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Summary

e Preliminaries and motivations:

— Scattering amplitudes, Feynman Diagrams

— The Tropical Grassmannian Trop G(2, n) and phylogenetic trees
e Outline of our contribution:

— Chirotopes

— Chirotropical Grassmannians and chirotropical Dressians

— Trop*G(3, n) vs DrX(3, n)

— Computation of TropXG(3, n) for n=16,7,8

— Trop*G(3,6) is polytopal



Preliminaries and motivations
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Scattering process
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Scattering amplitudes are related to probability of interactions between particles in
a scattering process



Mandelstam invariants

Fix n > 4, the number of particles.
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Mandelstam invariants

Fix n > 4, the number of particles.
The amplitude m,, is a function of the Mandelstam (or kinematic) invariants:

5 = (sij)ij=1

such that:
e s;; =sj; forall i,j €[n]
e s;; =0 forall i € [n]

® > ;s =0forallie[n]



Feynman expansion

Perturbative expansion using Feynman diagrams:

tree 1
mye(s) = Y M %@

G Feynman diagram ecIE(G)
G tree



Feynman diagrams ( ¢° theory)

G Feynman diagram on n particles, G tree +— phylogenetic tree on n leaves
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Feynman diagrams ( ¢° theory)

G Feynman diagram on n particles, G tree <— phylogenetic tree on n leaves

The connection with Tropical Geometry lies in the Tropical Grassmannian Trop G(2, n).
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Tropical Grassmannians

[SS03] Speyer and Sturmfels ~» The tropical Grassmannian Trop G(k, n)

This is done by considering the Grassmannian in its Pliicker embedding:

G(k, n) s U:D(Z)—l
g — [Pil---ik(g)]il---ka([Z])

The ideal I(G(k, n)) is generated by quadrics, the Pliicker relations.
These include the 3-term Pliicker relations.

Example. I(G(2,4)) = (p12p3s — p13p2s + P14p23).



Tropical Grassmannians

[SS03] Speyer and Sturmfels ~» The tropical Grassmannian Trop G(k, n)
This is done by considering the Grassmannian in its Pliicker embedding:

G(k, n) < I]:D(ﬂ)—l
g — [pi...i. (g)];l---ikE([Z])

The ideal I(G(k, n)) is generated by quadrics, the Pliicker relations.
These include the 3-term Pliicker relations.
We will always work in the constant coefficients case (trivial valuation)

~+ Trop G(k, n) is a polyhedral fan.



Tropical Grassmannians

[SS03] Speyer and Sturmfels ~~ The tropical Grassmannian Trop G(k, n)

~ ' ~ Feynman diagrams on
Trop G(2, n) B Phylogenetic trees on B ynm | g3
n leaves n particles in ¢~ theory



Tropical Grassmannians

[SS03] Speyer and Sturmfels ~» The tropical Grassmannian Trop G(k, n)

Trop G 2 n {Phylogenetlc trees on}

n leaves

S

Credit: David Speyer, Tropical Linear Spaces (2004)
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Trop G(2,n) is covered by E ~ 5 partial decompositions
relabelings of Trop' G(2,n) of amplitudes
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Tropical Grassmannians

[SS03] Speyer and Sturmfels ~» The tropical Grassmannian Trop G(k, n)

Trop G(2 n) ~ { Feynman diagrams on }

n particles in ¢> theory

Trop G(2,n) is covered by | ~  partial decompositions
relabelings of Trop™ G(2,n) of amplitudes

Tropical Pliicker relations

| | ) +— Feynman rules
compatible tropical Pliicker vectors

Question. What happens for the next family of Grassmannians Trop G(3, n)?
What is the correspondence on the Physics side?



Physics side: CEGM theory

The generalized Mandelstam invariants are symmetric order 3 tensors s = (s,-jk)?j 1
satisfying linear equations:

ZS,:J'k =0, Siij = 0 for all i,j c [n]
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Physics side: CEGM theory

The generalized Mandelstam invariants are symmetric order 3 tensors s = (s,-jk)‘,f’j 1
satisfying linear equations:

ZS,‘jk =0, Siij = 0 for all I, ] € [n]
.k

CEGM theory ~ analogue of the tree-level amplitude: m> ¢¢(y; s)

n
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Feynman rules for Trop G(3, n)

Trop G(3, n) is not covered by relabelings of Trop™G(3, n) (for n > 6).
But it is covered by chirotropical Grassmannians Trop*G(3, n) (for n =6,7,8).

These were introduced by [CEZ22].
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Feynman rules for Trop G(3, n)

Trop G(3, n) is not covered by relabelings of Trop™G(3, n) (for n > 6).
But it is covered by chirotropical Grassmannians Trop*G(3, n) (for n =6,7,8).
Moreover, for n = 6,7, 8*:

m3, tree( .. _ NF(E)
" (X’S) Z HX ray ofFX(S)'

F maximal cone
of Trop*G(3,n)

*in the case (3, 8), [CEZ22] verified it numerically with very high precision.

