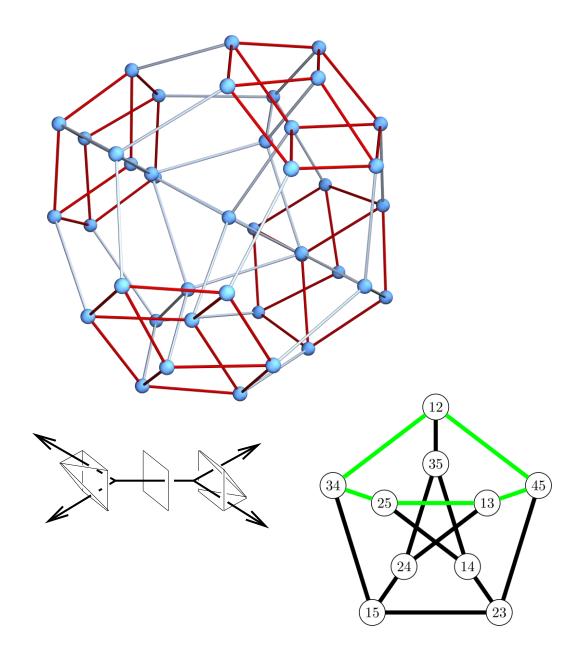
The Chirotropical Grassmannian

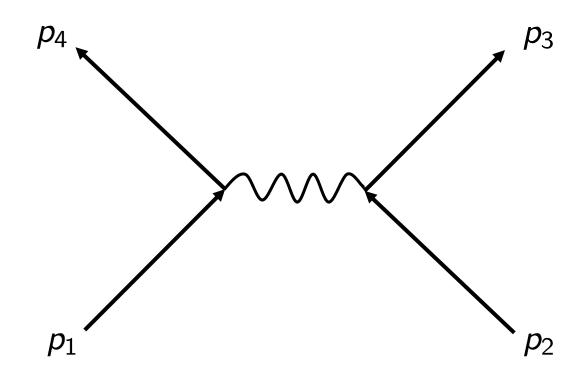
Dario Antolini,
Università di Trento
Joint work with Nick Early
Trieste, 02/09/2024



Summary

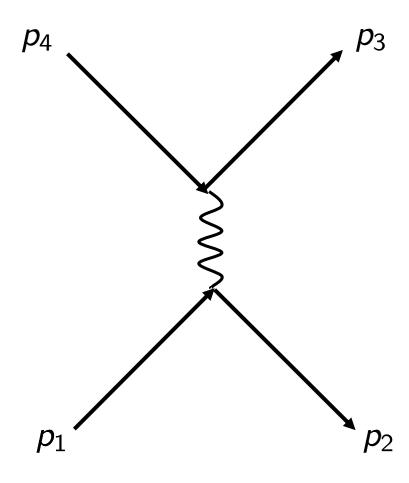
- Preliminaries and motivations:
 - Scattering amplitudes, Feynman Diagrams
 - The Tropical Grassmannian Trop G(2, n) and phylogenetic trees
- Outline of our contribution:
 - Chirotopes
 - Chirotropical Grassmannians and chirotropical Dressians
 - Trop $^{\chi}$ G(3, n) vs Dr $^{\chi}$ (3, n)
 - Computation of Trop $^{\chi}$ G(3, n) for n = 6, 7, 8
 - $Trop^{\chi}G(3,6)$ is polytopal

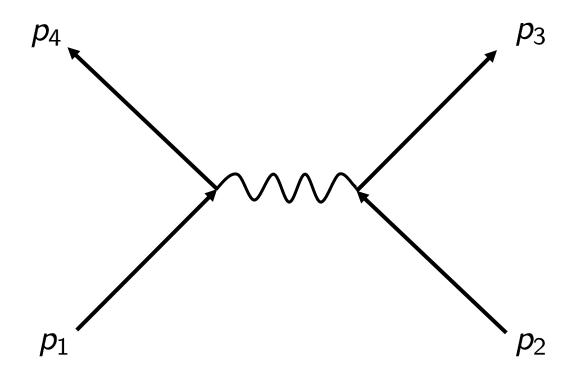
Preliminaries and motivations



 p_4 p_3

 p_1 p_2





Scattering amplitudes are related to probability of interactions between particles in a scattering process

Fix $n \ge 4$, the number of particles.

Fix $n \ge 4$, the number of particles.

The amplitude m_n is a function of the **Mandelstam** (or kinematic) invariants:

$$\mathfrak{s}=(s_{ij})_{i,j=1}^n$$

such that:

Fix $n \ge 4$, the number of particles.

