subsets
of the moduli spaces. U.N. Bhosle proved that not all stable bundles arise from the irreducible
unitary representations of the fundamental group of the nodal curve unlike that of smooth curves
[1]. Using these results on codimension, we show that the stable vector bundles on nodal curves,
which arise from representations, form a big open set of the moduli space. We also use them to
compute Picard groups of the moduli spaces.

[1] Bhosle, Usha N., Representations of the fundamental group and vector bundles, Math. Ann. 302
(1995).

[2] Ramanan S., The moduli spaces of vector bundles over an algebraic curve, Math. Ann. 200 (1973).

P02



Tropical Tevelev degrees

Erin Dawson and Renzo Cavalieri

Colorado State University

Tropical Hurwitz spaces parameterize genus g, degree d covers of the tropical line with
fixed branch profiles. Since tropical curves are metric graphs, this gives us a combinatorial
way to study Hurwitz spaces. Tevelev degrees are the degrees of a natural finite map from
the Hurwitz space to a product M0,n ×Mg,n. In 2021, Cela, Pandharipande and Schmitt
presented this interpretation of Tevelev degrees in terms of moduli spaces of Hurwitz
covers. We define the tropical Tevelev degrees, Tevtropg , as the degree of a natural finite
morphism between certain tropical moduli spaces, in analogy to the algebraic case. We
exhibit combinatorial recursions among well-chosen tropical covers that compute Tevtropg .

[1] A. Cela, R. Pandharipande, J. Schmitt, J. Sci. Res. 13, 1357 (2012).
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Patchworking in F_1 geometry for Trieste Algebraic Geometry Summer
School (TAGSS) 2024: Tropical Geometry and related topics 

A. Martinez Mendez 1 , O. Lorscheid 1 , and M. Baker 2

1University of Groningen
2 Georgia  Institute of Technology

The field of one element, F_1, is an idea that was first proposed by Jaques Tits as a link
between Chevalley groups and their Weyl groups, but it didn't garner serious interest until the
late  20th  century  when  its  links  to  other  areas,  including  arithmetic,  combinatorics  and
tropical geometry, was unearthed.

In the last two decades, several approaches to F_1-geometry were developed that generalize 

algebraic geometry from different perspectives. What is common to most approaches is that 

F1-scheme is a space with a covering by affine patches.

In this talk, we explain this patchworking from a general and simplified perspective, and we 

comment on the topological realizations of F1-schemes. This is work in progress, in 

collaboration with Matt Baker and Oliver Lorscheid.
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Multi Symmetric Products and Higher Rank Divisors on
Curves

A. Mukherjee1 and D. S. Nagaraj2

1Department of Mathematics, Indian Institute of Science Education and Research
Tirupati, Karakambadi Rd, opp. Sree Rama Engineering College, Rami Reddy Nagar,

Mangalam, Tirupati, Andhra Pradesh - 517 507, India.
2Department of Mathematics, Indian Institute of Science Education and Research

Tirupati, Karakambadi Rd, opp. Sree Rama Engineering College, Rami Reddy Nagar,
Mangalam, Tirupati, Andhra Pradesh - 517 507, India.

In this talk, we introduce the notion of the diagonal property and the weak point property
for an ind-variety, i.e an inductive system of varieties. Following that, we check that these
properties are being satisfied by some particular ind-varieties, i.e higher rank divisors
on curves, which are really important in the context of studying a higher dimensional
analogue of the classical Abel-Jacobi Map. To be specific, we observe that the ind-
varieties of higher rank divisors of integral slopes on a smooth projective curve have the
weak point property. Moreover, we show that the ind-variety of (1, n)-divisors has the
diagonal property and is a locally complete linear ind-variety and calculate its Picard
group. Furthermore, we obtain that the Hilbert schemes of a curve associated to the
good partitions of a constant polynomial satisfy the diagonal property and count the
exact number of such schemes by proving that the multi symmetric products associated
to two distinct partitions of a positive integer are not isomorphic. This is a joint work
with Prof. D. S. Nagaraj (cf. [1]).

[1] A. Mukherjee and D. S. Nagaraj, Diagonal property and weak point property of higher rank
divisors and certain Hilbert schemes, (2024). (https://arxiv.org/abs/2401.00852)
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Cremona transformations of P3 stabilizing quartic surfaces
Daniela Paiva

Insituto de Matematica Pura e Aplicada - IMPA

We are interested in Gizatullin’s problem which consists in the following question: Given a
smooth quartic surface S ⊂ P3, which automorphisms of S are induced by Cremona transfor-
mations of P3?
Cremona transformations of P3 can be written as a composition of a finite sequence of elemen-
tary maps. This is an algorithmic process called the Sarkisov Program. In this talk, we will solve
Gizatullin’s problem when S ⊂ P3 has Picard number two by using the Sarkisov program. The
results that will be presented are in collaboration with Ana Quedo, and with Carolina Araujo
and Sokratis Zikas.
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TROPICAL CYCLES OF DISCRETE ADMISSIBLE COVERS.

DIEGO A. ROBAYO BARGANS

Abstract: This project concerns itself with the moduli spaces of discrete ad-
missible covers of tropical curves and their relationship with the moduli spaces
of tropical curves. Its origin lies in the results on tree gonality (of tropical
curves) of A. Vargas and J. Draisma. We introduce a systematic approach
that allows us to describe and handle tropical cycles in the moduli space of
tropical curves of genus g, and show that the loci of interest are tropical cycles
therein. This involves the development of a framework that endows spaces
concocted analogously to the moduli space of tropical curves of genus g with a
tropical structure. Such spaces include the moduli space of n-marked tropical
curves of genus g, and the moduli space of discrete admissible covers of a fixed
degree to an m-marked tropical curve of genus h with prescribed ramification
profiles over the marked ends. In the latter case, the usual weight assign-
ment of admissible covers gives rise to a fundamental cycle, which can then be
pushforwarded to a tropical cycle of the moduli space of tropical curves where
the source curve lies. By subsequently forgetting the marking, we obtain the
loci of curves that admit a tropical cover from a (tropical) modification onto
a tropical curve of a given genus of a fixed degree and with the prescribed
ramification. The aforementioned results on tree gonality, as well as further
underlying tropical behavior of these gonality cycles, can then be recovered as
a special case of this previous result.