~> the CEGM bi-adjoint amplitude at tree-level for k = 3 can be computed from
the maximal cones of each Trop*G(3,n), n=06,7,8.



Outline of our contribution



Realizable matroids as hyperplane arrangements

Example. Line arrangement in P?



Realizable chirotopes (oriented matroids) as
signed hyperplane arrangements

Example. Signed line in P2
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Example. Signed line arrangement in P2



Realizable chirotopes
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Realizable chirotopes

Consider n lines in P? cut out by £; - (xp, X1, %) =0, £; € R

| |
~ 8Byl — (51 - 4y ] €G(3,n)
| |



Realizable chirotopes

Consider n lines in P? cut out by £4; - (xp, x1,x) =0, £; € R

| |
> 8y, = (31 - 4y | €G(3,n)
| |
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Def. A uniform, realizable chirotope is a vector x € {—1, 1}(5) of the form:

Xijk = sign pij(g), & € G(3,n)°



(Uniform, realizable) chirotopes

Def. A uniform, realizable chirotope is a vector x € {—1, 1}(5) of the form:

Xijk = sign pij(g), & € G(3,n)°

Up to simultaneous sign change by GL3(R)
~+ We can assume x123 = 1



(Uniform, realizable) chirotopes

Def. A uniform, realizable chirotope is a vector x € {—1, 1}(5) of the form:

Xijk = sign pijk(g), & € G(3,n)°

Example. x = + = (1,..., 1) € (g) will give us the positive tropicalization
Trop™G(3, n).
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Isomorphism classes

We define the configuration space:

X(3,n) = G(3,n)°/(R*)"

yi o Yn o = A
z1 - Zn 0 --- A, A121

)\an

AnYn
AnZn



Isomorphism classes

We define the configuration space:

X(3,n) =G(3,n)°/(R*)"

X1 Xn A]_ 0 Ale Aan
Yi - Yn — )\1)/1 Anyn
z1 o Zn 0 - X A\1z1 o Anzn

s {columns} «— {points in P?}

~ X(3,n) = the configuration space of n distinct points in P* modulo Aut(P?)



Isomorphism classes

We define the configuration space:
X(3,n) = G(3,n)°/(R™)"

Two uniform, realizable chirotopes x,x’ € {—1, 1}@ are isomorphic if they are
related by exchanging and scaling columns.



Isomorphism classes

We define the configuration space:
X(3,n) = G(3,n)°/(R™*)"

Two uniform, realizable chirotopes x, x' € {—1, 1}(?) are isomorphic if they are
related by exchanging and scaling columns.

Remark. There are finitely many isomorphism classes of uniform, realizable chiro-
topes x € {—1, 1}(’;)_

Theorem [Finschi01]. For n = 6,7,8, we have 4,11, 135 isomorphism classes of
uniform, realizable chirotopes respectively.



Chirotopes

Def. A chirotope is a vector x € {—1, 1}(3) of the form:
Xijk = sign pijk(g), & € G(3,n)°

Two chirotopes x, x' € {—1, 1}(2) are isomorphic if they are related by exchanging
and scaling columns.

Remark. There are finitely many isomorphism classes of chirotopes x € {—1, 1}(3).

Theorem [Finschi01]. For n = 6,7, 8, we have 4,11, 135 isomorphism classes of
chirotopes respectively.



Chirotropicalization

Tropicalization:

f = Z CaX™ ~= Trop(f)(x) = m€|2 {a- x}
acS ~

is attained at least twice

~ TI’Op V(f) _ {X c R(Q) : the minimum in Trop(f)(x)}



Chirotropicalization

Given a chirotope x € {—1, 1}(2) and f a polynomial in (g) variables, we have:

F=) cx®=£f+f, £i= > cx* ;=) cx®

acS acsS acS
CaX™ >0 Cax> <0



Chirotropicalization

Given a chirotope x € {—1,1}(3) and £ a polynomial in (5) variables, we have:

3
_ o __ [+ — + o - _ (o'
f_anx =f +f,, fi= 2 Cax®, f = Z CoX
acS aEcS acS
CaXx™>>0 Cax™ <0

" TI’OpXV(f) _ {X c R(”) _the minimum in Trop(f)(x) is attained at least twice and}

’ at least once in both Trop(f;)(x) and Trop(f, )(x)



Chirotropical Grassmannian and Dressian

Trop*G(3, n) = ﬂ Trop*V/(f)
feI(G(3,n))
Dr*(3,n) = ﬂ Trop*V(g)

g 3-term
Plucker relation



Chirotropical Grassmannian and Dressian

Trop*G(3, n) = ﬂ Trop*V/(f)
feI(G(3,n))
DrX(3,n) = ﬂ Trop*V/(g)
g 3-term

Pliucker relation

Theorem 1 [A-E]. For n =6,7,8, Trop*G(3, n) = Dr*(3, n) set-theoretically and
Trop G(3, n) is covered by relabelings of chirotropical Grassmannians.