The amplitude m_n is a function of the **Mandelstam (or kinematic) invariants**:

$$\mathfrak{s}=(s_{ij})_{i,j=1}^n$$

such that:

• $s_{ij} = s_{ji}$ for all $i, j \in [n]$

Fix $n \ge 4$, the number of particles.

The amplitude m_n is a function of the **Mandelstam (or kinematic) invariants**:

$$\mathfrak{s}=(s_{ij})_{i,j=1}^n$$

such that:

- $s_{ij} = s_{ji}$ for all $i, j \in [n]$
- $s_{ii} = 0$ for all $i \in [n]$

Fix $n \ge 4$, the number of particles.

The amplitude m_n is a function of the **Mandelstam (or kinematic) invariants**:

$$\mathfrak{s}=(s_{ij})_{i,j=1}^n$$

such that:

- $s_{ij} = s_{ji}$ for all $i, j \in [n]$
- $s_{ii} = 0$ for all $i \in [n]$
- $\sum_{j\neq i} s_{ij} = 0$ for all $i \in [n]$

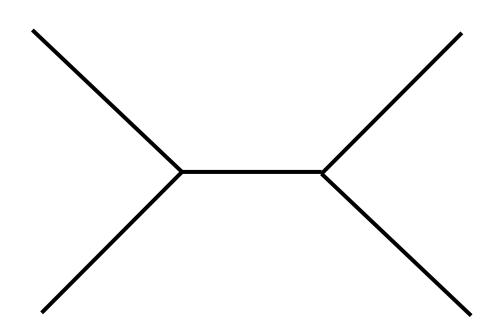
Feynman expansion

Perturbative expansion using Feynman diagrams:

$$m_n^{\mathsf{tree}}(\mathfrak{s}) = \sum_{\substack{G \; \mathsf{Feynman \; diagram} \ G \; \mathsf{tree}}} \prod_{e \in IE(G)} \frac{1}{X_e(\mathfrak{s})}$$

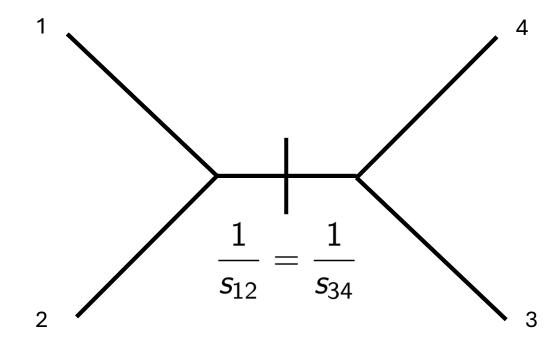
Feynman diagrams (ϕ^3 theory)

G Feynman diagram on n particles, G tree $\stackrel{\sim}{\longleftrightarrow}$ phylogenetic tree on n leaves



Feynman diagrams (ϕ^3 theory)

G Feynman diagram on n particles, G tree $\stackrel{\sim}{\longleftrightarrow}$ phylogenetic tree on n leaves



Feynman diagrams (ϕ^3 theory)

G Feynman diagram on n particles, G tree $\stackrel{\sim}{\longleftrightarrow}$ phylogenetic tree on n leaves

The connection with Tropical Geometry lies in the **Tropical Grassmannian** Trop G(2, n).

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

This is done by considering the Grassmannian in its Plücker embedding:

$$\mathsf{G}(k,n)\hookrightarrow \mathbb{P}^{\binom{n}{k}-1} \ g\mapsto \left[p_{i_1\cdots i_k}(g)\right]_{i_1\cdots i_k\in \binom{[n]}{k}}$$

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

This is done by considering the Grassmannian in its Plücker embedding:

$$\mathsf{G}(k,n)\hookrightarrow \mathbb{P}^{\binom{n}{k}-1}$$

$$g\mapsto \left[p_{i_1\cdots i_k}(g)\right]_{i_1\cdots i_k\in\binom{[n]}{k}}$$

The ideal I(G(k, n)) is generated by quadrics, the **Plücker relations**.

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

This is done by considering the Grassmannian in its Plücker embedding:

$$\mathsf{G}(k,n)\hookrightarrow \mathbb{P}^{\binom{n}{k}-1} \ g\mapsto \left[p_{i_1\cdots i_k}(g)\right]_{i_1\cdots i_k\in \binom{[n]}{k}}$$

The ideal I(G(k, n)) is generated by quadrics, the **Plücker relations**. These include the **3-term Plücker relations**.

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

This is done by considering the Grassmannian in its Plücker embedding:

$$\mathsf{G}(k,n)\hookrightarrow \mathbb{P}^{\binom{n}{k}-1} \ g\mapsto \left[p_{i_1\cdots i_k}(g)\right]_{i_1\cdots i_k\in \binom{[n]}{k}}$$

The ideal I(G(k, n)) is generated by quadrics, the **Plücker relations**. These include the **3-term Plücker relations**.