1
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ASIAN J. MATH. c� 2018 International Press
Vol. 22, No. 6, pp. 1157–1172, December 2018 009

ON SINGULAR VARIETIES ASSOCIATED TO A POLYNOMIAL

MAPPING FROM Cn
TO Cn´1˚

NGUYEN THI BICH THUY: AND MARIA APARECIDA SOARES RUAS;

Abstract. We construct singular varieties VG associated to a polynomial mapping G : Cn Ñ
Cn´1 where n • 2. Let G : C3 Ñ C2 be a local submersion, we prove that if the homology or the
intersection homology with total perversity (with compact supports or closed supports) in dimension
two of any variety VG is trivial then G is a fibration. In the case of a local submersion G : Cn Ñ Cn´1

where n • 4, the result is still true with an additional condition.

Key words. Complex polynomial mappings, intersection homology, singularities at infinity.

Mathematics Subject Classification. 14P10, 14R15, 32S20, 55N33.

1. Introduction. Let G : Cn
Ñ Cn´1 be a non-constant polynomial mapping

(n • 2). It is well known [20] that G is a locally trivial fibration outside the bifurcation
set BpGq in Cn´1. In a natural way appears a fundamental question: how to determine
the set BpGq. In [12], Ha Huy Vui and Nguyen Tat Thang gave, for a generic class
of G : Cn

Ñ Cn´1 (n • 2), a necessary and su�cient condition for a point z P Cn´1

to be in the bifurcation set BpGq in term of the Euler characteristic of the fibers at
nearby points. The case n=2 was previously given in [11] .

In this paper, we want to construct singular varieties VG associated to a poly-
nomial mapping G : Cn

Ñ Cn´1 (n • 2) such that the intersection homology of VG

can characterize the bifurcation set of G. The motivation for this paper comes from
the paper [21], where Anna and Guillaume Valette constructed real pseudomanifolds,
denoted VF , associated to a given polynomial mapping F : Cn

Ñ Cn, such that the
singular part of the variety VF is contained in pSF ˆ K0pF qq ˆ t0pu ( p ° 0), where
K0pF q is the set of critical values and SF is the set of non-proper points of F . In the
case of dimension n “ 2, the homology or intersection homology of VF describes the
geometry of the singularities at infinity of the mapping F . With Anna and Guillaume
Valette, the first author generalized this result [18] for the general case F : Cn

Ñ Cn

(n • 2). The idea to construct varieties VF is the following: considering the poly-
nomial mapping F : Cn

Ñ Cn as a real one F : R2n
Ñ R2n, then if we take a finite

covering tViu by smooth submanifolds of R2n
zSingF , the mapping F induces a dif-

feomorphism from Vi into its image F pViq. We use a technique in order to separate
these tF pViqu by embedding them in a higher dimensional space, then VF is obtained
by gluing tF pViqu together along the set SF Y K0pF q.

A natural question is that how can we apply this construction to the case of
polynomial mappings G : Cn

Ñ Cn´1, or, G : R2n
Ñ R2n´2. The main di�culty

of this case is that if we take an open submanifold V in R2n
zSingF , then locally we

do not have a di↵eomorphism from V into its image GpV q. So we consider a generic
p2n ´ 2q- real dimensional submanifold in the source space R2n, denoted MG, which

˚Received March 16, 2016; accepted for publication April 5, 2017. The research was partially
supported by the post-doctoral FAPESP 2013/18706-7 (for the first author) and FAPESP Proc.
2014/00304-2 and CNPq Proc. 305651/2011-0 (for the second author).

:Ibilce-Unesp, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências,
Letras e Ciências Exatas, Rua Cristovão Colombo, 2265, São José do Rio Preto, Brazil (bich.thuy@
unesp.br).

;Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação - USP, Avenida
Trabalhador São-Carlense, 400 - Centro, Brazil (maasruas@icmc.usp.br).
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1158 T. B. T. NGUYEN AND M. A. S. RUAS

is called the Milnor set of G. Then we can apply the construction of singular varieties
VF in [21] for F :“ G|MG the restriction of G to the Milnor set MG.

We obtain the following result: let G : C3
Ñ C2 be a local submersion, then if the

homology or the intersection homology with total perversity (with compact supports
or closed supports) in dimension two of any among of the constructed varieties VG

is trivial then G is a fibration (Theorem 5.1). In the case of a local submersion
G : Cn

Ñ Cn´1 where n • 4, the result is still true with an additional condition
(Theorem 5.2). Comparing with the paper [12], we obtain the Corollary 5.9.

2. Preliminaries and basic definitions. In this section we set-up our frame-
work. All the varieties we consider in this article are semi-algebraic.

2.1. Notations and conventions. Given a topological space X, singular sim-
plices of X will be semi-algebraic continuous mappings � : Ti Ñ X, where Ti is the
standard i-simplex in Ri`1. Given a subset X of Rn we denote by CipXq the group
of i-dimensional singular chains (linear combinations of singular simplices with coef-
ficients in R); if c is an element of CipXq, we denote by |c| its support. By RegpXq

and SingpXq we denote respectively the regular and singular locus of the set X.
Given X Ä Rn, X will stand for the topological closure of X. The smoothness to be
considered as the di↵erentiable smoothness.

Notice that, when we refer to the homology of a variety, the notationH
c
˚pXq refers

to the homology with compact supports, the notation H
cl
˚ pXq refers to the homology

with closed supports (see [1]).

2.2. Intersection homology. We briefly recall the definition of intersection ho-
mology; for details, we refer to the fundamental work of M. Goresky and R. MacPher-
son [6] (see also [1]).