Feynman rules for Trop G(3, n)

e x-tropical Pliicker relation Trop*(F), F Pliicker relation;

e x-compatible pairs vi, vo € Dr¥(3, n) such that v; + v, € Dr*(3, n).



Algorithm for computing Dr*(3, n)

Input :- R, the list of rays of Dr(3, n);
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Algorithm for computing Dr*(3, n)

1 RX < {re R|reDrX(3,n)}; / rays of DrX(3,n)
2 CompatibleRays* < {(r,n) € RX X RX | n + r, € DrX(3,n)} ;

3 GX « Graph with vertex set RX and edge set CompatibleRays* :

4 MaximalCones* +— MaximalCliques(GX) ; / maximal cones of DrX(3,n)

The lower dimensional cones are obtained by taking intersections of maximal cones.

We implement the algorithm in SageMath and we compute Trop*G(3, n) = DrX(3, n)

for n=6,7,8 and for all 4,11, 135 isomorphism classes of chirotopes x € {—1, 1}(3)
(our results will be available on a Zenodo page).



Algorithm for computing Dr*(3, n)

1 RX < {re R|reDrX3,n)}; / rays of DrX(3,n)
2 CompatibleRays* < {(r;,rn) € RX x RX | rn + r, € Dr*(3,n)} ;

3 GX < Graph with vertex set RX and edge set CompatibleRays* ;

4 MaximalCones* < MaximalCliques(GX) ; / maximal cones of DrX(3, n)

The lower dimensional cones are obtained by taking intersections of maximal cones.

We implement the algorithm in SageMath and we compute Trop*G(3, n) = DrX(3, n)
for n =6,7,8 and for all 4, 11, 135 isomorphism classes of chirotopes x € {—1, 1}(5).

They are pure 2(n—4)-dimensional polyhedral fans. Moreover, when computing lower
dimensional faces, only pairwise intersections of maximal cones are needed.



Trop*G(3, 6) is polytopal

We found positive parameterizations for all four isomorphism types of TropXG(3, 6):
each is the normal fan to a Newton polytope Newt(fX), where fX is a polynomial
in 4 variables with positive coefficients.



Trop*G(3, 6) is polytopal

We found positive parameterizations for all four isomorphism types of TropXG(3, 6):
each is the normal fan to a Newton polytope Newt(fX), where fX is a polynomial in
4 variables with positive coefficients (already known in the case of Trop™ G(k, n)

[SW20], [ALS20]).



Trop*G(3, 6) is polytopal

We found positive parameterizations for all four isomorphism types of TropXG(3, 6):

each is the normal fan to a Newton polytope Newt(fX), where X is a polynomial
in 4 variables with positive coefficients.

~» X(3,6) is tiled by 372 chirotopal configuration spaces:
XX(?), 6) = {g c X(3, 6) : Elg' c GO(?), 6) s.t. g = [gl](RX)n
and sign p;ik(g’) = xijk Vijk}.

and each of these tiles is a positive geometry with an explict canonical form.



Example

For the chirotope:

x=(1,1,111111111111,1111,-1,-1) € {~1, 1}

Step 1. Starting from the positive parametrization of X7 (3,6), we constructed the

matrix:
1 YoY3+y1YoYayz+yoVays+Yyays+y3+yiyoya+yoya+yas+1 ]
y1+1 yiVoy3+yoy3+yiVoVays+yoyays+yays+ys+yiyova +}/2J/4 +{4 +1
1 VoV3+ViYoVays+YoVays+yays+y3+ViyoVa+ Yo ya+

o (yi+1)y» (vays+ys+1)(yiyeVa+yoys+yi1VoYays+YoVays+yays+ys +yly2y4 +yoya+ys+1)
1 1

O = O
= O O
—

1
0
0




Example

Step 2. Clear denominators:

1 0 0 1 Vo
0 1 0 1 —1
00 1 1 (n+l)y




Example

Step 2. Clear denominators:

Step 3. Take 3 x 3 minors and their irreducible factors

OO =

O = O

= O O

—_ =

Y2
—1

(yv1 + 1)y




Example

Step 2. Clear denominators:

Step 3. Take 3 x 3 minors and their irreducible factors
Step 4. fX = product of all these irreducible factors.

OO ==

O = O

= O O

—_ = =

Y2
—1

(yv1 +1)y2




(viyoya + yoysya + Yoys + YoYa+ ysya+y3 +ya+ 1) - (Viyoya + Yoya + ya + 1) - (yiy2 + y2 + 1)-
FX(y1, yo, ¥3, ya) = (Yiyoy3ya + y1yoys + yiyoya + yaysya + yoys + yaYa + yaya + y3 + ya + 1)
1, V2, 3! 4 -
(y2 + 1) - (y1yoysya + yiyoya + Yoysya + Yoy + YoYa + ysya + y3 + ya + 1)
(

vovs+ys+1)-(y1+1)-(y3+ 1) (yoysya + yoys + yoya + yaya + y3 + ya + 1)



Example




Future directions

e exploring positive parametrizations of XX(k, n)

e implementing the algorithm for the cases in which this parametrization exists.



Thanks for your attention!
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