Example. $I(G(2,4)) = (p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23}).$

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

This is done by considering the Grassmannian in its Plücker embedding:

$$\mathsf{G}(k,n)\hookrightarrow \mathbb{P}^{\binom{n}{k}-1} \ g\mapsto \left[p_{i_1\cdots i_k}(g)\right]_{i_1\cdots i_k\in \binom{[n]}{k}}$$

The ideal I(G(k, n)) is generated by quadrics, the **Plücker relations**. These include the **3-term Plücker relations**.

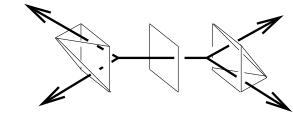
We will always work in the constant coefficients case (trivial valuation) \rightsquigarrow Trop G(k, n) is a polyhedral fan.

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

Trop G(2, n)
$$\stackrel{\sim}{\longleftrightarrow}$$
 {Phylogenetic trees on } $\stackrel{\sim}{\longleftrightarrow}$ {Feynman diagrams on } n leaves

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

Trop G(2,
$$n$$
) $\stackrel{\sim}{\longleftrightarrow}$ $\left\{ \begin{array}{c} \text{Phylogenetic trees on} \\ n \text{ leaves} \end{array} \right\}$

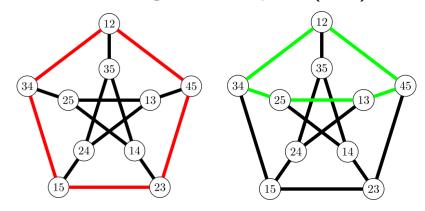


Credit: David Speyer, *Tropical Linear Spaces* (2004)

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

Trop G(2,
$$n$$
) $\stackrel{\sim}{\longleftrightarrow}$ { Feynman diagrams on n n particles in n theory

Trop G(2,n) is covered by relabelings of $Trop^+G(2,n)$ $\stackrel{\sim}{\longleftrightarrow}$ partial decompositions of amplitudes



[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

[SS03] Speyer and Sturmfels \rightsquigarrow The tropical Grassmannian Trop G(k, n)

Question. What happens for the next family of Grassmannians Trop G(3, n)? What is the correspondence on the Physics side?

Physics side: CEGM theory

The generalized Mandelstam invariants are symmetric order 3 tensors $\mathfrak{s} = (s_{ijk})_{i,j,k=1}^n$ satisfying linear equations:

$$\sum_{j,k} s_{ijk} = 0, \ s_{iij} = 0 \quad \text{for all } i,j \in [n]$$

Physics side: CEGM theory

The generalized Mandelstam invariants are symmetric order 3 tensors $\mathfrak{s} = (s_{ijk})_{i,j,k=1}^n$ satisfying linear equations:

$$\sum_{j,k} s_{ijk} = 0, \ s_{iij} = 0 \quad \text{for all } i,j \in [n]$$

CEGM theory \rightsquigarrow analogue of the tree-level amplitude: $m_n^{3, \text{ tree}}(\chi; \mathfrak{s})$

Trop G(3, n) is **not** covered by relabelings of $Trop^+G(3, n)$ (for $n \ge 6$).

Trop G(3, n) is not covered by relabelings of $Trop^+G(3, n)$ (for $n \ge 6$). But it is covered by **chirotropical Grassmannians** $Trop^{\chi}G(3, n)$ (for n = 6, 7, 8).

Trop G(3, n) is not covered by relabelings of $Trop^+G(3, n)$ (for $n \ge 6$). But it is covered by **chirotropical Grassmannians** $Trop^{\chi}G(3, n)$ (for n = 6, 7, 8).

These were introduced by **[CEZ22]**.

Trop G(3, n) is not covered by relabelings of Trop⁺G(3, n) (for $n \ge 6$). But it is covered by **chirotropical Grassmannians** Trop^xG(3, n) (for n = 6, 7, 8). Moreover, for n = 6, 7, 8*:

$$m_n^{3, \text{ tree}}(\chi; \mathfrak{s}) = \sum_{\substack{F \text{ maximal cone} \\ \text{ of Trop}^{\chi}G(3, n)}} \frac{N_F(\mathfrak{s})}{\prod_{X \text{ ray of } F} X(\mathfrak{s})},$$

* in the case (3,8), [CEZ22] verified it numerically with very high precision.