Definition 2.1. Let X be a m-dimensional semi-algebraic set. A semi-algebraic
stratification of X is the data of a finite semi-algebraic filtration

X “ Xm Å Xm´1 Å ¨ ¨ ¨ Å X0 Å X´1 “ H,

such that for every i, the set Si “ XizXi´1 is either empty or a manifold of dimension
i. A connected component of Si is called a stratum of X.

We denote by cL the open cone on the space L, the cone on the empty set being
a point. Observe that if L is a stratified set then cL is stratified by the cones over the
strata of L and a 0-dimensional stratum (the vertex of the cone).

Definition 2.2. A stratification of X is said to be locally topologically trivial if
for every x P XizXi´1, i • 0, there is an open neighborhood Ux of x in X, a stratified
set L and a semi-algebraic homeomorphism

h : Ux Ñ p0; 1q
i

ˆ cL,

such that h maps the strata of Ux (induced stratification) onto the strata of p0; 1q
i
ˆcL

(product stratification).

The definition of perversities as originally given by Goresky and MacPherson:

Definition 2.3. A perversity is an pm ` 1q-uple of integers p̄ “

pp0, p1, p2, p3, . . . , pmq such that p0 “ p1 “ p2 “ 0 and pk`1 P tpk, pk ` 1u, for
k • 2.
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Traditionally we denote the zero perversity by 0 “ p0, 0, 0, . . . , 0q, the maxi-
mal perversity by t “ p0, 0, 0, 1, . . . ,m ´ 2q, and the middle perversities by m “

p0, 0, 0, 0, 1, 1, . . . , r
m´2
2 sq (lower middle) and n “ p0, 0, 0, 1, 1, 2, 2, . . . , r

m´1
2 sq (upper

middle). We say that the perversities p and q are complementary if p ` q “ t.
Let X be a semi-algebraic variety such that X admits a locally topologically

trivial stratification. We say that a semi-algebraic subset Y Ä X is pp̄, iq-allowable if

dimpY X Xm´kq § i ´ k ` pk for all k.

Define IC
p
i pXq to be the R-vector subspace of CipXq consisting in those chains ⇠

such that |⇠| is pp, iq-allowable and |B⇠| is pp, i ´ 1q-allowable.

Definition 2.4. The i
th intersection homology group with perversity p, denoted

by IH
p
i pXq, is the i

th homology group of the chain complex IC
p
˚pXq.

Notice that, the notation IH
p,c
˚ pXq refer to the intersection homology with com-

pact supports, the notation IH
p,cl
˚ pXq refer to the intersection homology with closed

supports.
Goresky and MacPherson proved that the intersection homology is independent

of the choice of the stratification [6, 7].
The Poincaré duality holds for the intersection homology of a (singular) variety:

Theorem 2.5 (Goresky, MacPherson [6]). For any orientable compact stratified
semi-algebraic m-dimensional variety X, generalized Poincaré duality holds:

IH
p
k pXq » IH

q
m´kpXq,

where p and q are complementary perversities.

For the non-compact case, we have:

IH
p,c
k pXq » IH

q,cl
m´kpXq.

A relative version is also true in the case where X has boundary.

2.3. The bifurcation set, the set of asymptotic critical values and the

asymptotic set. Let G : Cn
Ñ Cm where n • m be a polynomial mapping.

i) The bifurcation set of G, denoted by BpGq is the smallest set in Cm such that
G is not C8 - fibration on this set (see, for example, [20]).

ii) The set of asymptotic critical values, denoted by K8pGq, is the set

K8pGq “ t↵ P Cm : Dtzku Ä Cn
, such that |zk| Ñ 8, Gpzkq Ñ ↵ and |zk||dGpzkq| Ñ 0u.

The set K8pGq is an approximation of the set BpGq. More precisely, we have BpGq Ä

K8pGq (see, for example, [14] or [3]).

iii) When n “ m, we denote by SG the set of points at which the mapping G is
not proper, i.e.

SG “ t↵ P Cm : Dtzku Ä Cn
, |zk| Ñ 8 such that Gpzkq Ñ ↵u,

and call it the asymptotic variety. In the case of polynomial mappings F : Cn
Ñ Cn,

the following holds: BpGq “ SG ([9]).
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3. The variety MG. We consider polynomial mappings G : Cn
Ñ Cn´1 as real

ones G : R2n
Ñ R2n´2. By SingpGq we mean the singular locus of G, that is the set

of points for which the (complex) rank of the Jacobian matrix is less than n ´ 1. We
denote by K0pGq the set of critical values. From here, we assume always K0pGq “ H.

Definition 3.1. Let G : Cn
Ñ Cn´1 be a polynomial mapping. Consider G as

a real polynomial mapping G : R2n
Ñ R2n´2. Let ⇢ : Cn

Ñ R be a real function such
that ⇢pzq • 0 for any z P Cn. Let

' “
1

1 ` ⇢
.

Consider pG,'q as a mapping from R2n to R2n´1. Let us define

MG :“ SingpG,'q “ tx P R2n such that RankDRpG,'qpxq § 2n ´ 2u,

where DRpG,'qpxq is the Jacobian matrix of pG,'q : R2n
Ñ R2n´1 at x.

Remark 3.2. Since K0pGq “ H, then RankDRpGq “ 2n ´ 2, so we have

SingpG,'q “ tx P R2n such that RankDRpG,'q “ 2n ´ 2u.

Note that, from here, if we want to refer to the source space as a complex space,
we will write pG,'q : Cn

Ñ R2n´1, if we want to refer to the source space as a real
space, we will write pG,'q : R2n

Ñ R2n´1
. Moreover, in general, we denote by z a

complex element in Cn and by x a real element in R2n.

Lemma 3.3. For any ⇢,' and pG,'q as in the Definition 3.1 and for any x “

px1, . . . , x2nq P R2n, we have

RankDRpG,'qpxq “ RankDRpG, ⇢qpxq,

so we have

MG “ SingpG,'q “ SingpG, ⇢q.