Trop G(3, n) is not covered by relabelings of $\operatorname{Trop}^+G(3, n)$ (for $n \ge 6$). But it is covered by **chirotropical Grassmannians** $\operatorname{Trop}^{\chi}G(3, n)$ (for n = 6, 7, 8). Moreover, for $n = 6, 7, 8^*$:

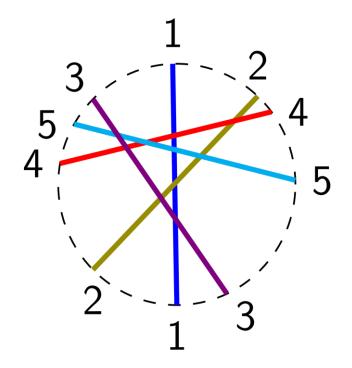
$$m_n^{3, \text{ tree}}(\chi; \mathfrak{s}) = \sum_{\substack{F \text{ maximal cone} \\ \text{ of Trop}^{\chi}G(3, n)}} \frac{N_F(\mathfrak{s})}{\prod_{X \text{ ray of } F} X(\mathfrak{s})},$$

* in the case (3,8), [CEZ22] verified it numerically with very high precision.

 \rightsquigarrow the CEGM bi-adjoint amplitude at tree-level for k=3 can be computed from the maximal cones of each Trop $^{\chi}G(3, n)$, n=6, 7, 8.

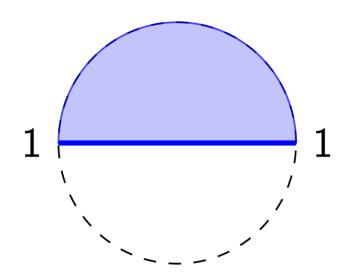
Outline of our contribution

Realizable matroids as hyperplane arrangements



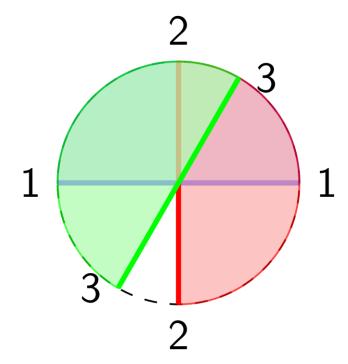
Example. Line arrangement in \mathbb{P}^2

Realizable chirotopes (oriented matroids) as signed hyperplane arrangements



Example. Signed line in \mathbb{P}^2

Realizable chirotopes (oriented matroids) as signed hyperplane arrangements



Example. Signed line arrangement in \mathbb{P}^2

Realizable chirotopes

Consider n lines in \mathbb{P}^2 cut out by $\ell_i \cdot (x_0, x_1, x_2) = 0$, $\ell_i \in \mathbb{R}^3$

Realizable chirotopes

Consider n lines in \mathbb{P}^2 cut out by $\ell_i \cdot (x_0, x_1, x_2) = 0$, $\ell_i \in \mathbb{R}^3$

$$\rightsquigarrow g_{\ell_1,\ldots,\ell_n} = \begin{pmatrix} | & & | \\ \ell_1 & \cdots & \ell_n \\ | & | \end{pmatrix} \in \mathsf{G}(3,n)$$

Realizable chirotopes

Consider n lines in \mathbb{P}^2 cut out by $\ell_i \cdot (x_0, x_1, x_2) = 0$, $\ell_i \in \mathbb{R}^3$

$$\rightsquigarrow g_{\ell_1,\ldots,\ell_n} = \begin{pmatrix} | & & | \\ \ell_1 & \cdots & \ell_n \\ | & | \end{pmatrix} \in \mathsf{G}(3,n)$$

The oriented matroid structure is stored into the signs of the Plücker coordinates:

sign
$$p_{ijk}(g_{\ell_1,\ldots,\ell_n})$$
, $ijk \in {[n] \choose 3}$.

(Uniform, realizable) chirotopes

Def. A uniform, realizable chirotope is a vector $\chi \in \{-1, 1\}^{\binom{n}{3}}$ of the form:

$$\chi_{ijk} = \operatorname{sign} \ p_{ijk}(g), \quad g \in \mathsf{G}(3,n)^{\circ}$$

(Uniform, realizable) chirotopes

Def. A uniform, realizable chirotope is a vector $\chi \in \{-1,1\}^{\binom{n}{3}}$ of the form:

$$\chi_{ijk} = \text{sign } p_{ijk}(g), \quad g \in \mathsf{G}(3,n)^\circ$$
 Up to simultaneous sign change by $\mathsf{GL}_3(\mathbb{R})$ \to we can assume $\chi_{123} = 1$

(Uniform, realizable) chirotopes

Def. A uniform, realizable chirotope is a vector $\chi \in \{-1,1\}^{\binom{n}{3}}$ of the form:

$$\chi_{ijk} = \operatorname{sign} \, p_{ijk}(g), \quad g \in \mathsf{G}(3,n)^{\circ}$$

Example. $\chi = + = (1, ..., 1) \in \binom{n}{3}$ will give us the positive tropicalization $\operatorname{Trop}^+G(3, n)$.