Proof. For any x “ px1, . . . , x2nq P R2n, we have

DRpG, ⇢qpxq “

ˆ
DRpGq

⇢x1
. . . ⇢x2n

˙
,

DRpG,'qpxq “

˜
DRpGq

´⇢x1

p1`⇢q2 . . .
´⇢x2n

p1`⇢q2

¸
,

where ⇢xi is the derivative of ⇢ with respect to xi, for i “ 1, . . . , 2n. We have
RankDRpG,'qpxq “ RankDRpG, ⇢qpxq for any x P R2n and MG “ SingpG,'q “

SingpG, ⇢q.

Remark 3.4. From here, we consider the function ⇢ of the following form

⇢ “ a1|z1|
2

` ¨ ¨ ¨ ` an|zn|
2
,
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where ⌃i“1,...,na
2
i ‰ 0, ai • 0, and ai P R for i “ 1, . . . , n.

Proposition 3.5. Let G “ pG1, . . . , Gn´1q : Cn
Ñ Cn´1

pn • 2q be a polynomial
mapping such that K0pGq “ H and ⇢ : Cn

Ñ R be such that ⇢ “ a1|z1|
2

`¨ ¨ ¨`an|zn|
2
,

where ⌃i“1,...,na
2
i ‰ 0, ai • 0 and ai P R, for i “ 1, . . . , n. Denote by vi the

determinant of the cofactor of B
Bzi of the matrix

Vpzq “

¨

˚̊
˝

B
Bz1 ¨ ¨ ¨

B
BznBG1

Bz1 ¨ ¨ ¨
BG1

Bzn
¨ ¨ ¨

BGn´1

Bz1 ¨ ¨ ¨
BGn´1

Bzn

˛

‹‹‚,

for i “ 1, . . . , n. Then we have

MG “ h
´1

p0q,

where

h : Cn
Ñ C, hpzq “ 2⌃aivipzqzi.

Proof. Let G “ pG1, . . . , Gn´1q : Cn
Ñ Cn´1

pn • 2q and ⇢ : Cn
Ñ R such that

⇢ “ a1|z1|
2

` ¨ ¨ ¨ ` an|zn|
2
, where ⌃i“1,...,na

2
i ‰ 0, ai • 0 and ai P R. Let us consider

the vector field

Vpzq “

¨

˚̊
˝

B
Bz1 ¨ ¨ ¨

B
BznBG1

Bz1 ¨ ¨ ¨
BG1

Bzn
¨ ¨ ¨

BGn´1

Bz1 ¨ ¨ ¨
BGn´1

Bzn

˛

‹‹‚.

We have

Vpzq “ v1
B

Bz1
` ¨ ¨ ¨ ` vn

B

Bzn
,

where vi is the determinant of the cofactor of B
Bzi , for i “ 1, . . . , n. The vector field

Vpzq is tangent to the curve G “ c. Let Rpzq “ a1z
2
1 ` ¨ ¨ ¨ ` anz

2
n, then we have

MG “ h
´1

p0q, where

h : Cn
Ñ C, hpzq “† Vpzq,GradRpzq ° .

More precisely, we have hpzq “ 2⌃aivipzqzi.

Proposition 3.6. For an open and dense set of polynomial mappings G : Cn
Ñ

Cn´1 such that K0pGq “ H, the variety MG is a smooth manifold of dimension
2n ´ 2.

Proof. The question is of local nature. In a neighbourhood of a point z0 in Cn,
we can choose coordinates such that the level curve G “ c, where c “ Gpz0q P Cn´1

is parametrized

� : pC, 0q Ñ pCn
, z0q
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s fiÑ p�1psq, . . . , �npsqq.

Since ⇢ “ a1|z1|
2

` ¨ ¨ ¨ ` an|zn|
2, then ⇢ ˝ � : pC, 0q Ñ R and

⇢ ˝ �psq “ a1|�1psq|
2

` ¨ ¨ ¨ ` an|�npsq|
2
.

If z0 is a singular point of ⇢|G“c, then

⇢ ˝ �p0q “ ⇢p�p0qq “ ⇢pz0q,

p⇢ ˝ �q
1
p0q “ 0.

For an open and dense set of G, we have

p⇢ ˝ �q
2
p0q ‰ 0.

Hence, z0 is a Morse singularity of ⇢|G“c. In particular, it is an isolated point of the
level curve G “ c. When c varies in Cn´1, it follows that the set MG has dimension
2n ´ 2.

We prove now that MG is smooth. By Proposition 3.5, the variety MG is the
set of solutions of h “ 0, where

hpzq “ 2⌃aivipzqzi,

and vi is the determinant of the cofactor of B
Bzi of Vpzq, for i “ 1, . . . , n. Since

K0pGq “ H then Vpzq “ pv1pzq, . . . ,vnpzqq ‰ 0. We can assume that Vpz0q ‰ 0 for
a fixed point z0. For a generic polynomial mapping, we can solve the equation h “ 0
in a neighbourhood of z0. This shows that h “ 0 is smooth in a neighbourhood of z0.
Then MG is smooth.

Remark 3.7. From here, we consider always generic polynomial mappings G :
Cn

Ñ Cn´1 as in the Propostion 3.6.

4. The variety VG.

4.1. The construction of the variety VG. Let G : Cn
Ñ Cn´1 and ⇢,' :

Cn
Ñ R such that

⇢ “ a1|z1|
2

` ¨ ¨ ¨ ` an|zn|
2
, ' “

1

1 ` ⇢
,

where ⌃i“1,...,na
2
i ‰ 0, ai • 0 and ai P R. Let us consider:

a) F :“ G|MG
the restriction of G on MG,

b) NG “ MGzF
´1

pK0pF qq.

Since the dimension ofMG is 2n´2 (Proposition 3.6), then locally, in a neighbourhood
of any point x0 in MG, we get a mapping F : R2n´2

Ñ R2n´2. Now, we can apply
the construction of singular varieties VF in [21] for F :“ G|MG

: there exists a cover-
ing tU1, . . . , Upu of NG by open semi-algebraic subsets (in R2n) such that on every
element of this covering, the mapping F induces a di↵eomorphism onto its image
(see Lemma 2.1 of [21], see also [16]). We can find semi-algebraic closed subsets
Vi Ä Ui (in NG) which cover NG as well. Thanks to Mostowski’s Separation Lemma
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(see Separation Lemma in [15], page 246), for each i “ 1, . . . , p, there exists a Nash
function  i : NG Ñ R, such that  i is positive on Vi and negative on NGzUi.