We define the configuration space:

$$X(3, n) = G(3, n)^{\circ}/(\mathbb{R}^{\times})^n$$

We define the configuration space:

$$X(3, n) = \mathsf{G}(3, n)^{\circ}/(\mathbb{R}^{\times})^n$$

$$\begin{pmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \\ z_1 & \cdots & z_n \end{pmatrix} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \\ \lambda_1 y_1 & \cdots & \lambda_n y_n \\ \lambda_1 z_1 & \cdots & \lambda_n z_n \end{pmatrix}$$

We define the configuration space:

$$X(3, n) = \mathsf{G}(3, n)^{\circ}/(\mathbb{R}^{\times})^n$$

$$\begin{pmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \\ z_1 & \cdots & z_n \end{pmatrix} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \\ \lambda_1 y_1 & \cdots & \lambda_n y_n \\ \lambda_1 z_1 & \cdots & \lambda_n z_n \end{pmatrix}$$

$$\rightsquigarrow \{\text{columns}\} \stackrel{\sim}{\longleftrightarrow} \{\text{points in } \mathbb{P}^2\}$$

 $\rightsquigarrow X(3, n) = \text{ the configuration space of } n \text{ distinct points in } \mathbb{P}^2 \text{ modulo } \text{Aut}(\mathbb{P}^2)$

We define the configuration space:

$$X(3, n) = G(3, n)^{\circ}/(\mathbb{R}^{\times})^n$$

Two uniform, realizable chirotopes $\chi, \chi' \in \{-1, 1\}^{\binom{n}{3}}$ are **isomorphic** if they are related by exchanging and scaling columns.

We define the configuration space:

$$X(3, n) = \mathsf{G}(3, n)^{\circ}/(\mathbb{R}^{\times})^n$$

Two uniform, realizable chirotopes $\chi, \chi' \in \{-1, 1\}^{\binom{n}{3}}$ are **isomorphic** if they are related by exchanging and scaling columns.

Remark. There are finitely many isomorphism classes of uniform, realizable chirotopes $\chi \in \{-1,1\}^{\binom{n}{3}}$.

Theorem [Finschi01]. For n = 6, 7, 8, we have 4, 11, 135 isomorphism classes of uniform, realizable chirotopes respectively.

Chirotopes

Def. A **chirotope** is a vector $\chi \in \{-1, 1\}^{\binom{n}{3}}$ of the form:

$$\chi_{ijk} = \operatorname{sign} \ p_{ijk}(g), \quad g \in \mathsf{G}(3,n)^{\circ}$$

Two chirotopes χ , $\chi' \in \{-1, 1\}^{\binom{n}{3}}$ are isomorphic if they are related by exchanging and scaling columns.

Remark. There are finitely many isomorphism classes of chirotopes $\chi \in \{-1,1\}^{\binom{n}{3}}$.

Theorem [Finschi01]. For n = 6, 7, 8, we have 4, 11, 135 isomorphism classes of chirotopes respectively.

Chirotropicalization

Tropicalization:

$$f = \sum_{\alpha \in S} c_{\alpha} x^{\alpha} \rightsquigarrow \mathsf{Trop}(f)(x) = \min_{\alpha \in S} \left\{ \alpha \cdot x \right\}$$

$$\rightsquigarrow \mathsf{Trop} \ V(f) = \left\{ x \in \mathbb{R}^{\binom{n}{3}} : \text{the minimum in } \mathsf{Trop}(f)(x) \right\}$$
is attained at least twice

Chirotropicalization

Given a chirotope $\chi \in \{-1,1\}^{\binom{n}{3}}$ and f a polynomial in $\binom{n}{3}$ variables, we have:

$$f = \sum_{lpha \in S} c_lpha x^lpha = f_\chi^+ + f_\chi^-, \quad f_\chi^+ = \sum_{\substack{lpha \in S \ c_lpha \chi^lpha > 0}} c_lpha x^lpha, \ f_\chi^- = \sum_{\substack{lpha \in S \ c_lpha \chi^lpha < 0}} c_lpha x^lpha$$