Lemma 4.1. We can choose the Nash functions  i such that  ipxkq tends to zero
when txku Ä NG tends to infinity.

Proof. If  i is a Nash function, then with any Ni P pNzt0uq, the function

 
1
ipxq “

 ipxq

p1 ` |x|2q
Ni

,

where x P NG, is also a Nash function, for i “ 1, . . . , p. The Nash function  1
i satisfies

the property:  1
i is positive on Vi and negative on NGzUi. With Ni large enough,

 
1
ipxkq tends to zero when txku Ä NG tends to infinity, for i “ 1, . . . , p. We replace

the function  i by  1
i.

Definition 4.2. Let the Nash functions  i and ⇢ be such that  ipxkq tends to
zero and ⇢pxkq tends to infinity when xk Ä NG tends to infinity. Define a variety VG

associated to pG, ⇢q as

VG :“ pF, 1, . . . , pqpNGq.

Remark 4.3. For a given polynomial mapping G : Cn
Ñ Cn´1, the variety VG

is not unique. It depends on the choice of the function ⇢ and the Nash functions  i.

Proposition 4.4. The real dimension of VG is 2n ´ 2.

Proof. By Proposition 3.6, in the generic case, the real dimension of MG is 2n´2.
Moreover, F is a local immersion in a neighbourhood of a point in MG. So, the real
dimension of F pMGq is also 2n ´ 2. Since

F pNGq “ F pMGqzK0pF q,

so the real dimension of F pNGq is 2n´ 2. By Definition 4.2, the real dimension of VG

is 2n ´ 2.

Definition 4.5 (see, for example, [4]). Let G : Cn
Ñ Cn´1 be a polynomial

mapping and ⇢ : Cn
Ñ R a real function such that ⇢ • 0. Define

SG :“ t↵ P Cn´1 : Dtzku Ä SingpG, ⇢q, such that zk tends to infinity, Gpzkq tends to ↵u.

Remark 4.6. a) For any real function ⇢ : Cn
Ñ R such that ⇢ • 0, we have

BpGq Ä SG Ä K8pGq,

where BpGq is the bifurcation set and K8pGq is the set of asymptotic critical values
of G (see, for example, [4]).

b) By Lemma 3.3, we have SingpG, ⇢q “ MG, so the set SG can be written

SG :“ t↵ P Cn´1 : Dtxku Ä MG, such that xk tends to infinity, Gpxkq tends to ↵u.
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Definition 4.7. The singular set at infinity of the variety VG is the set

t� P VG : Dtxku Ä NG, xk Ñ 8, pG, 1, . . . , pqpxkq Ñ �u.

Proposition 4.8. The singular set at infinity of the variety VG is contained in
the set SG ˆ t0Rpu.

Proof. At first, by Proposition 3.6, for the generic case, the real dimension of VG

associated to G : Cn
Ñ Cn´1 is 2n ´ 2. Moreover, we have the following facts:

a) SG Ä K8pGq,

b) dimCpK8pGqq § n ´ 2 (see [14]), so dimRpK8pGqq § 2n ´ 4.

Hence, we have dimR SG ˆ t0Rpu § 2n ´ 4. Moreover, by Proposition 4.4, we
have dimR VG “ 2n ´ 2. Let � be a singular point at infinity of the variety VG, then
there exists a sequence txku in NG tending to infinity such that pG, 1, . . . , pqpxkq

tends to �. Assume that Gpxkq tends to ↵, then ↵ belongs to SG. Moreover, the
Nash function  ipxkq tends to 0, for any i “ 1, . . . , p. So � “ p↵, 0Rpq belongs to
SG ˆ t0Rpu. Notice that, by Definition of VG, the set SG ˆ t0Rpu is contained in VG.
Then SG ˆ t0Rpu contains the singular set at infinity of the variety VG.

Remark 4.9. The singular set at infinity of VG depends on the choice of the
function ⇢, since when ⇢ changes, the set SG also changes. But, the property BpGq Ä

SG does not depend on the choice of the function ⇢ (see, for example, [4]).

The previous results show the following Proposition:

Proposition 4.10. Let G : Cn
Ñ Cn´1 be a polynomial mapping such that

K0pGq “ H and let ⇢ : Cn
Ñ R be a real function such that

⇢ “ a1|z1|
2

` ¨ ¨ ¨ ` an|zn|
2
,

where ⌃i“1,...,na
2
i ‰ 0, ai • 0 and ai P R for i “ 1, . . . , n. Then, there exists a real

variety VG in R2n´2`p, where p ° 0, such that:

1) The real dimension of VG is 2n ´ 2,

2) The singular set at infinity of the variety VG is contained in SG ˆ t0Rpu.

Remark 4.11. The variety VG depends on the choice of the function ⇢ and the
functions  i. From now, we denote by VGp⇢q any variety VG associated to pG, ⇢q. If
we refer to VG, that means a variety VG associated to pG, ⇢q for any ⇢.

Remark 4.12. 1) In the construction of singular varieties VG, we can put F :“
pG,'q|MG

, that means F is the restriction of pG,'q on MG. In this case, since the
dimension of MG is 2n ´ 2 then locally, in a neighbourhood of any point x0 in MG,
we get a mapping F : R2n´2

Ñ R2n´1. The construction of singular varieties VG can
be applied also in this case.

2) The construction of singular varieties VG can be applied for polynomial map-
pings G : Cn

Ñ Cp where p † n ´ 1 if the Milnor set MG is smooth is this case.
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4.2. A variety VG in the case of the Broughton’s Example.

Example 4.13. We compute in this example a variety VG in the case of the
Broughton’s example [2]:

G : C2
Ñ C, Gpz, wq “ z ` z

2
w.