Chirotropicalization

Given a chirotope $\chi \in \{-1,1\}^{\binom{n}{3}}$ and f a polynomial in $\binom{n}{3}$ variables, we have:

$$f = \sum_{\alpha \in S} c_{\alpha} x^{\alpha} = f_{\chi}^{+} + f_{\chi}^{-}, \quad f_{\chi}^{+} = \sum_{\substack{\alpha \in S \\ c_{\alpha} \chi^{\alpha} > 0}} c_{\alpha} x^{\alpha}, \quad f_{\chi}^{-} = \sum_{\substack{\alpha \in S \\ c_{\alpha} \chi^{\alpha} < 0}} c_{\alpha} x^{\alpha}$$

$$\rightsquigarrow \mathsf{Trop}^{\chi}V(f) = \left\{ x \in \mathbb{R}^{\binom{n}{3}} : \text{the minimum in } \mathsf{Trop}(f)(x) \text{ is attained at least twice and} \right\}$$

$$\Rightarrow \mathsf{Trop}^{\chi}V(f) = \left\{ x \in \mathbb{R}^{\binom{n}{3}} : \text{the minimum in } \mathsf{Trop}(f)(x) \text{ is attained at least twice and} \right\}$$

Chirotropical Grassmannian and Dressian

$$\operatorname{Trop}^{\chi} \mathsf{G}(3, n) = \bigcap_{f \in I(\mathsf{G}(3, n))} \operatorname{Trop}^{\chi} V(f)$$

$$\operatorname{Dr}^{\chi}(3, n) = \bigcap_{\substack{g \text{ 3-term} \\ \mathsf{Plücker relation}}} \operatorname{Trop}^{\chi} V(g)$$

Chirotropical Grassmannian and Dressian

$$\operatorname{Trop}^{\chi} \mathsf{G}(3, n) = \bigcap_{f \in I(\mathsf{G}(3, n))} \operatorname{Trop}^{\chi} V(f)$$

$$\operatorname{Dr}^{\chi}(3, n) = \bigcap_{\substack{g \text{ 3-term} \\ \mathsf{Plücker relation}}} \operatorname{Trop}^{\chi} V(g)$$

Theorem 1 [A-E]. For n = 6, 7, 8, Trop^{χ}G(3, n) = Dr^{χ}(3, n) set-theoretically and Trop G(3, n) is covered by relabelings of chirotropical Grassmannians.

Feynman rules for Trop G(3, n)

- χ -tropical Plücker relation Trop $^{\chi}(F)$, F Plücker relation;
- χ -compatible pairs v_1 , $v_2 \in Dr^{\chi}(3, n)$ such that $v_1 + v_2 \in Dr^{\chi}(3, n)$.

Input :- R, the list of rays of Dr(3, n);

```
1 R^{\chi} \leftarrow \{r \in R \mid r \in Dr^{\chi}(3, n)\};  / rays of Dr^{\chi}(3, n)
```

```
1 R^{\chi} \leftarrow \{r \in R \mid r \in Dr^{\chi}(3, n)\}; / rays of Dr^{\chi}(3, n)
2 CompatibleRays^{\chi} \leftarrow \{(r_1, r_2) \in R^{\chi} \times R^{\chi} \mid r_1 + r_2 \in Dr^{\chi}(3, n)\};
```

```
1 R^{\chi} \leftarrow \{r \in R \mid r \in Dr^{\chi}(3, n)\}; / rays of Dr^{\chi}(3, n)
2 CompatibleRays^{\chi} \leftarrow \{(r_1, r_2) \in R^{\chi} \times R^{\chi} \mid r_1 + r_2 \in Dr^{\chi}(3, n)\};
3 G^{\chi} \leftarrow Graph with vertex set R^{\chi} and edge set CompatibleRays^{\chi};
```

```
1 R^{\chi} \leftarrow \{r \in R \mid r \in Dr^{\chi}(3, n)\}; / rays of Dr^{\chi}(3, n)

2 CompatibleRays^{\chi} \leftarrow \{(r_1, r_2) \in R^{\chi} \times R^{\chi} \mid r_1 + r_2 \in Dr^{\chi}(3, n)\};

3 G^{\chi} \leftarrow Graph with vertex set <math>R^{\chi} and edge set CompatibleRays^{\chi};

4 MaximalCones^{\chi} \leftarrow MaximalCliques(G^{\chi}); / maximal cones of Dr^{\chi}(3, n)
```

```
1 R^{\chi} \leftarrow \{r \in R \mid r \in Dr^{\chi}(3, n)\}; / rays of Dr^{\chi}(3, n)
2 CompatibleRays^{\chi} \leftarrow \{(r_1, r_2) \in R^{\chi} \times R^{\chi} \mid r_1 + r_2 \in Dr^{\chi}(3, n)\};
3 G^{\chi} \leftarrow Graph with vertex set <math>R^{\chi} and edge set CompatibleRays^{\chi};
4 MaximalCones^{\chi} \leftarrow MaximalCliques(G^{\chi}); / maximal cones of Dr^{\chi}(3, n)
```

The lower dimensional cones are obtained by taking intersections of maximal cones.

```
1 R^{\chi} \leftarrow \{r \in R \mid r \in Dr^{\chi}(3, n)\}; / rays of Dr^{\chi}(3, n)
2 CompatibleRays^{\chi} \leftarrow \{(r_1, r_2) \in R^{\chi} \times R^{\chi} \mid r_1 + r_2 \in Dr^{\chi}(3, n)\};
3 G^{\chi} \leftarrow Graph with vertex set <math>R^{\chi} and edge set CompatibleRays^{\chi};
4 MaximalCones^{\chi} \leftarrow MaximalCliques(G^{\chi}); / maximal cones of Dr^{\chi}(3, n)
```

The lower dimensional cones are obtained by taking intersections of maximal cones.

We implement the algorithm in SageMath and we compute $\operatorname{Trop}^{\chi}G(3, n) = \operatorname{Dr}^{\chi}(3, n)$ for n = 6, 7, 8 and for all 4, 11, 135 isomorphism classes of chirotopes $\chi \in \{-1, 1\}^{\binom{n}{3}}$ (our results will be available on a Zenodo page).

```
1 R^{\chi} \leftarrow \{r \in R \mid r \in Dr^{\chi}(3, n)\}; / rays of Dr^{\chi}(3, n)
2 CompatibleRays^{\chi} \leftarrow \{(r_1, r_2) \in R^{\chi} \times R^{\chi} \mid r_1 + r_2 \in Dr^{\chi}(3, n)\};
3 G^{\chi} \leftarrow Graph with vertex set <math>R^{\chi} and edge set CompatibleRays^{\chi};
4 MaximalCones^{\chi} \leftarrow MaximalCliques(G^{\chi}); / maximal cones of Dr^{\chi}(3, n)
```

The lower dimensional cones are obtained by taking intersections of maximal cones.

We implement the algorithm in SageMath and we compute $\operatorname{Trop}^{\chi}G(3, n) = \operatorname{Dr}^{\chi}(3, n)$ for n = 6, 7, 8 and for all 4, 11, 135 isomorphism classes of chirotopes $\chi \in \{-1, 1\}^{\binom{n}{3}}$.

They are **pure** 2(n-4)-dimensional polyhedral fans. Moreover, when computing lower dimensional faces, **only pairwise intersections of maximal cones are needed**.

$Trop^{\chi}G(3,6)$ is polytopal

We found **positive parameterizations** for all four isomorphism types of Trop $^{\chi}$ G(3, 6): each is the normal fan to a Newton polytope Newt(f^{χ}), where f^{χ} is a polynomial in 4 variables with positive coefficients.

$Trop^{\chi}G(3,6)$ is polytopal

We found **positive parameterizations** for all four isomorphism types of $\text{Trop}^{\chi}G(3,6)$: each is the normal fan to a Newton polytope $\text{Newt}(f^{\chi})$, where f^{χ} is a polynomial in 4 variables with positive coefficients (already known in the case of $\text{Trop}^+G(k,n)$ [SW20], [ALS20]).

$\mathsf{Trop}^{\mathsf{x}}\mathsf{G}(3,6)$ is polytopal

We found **positive parameterizations** for all four isomorphism types of Trop $^{\chi}$ G(3, 6): each is the normal fan to a Newton polytope Newt(f^{χ}), where f^{χ} is a polynomial in 4 variables with positive coefficients.

 $\rightsquigarrow X(3,6)$ is tiled by 372 chirotopal configuration spaces:

$$X^{\chi}(3,6) = \{g \in X(3,6) : \exists g' \in G^{\circ}(3,6) \text{ s.t. } g = [g']_{(\mathbb{R}^{\times})^n}$$

and sign $p_{ijk}(g') = \chi_{ijk} \ \forall ijk \}.$

and each of these tiles is a positive geometry with an explict canonical form.