We see that K0pGq “ H since the system of equations Gz “ Gw “ 0 has no solutions.
Let us denote

z “ x1 ` ix2, w “ x3 ` ix4,

where x1, x2, x3, x4 P R. Consider G as a real polynomial mapping, we have

Gpx1, x2, x3, x4q “ px1 ` x
2
1x3 ´ x

2
2x3 ´ 2x1x2x4, x2 ` 2x1x2x3 ` x

2
1x4 ´ x

2
2x4q.

Let ⇢ “ |w|
2, then

' “
1

1 ` ⇢
“

1

1 ` |w|2
“

1

1 ` x
2
3 ` x

2
4

.

The Jacobian matrix of pG, ⇢q is

DRpG, ⇢q “

¨

˝
1 ` 2x1x3 ´ 2x2x4 ´2x2x3 ´ 2x1x4 x

2
1 ´ x

2
2 ´2x1x2

2x2x3 ` 2x1x4 1 ` 2x1x3 ´ 2x2x4 2x1x2 x
2
1 ´ x

2
2

0 0 2x3 2x4

˛

‚.

By an easy computation, we have MG “ SingpG, ⇢q “ M1 Y M2, where
M1 :“ tpx1, x2, 0, 0q : x1, x2 P Ru,
M2 “

 
px1, x2, x3, x4q P R4 : 1 ` 2x1x3 ´ 2x2x4 “ 2x2x3 ` 2x1x4 “ 0

(
.

Let us consider G as a real mapping from R4
px1,x2,x3,x4q to R2

p↵1,↵2q, then:

a) If x “ px1, x2, 0, 0q P M1, we have Gpxq “ px1, x2q.

b) If x “ px1, x2, x3, x4q P M2, then we have Gpxq “ p↵1,↵2q, where

↵1 “
´x3

4px
2
3 ` x

2
4q
, ↵2 “

x4

4px
2
3 ` x

2
4q
.

Let F :“ G|MG
. We can check easily that K0pF q “ H. Choosing MG as a covering

of MG itself. We choose the Nash function  “ ', then  is positive on all MG. So,
by Definition 4.2, we have

VG “ pF,'qpMGq “ pG,'qpMGq “ pG,'qpM1q Y pG,'qpM2q Y pSG ˆ 0Rq,

where pG,'q : R4
px1,x2,x3,x4q Ñ R3

p↵1,↵2,↵3q. Then

a) pG,'qpM1q is the plane t↵3 “ 1u Ä R3
p↵1,↵2,↵3,q.

b) Assume that p↵1,↵2,↵3q P pG,'qpM2q, and let

x3 “ rcos✓, x4 “ rsin✓,

where r P R, r ° 0 and 0 § ✓ § 2⇡, then

↵
2
1 ` ↵

2
2 “

1

16r2
, ↵3 “

1

1 ` r2
.
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So pG,'qpM2q is a 2-dimensional open cone. In fact, when r tends to infinity, then
↵1,↵2 and ↵3 tend to 0, but the origin does not belong to this cone.

Moreover, by an easy computation, we can verify that the set SG is 0 “ p0, 0q P

R2
p↵1,↵2q. So the origin 0 of R3

p↵1,↵2,↵3q belongs to VG. In conclusion, the variety VG

is the union of the plane ↵3 “ 1 and a 2-dimensional cone C with vertex 0, where the
cone C tends to infinity and asymptotic to the plane ↵3 “ 1 in R3

p↵1,↵2,↵3q (see Figure

1).

 21/11/14 10:40 

 

Fig. 1. A variety VG in the case of the Broughton’s Example Gpz, wq “ z ` z2w.

Remark 4.14. We can use the Proposition 3.5 with the view of mixed functions
(see [19]) to determine the variety MG. Let us return to the Example 4.13. In this
case ⇢ “ |w|

2, then

MG “

"
pz, wq P C2 :

BG

Bz
w “ 0

*
.

Hence we have p1 ` 2zwqw “ 0, that implies the following two cases:

i) w “ 0: We have x3 “ x4 “ 0, where w “ x3 ` ix4.

ii) w ‰ 0 and z “ ´
1
2w “ ´

w
2|w|2 : We have

x1 “
´x3

2px
2
3 ` x

2
4q
, x2 “

x4

2px
2
3 ` x

2
4q
,

where z “ x1 ` ix2.
So we get MG “ M1 Y M2 as the computations and notations in the Example

4.13.

5. Results.

Theorem 5.1. Let G “ pG1, G2q : C3
Ñ C2 be a polynomial mapping such

that K0pGq “ H. If one the groups IH
t,c
2 pVG,Rq, IH

t,cl
2 pVG,Rq, H

c
2pVG,Rq and

H
cl
2 pVG,Rq is trivial then the bifurcation set BpGq is empty.

Theorem 5.2. Let G “ pG1, . . . , Gn´1q : Cn
Ñ Cn´1

pn • 4q be a polyno-
mial mapping such that K0pGq “ H and RankCpDĜiqi“1,...,n´1 ° n ´ 3, where Ĝi
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is the leading form of Gi, that is the homogenous part of highest degree of Gi, for

i “ 1, . . . , n ´ 1. Then if one the groups IH
t,c
2 pVG,Rq, IH

t,cl
2 pVG,Rq, H

c
2pVG,Rq,

H
cl
2 pVG,Rq, H

c
2n´4pVG,Rq and H

cl
2n´4pVG,Rq is trivial then the bifurcation set BpGq

is empty.

Before proving these Theorems, we recall some necessary Definitions and Lemmas.

Definition 5.3. A semi-algebraic family of sets (parametrized by R) is a semi-
algebraic set A Ä Rn

ˆ R, the last variable being considered as parameter.

Remark 5.4. A semi-algebraic set A Ä Rn
ˆ R will be considered as a family

parametrized by t P R. We write At, for “the fiber of A at t”, i.e.:

At :“ tx P Rn : px, tq P Au.

Lemma 5.5 ([21]). Let � be a j-cycle and let A Ä Rn
ˆ R be a compact semi-

algebraic family of sets with |�| Ä At for any t. Assume that |�| bounds a pj`1q-chain
in each At, t ° 0 small enough. Then � bounds a chain in A0.

Definition 5.6 ([21]). Given a subset X Ä Rn, we define the “tangent cone at
infinity”, called “contour apparent à l’infini” in [16] by:

C8pXq :“ t� P Sn´1
p0, 1q such that D⌘ : pt0, t0 ` "s Ñ X semi-algebraic,

lim
tÑt0

⌘ptq “ 8, lim
tÑt0

⌘ptq

|⌘ptq|
“ �u.

Lemma 5.7 ([18]). Let G “ pG1, . . . , Gmq : Rn
Ñ Rm be a polynomial mapping

and V the zero locus of Ĝ :“ pĜ1, . . . , Ĝmq, where Ĝi is the leading form of Gi. If X
is a subset of Rn such that GpXq is bounded, then C8pXq is a subset of Sn´1

p0, 1qXV ,

where V “ Ĝ
´1

p0q.

Proof of the Theorem 5.1. Recall that in this case, dimR VG “ 4 (Proposition 4.4)
and VGzpSG ˆ t0Rpuq is not smooth in general. Consider a stratification of VG, the
strata of which are the strata of SG ˆ t0Rpu union the strata of the stratification of
K0pF q defined by the rank, according to Thom [20]. Assume that BpGq ‰ H, then by
Remark 4.6, the set SG is not empty. This means that there exists a complex Puiseux
arc in MG

� : Dp0, ⌘q Ñ R6
, � “ uz

↵
` . . . ,

(with ↵ negative integer and u is an unit vector of R6) tending to infinity such a
way that Gp�q converges to a generic point x0 P SG. Then, the mapping hF ˝ �,
where hF “ pF,'1, . . . ,'pq and F is the restriction of G on MG provides a singular
2-simplex in VG that we will denote by c. We prove now the simplex c is pt, 2q-
allowable for total perversity t. In fact, by [14], in this case we have dimC SG § 1,
then ↵ “ codimRSG • 2. The condition

0 “ dimRtx0u “ dimRppSG ˆ t0Rpuq X |c|q § 2 ´ ↵ ` t↵,

implies t↵ • ↵ ´ 2, with ↵ • 2, which is true for total perversity t̄. Take now a
stratum Vi of VGzpSG ˆ t0Rpuq. Denote by � “ codimRVi. If � • 2, we can choose
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the Puiseux arc � such that c lies in the regular part of VGzpSG ˆ t0Rpuq. In fact,
this comes from the generic position of transversality. So c is pt, 2q-allowable in this
case. We need to consider only the cases � “ 0 and � “ 1. We have the following two
cases:

1) If Vi intersects c, again by the generic position of transversality, we can choose
the Puiseux arc � such that 0 § dimRpVi X |c|q § 1. The condition

dimRpVi X |c|q § 2 ´ � ` t�

holds since 2 ´ � ` t� • 1, for � “ 0 and � “ 1.
2) If Vi does not meet c, then the condition

´8 “ dimR H “ dimRpVi X |c|q § 2 ´ � ` t�

holds always.
So the simplex c is pt, 2q-allowable for total perversity t.

From here, the proof of the Theorem follows the ideas of [21]: We can always
choose the Puiseux arc such that the support of Bc lies in the regular part of VGzpSGˆ

t0Rpuq. We have

H1pRegpVGzpSG ˆ t0Rpuqqq “ 0,

then the chain Bc bounds a singular chain e P C
2
pRegpVGzpSG ˆ t0Rpuqqq, where e is

a chain with compact supports or closed supports. So � “ c ´ e is a pt, 2q-allowable
cycle of VG, with compact supports or closed supports.

We claim that � may not bound a 3-chain in VG. Assume otherwise, i.e. assume
that there is a chain ⌧ P C3pVGq, satisfying B⌧ “ �. Let

A :“ h
´1
F p|�| X pVGzpSG ˆ t0Rpuqqq,

B :“ h
´1
F p|⌧ | X pVGzpSG ˆ t0Rpuqqq.

By definition, C8pAq and C8pBq are subsets of S5p0, 1q. Observe that, in a neigh-
borhood of infinity, A coincides with the support of the Puiseux arc �. The set
C8pAq is equal to S1.a (denoting the orbit of a P C3 under the action of S1 on
C3, pe

i⌘
, zq fiÑ e

i⌘
z). Let V be the zero locus of the leading forms Ĝ :“ pĜ1, Ĝ2q.

Since GpAq and GpBq are bounded, by Lemma 5.7, C8pAq and C8pBq are subsets of
V X S5p0, 1q.

For R large enough, the sphere S5p0, Rq with center 0 and radius R in R6 is transverse
to A and B (at regular points). Let

�R :“ S5p0, Rq X A, ⌧R :“ S5p0, Rq X B.

Then �R is a chain bounding the chain ⌧R. Consider a semi-algebraic strong deforma-
tion retraction � : W ˆ r0; 1s Ñ S1.a, where W is a neighborhood of S1.a in S5p0, 1q

onto S1.a. Considering R as a parameter, we have the following semi-algebraic families
of chains:

1) �̃R :“ �R
R , for R large enough, then �̃R is contained in W ,

2) �1
R “ �1p�̃Rq, where �1pxq :“ �px, 1q, x P W ,

3) ✓R “ �p�̃Rq, we have B✓R “ �
1
R ´ �̃R,

4) ✓1
R “ ⌧R ` ✓R, we have B✓

1
R “ �

1
R.
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As, near infinity, �R coincides with the intersection of the support of the arc � with
S5p0, Rq, for R large enough the class of �1

R in S1.a is nonzero.
Let r “ 1{R, consider r as a parameter, and let t�̃ru, t�

1
ru, t✓ru as well as t✓

1
ru

the corresponding semi-algebraic families of chains.
Denote by Er Ä R6

ˆ R the closure of |✓r|, and set E0 :“ pR6
ˆ t0uq X E. Since

the strong deformation retraction � is the identity on C8pAq ˆ r0, 1s, we see that

E0 Ä �pC8pAq ˆ r0, 1sq “ S1.a Ä V X S5p0, 1q.