For the chirotope:

Step 1. Starting from the positive parametrization of $X^+(3,6)$, we constructed the matrix:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & \frac{1}{y_1+1} & \frac{y_2y_3+y_1y_2y_4y_3+y_2y_4y_3+y_4y_3+y_1y_2y_4+y_2y_4+y_4+1}{y_1y_2y_3+y_1y_2y_4y_3+y_2y_4y_3+y_2y_4y_3+y_3+y_1y_2y_4+y_2y_4+y_4+1} \\ 0 & 1 & 0 & 1 & -\frac{1}{(y_1+1)y_2} & \frac{y_2y_3+y_1y_2y_4y_3+y_2y_4y_3+y_2y_4y_3+y_3+y_1y_2y_4+y_2y_4+y_4+1}{(y_2y_3+y_1y_2y_4+y_3+y_2y_4+y_3+y_2y_4+y_3+y_1y_2y_4+y_3+y_2y_4+y_3+y_1y_2y_4+y_3+y_1y_2y_4+y_3+y_1y_2y_4+y_2y_4+y_4+1)} \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Step 2. Clear denominators:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & y_2 & \dots \\ 0 & 1 & 0 & 1 & -1 & \dots \\ 0 & 0 & 1 & 1 & (y_1+1)y_2 & \dots \end{bmatrix}$$

Step 2. Clear denominators:

$$egin{bmatrix} 1 & 0 & 0 & 1 & y_2 & \dots \ 0 & 1 & 0 & 1 & -1 & \dots \ 0 & 0 & 1 & 1 & (y_1+1)y_2 & \dots \end{bmatrix}$$

Step 3. Take 3×3 minors and their irreducible factors

Step 2. Clear denominators:

$$egin{bmatrix} 1 & 0 & 0 & 1 & y_2 & \dots \ 0 & 1 & 0 & 1 & -1 & \dots \ 0 & 0 & 1 & 1 & (y_1+1)y_2 & \dots \end{bmatrix}$$

Step 3. Take 3×3 minors and their irreducible factors

Step 4. f^{χ} = product of all these irreducible factors.

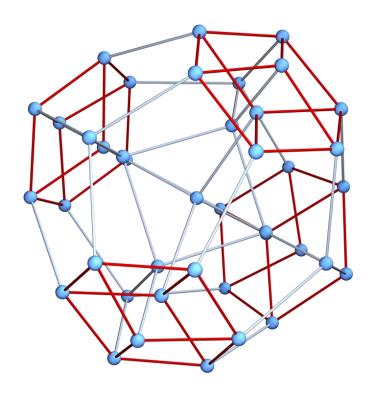
$$f^{\chi}(y_{1}, y_{2}, y_{3}, y_{4}) = \begin{cases} (y_{1}y_{2}y_{4} + y_{2}y_{3}y_{4} + y_{2}y_{3} + y_{2}y_{4} + y_{3}y_{4} + y_{3} + y_{4} + 1) \cdot (y_{1}y_{2}y_{4} + y_{2}y_{4} + y_{4} + 1) \cdot (y_{1}y_{2} + y_{2} + 1) \cdot (y_{1}y_{2}y_{3}y_{4} + y_{1}y_{2}y_{3} + y_{1}y_{2}y_{4} + y_{2}y_{3}y_{4} + y_{2}y_{3} + y_{2}y_{4} + y_{3}y_{4} + y_{3} + y_{4} + 1) \cdot (y_{2}y_{3} + y_{3} + y_{4} + 1) \cdot (y_{2}y_{3} + y_{3} + y_{4} + y_{3} + y_{4} + y_{3} + y_{4} + 1) \cdot (y_{2}y_{3} + y_{3} + y_{4} + y_{3} + y_{4} + y_{3} + y_{4} + 1) \cdot (y_{2}y_{3} + y_{3} + y_{4} + y_{3} + y_{4} + y_{3} + y_{4} + 1) \cdot (y_{2}y_{3} + y_{3} + y_{4} + y_{3} + y_{4} + y_{3} + y_{4} + 1) \cdot (y_{2}y_{3} + y_{4} + y_{3} + y_{4} + y_{4} + y_{4} + 1) \cdot (y_{2}y_{3} + y_{4} + y_{3} + y_{4} + y_{$$

$$Newt(f^{\chi}) =$$

Future directions

- exploring positive parametrizations of $X^{\chi}(k, n)$
- implementing the algorithm for the cases in which this parametrization exists.

Thanks for your attention!



References

- **[SS03]** D. Speyer and B. Sturmfels, *The Tropical Grassmannian*, Advances in Geometry
- [CEGM19] F. Cachazo, N. Early, A. Guevara and S. Mizera, *Scattering equations:* from projective spaces to tropical grassmannians, Journal of High Energy Physics
- [CEZ22] F. Cachazo, N. Early and Y. Zhang, Color-Dressed Generalized Biadjoint Scalar Amplitudes: Local Planarity, SIGMA
- [Finschi01] Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, PhD thesis
- [SW20] D. Speyer and L. Williams, *The positive Dressian equals the positive tropical Grassmannian*, Transactions of the American Mathematical Society
- [ALS20] N. Arkani-Hamed, T. Lam and M. Spradlin, *Positive Configuration Space*, Communications in Mathematical Physics.