Denote by E
1
r Ä R6

ˆ R the closure of |✓
1
r|, and set E1

0 :“ pR6
ˆ t0uq X E

1. Since
A bounds B, then C8pAq is contained in C8pBq. We have

E
1
0 Ä E0 Y C8pBq Ä V X S5p0, 1q.

The class of �1
r in S1.a is, up to a product with a nonzero constant, equal to the

generator of S1.a. Therefore, since �1
r bounds the chain ✓1

r, the cycle S1.a must bound
a chain in |✓

1
r| as well. By Lemma 5.5, this implies that S1.a bounds a chain in E

1
0

which is included in V X S5p0, 1q.
The set V is a projective variety which is an union of cones in R6. Since dimC V §

1, so dimR V § 2 and dimR V X S5p0, 1q § 1. The cycle S1.a thus bounds a chain in
E

1
0 Ñ V X S5p0, 1q, which is a finite union of circles, that provides a contradiction.

Now we provides the proof of the Theorem 5.2.
Proof. [Proof of the Theorem 5.2]
The proof of this Theorem follows the idea of [18] and the proof of Theorem 5.1.
Assume that BpGq ‰ H. Similarly to the proof of the Theorem 5.1 and with the

same notations in this proof but for the general case, we have: since

RankCpDĜiqi“1,...,n´1 ° n ´ 3

then

corankCpDĜiqi“1,...,n´1 “ dimC V § 1,

so dimR V § 2 and dimR V X S2n´1
p0, 1q § 1. The cycle S1.a bounds a chain in

E
1
0 Ñ V X S2n´1

p0, 1q, which is a finite union of circles, that provides a contradiction.
So we have

IH
t,c
2 pVG,Rq ‰ 0, IH

t,cl
2 pVG,Rq ‰ 0, H

c
2pVG,Rq ‰ 0 and H

cl
2 pVG,Rq ‰ 0.

From the Goresky-MacPherson Poincaré duality Theorem, we have

IH
t,c
2 pVG,Rq “ IH

0,cl
2n´4pVG,Rq and IH

t,cl
2 pVG,Rq “ IH

0,c
2n´4pVG,Rq,

that implies Hc
2n´4pVG,Rq ‰ 0 and H

cl
2n´4pVG,Rq ‰ 0.

Remark 5.8. The variety VG associated to a polynomial mapping G : Cn
Ñ

Cn´1 is not unique, but the result of the theorems 5.1 and 5.2 hold for any variety
VG among the constructed varieties VG associated to G.

With the conditions of Theorem 5.2, the result of [12] also holds, hence as a
consequence of Theorem 5.2 in this paper and Theorems 2.1 and 2.6 in [12], we obtain
the following corollary.

Corollary 5.9. Let G “ pG1, . . . , Gn´1q : Cn
Ñ Cn´1, where n • 4, be a

polynomial mapping such that K0pGq “ H. Assume that the zero set tz P Cn :
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Ĝipzq “ 0, i “ 1, . . . , n ´ 1u has complex dimension one, where Ĝi is the leading form
of Gi. If the Euler characteristic of G´1

pz
0
q is bigger than that of the generic fiber,

where z
0

P Cn´1, then
1) H2pVGp⇢q,Rq ‰ 0, for any ⇢,
2) H2n´4pVGp⇢q,Rq ‰ 0, for any ⇢,
3) IH

t
2pVGp⇢q,Rq ‰ 0, for any ⇢, where t is the total perversity.

Proof. At first, since the zero set tz P Cn : Ĝipzq “ 0, i “ 1, . . . , n ´ 1u has
complex dimension one, then by the Theorem 2.6 in [12], any generic linear mapping
L is a very good projection with respect to any regular value z0 of G. Then if the Euler
characteristic ofG´1

pz
0
q is bigger than that of the generic fiber, where z0 P Cn´1, then

by the Theorem 2.1 of [12], the set BpGq ‰ H. Moreover, the complex dimension of
the set tz P Cn : Ĝipzq “ 0, i “ 1, . . . , n´1u is the complex corank of pDĜiqi“1,...,n´1.

Hence RankCpDĜiqi“1,...,n´1 “ n´ 2, and by the Theorem 5.2, we finish the proof.

Example 5.10. Consider the suspension of the Broughton’s example:

G : C3
Ñ C2

, Gpz, w, ⇣q “ pz ` z
2
w, ⇣q,

or, more general Gpz, w, ⇣q “ pz`z
2
w, gp⇣qq where gp⇣q is any polynomial of variable ⇣

and g
1
p⇣q ‰ 0. We can check that, for any function ⇢, we have always IHt

2pVG,Rq ‰ 0.

Remark 5.11. The condition BpGq “ H does not imply IH
t
2pVG,Rq “ 0, since

in this case SG maybe not empty.

Example 5.12. Let

G : C3
Ñ C2

, Gpz, w, ⇣q “ pz, z⇣
2

` wq.

1) If we choose the function ⇢ “ |⇣|
2
, then SG “ H and IH

t
2pVG,Rq “ 0.

2) If we choose the function ⇢ “ |w|
2
, then SG ‰ H and IH

t
2pVG,Rq ‰ 0.
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Thom, Exposé du 29 semtembre 2001.
[6] M. Goresky and R. MacPherson, Intersection homology. II, Invent. Math., 72 (1983), pp. 77–

129.
[7] M. Goresky and R. MacPherson, Intersection homology theory, Topology, 19 (1980),

pp. 135–162.
[8] R. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math., 102:2

(1980), pp. 291–302.
[9] Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann., 315:1 (1999),

pp. 1–35.
[10] V. H. Ha, Nombres de Lojasiewicz et singularités à l’infini des polynômes de deux variables
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