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KP2 equation and algebraic geometry

KP2 equation : (−4ut + 6uux + uxxx)x+3uyy = 0

is the first member of the most relevant 2 + 1 integrable hierarchy and it has turned
relevant in the solution to problems in algebraic geometry.
We focus on two classes of real KP2 solutions and their relations with real algebraic
geometry to provide a combinatorial approach to tropicalization of M-curves:

Real regular finite–gap KP2 solutions are parametrized by degree g real regular
non–special divisors on genus g M-curves [DN-1988]

Real regular multiline KP2 solitons are parametrized by points in totally non–negative
Grassmannians Gr≥0(k, n) [KW-2013], where Gr≥0(k, n) ≡ GL+

k \MatTNN
k,n.

Finite-gap KP2 solutions and algebraic geometry
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[Kr-1976] Given a non–singular genus g algebraic curve Γ with marked point P0, families of
KP2 smooth quasi–periodic solutions

u(x, y, t) = 2∂2
x log Θ(xU (1) + yU (2) + tU (3)) + c

on (Γ, P0) are parametrized by non special divisors D = (P1, . . . , Pg) .

There exists a unique normalized KP2 wave–function Ψ(P, ~x) , meromorphic on Γ\{P0},
with poles in D and asymptotics at P0 (ζ−1(P0) = 0):

Ψ(ζ, ~x) =
(
1−

w1(~x)

ζ
+ O(ζ−2)

)
eζx+ζ2y+ζ3t+··· (ζ →∞).

[DN-1988]: Smooth, real (quasi–)periodic KP2 solutions u(x, y, t) correspond to
real and regular divisors on smooth M–curves :

• Γ possesses an antiholomorphic involution which fixes the maximum number g + 1 of
ovals, Ω0, . . . ,Ωg;

• P0 ∈ Ω0 (infinite oval) and the divisor points Pj ∈ Ωj, j = 1, ..., g (finite ovals).
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[Ich-23] has proven that 1-dimensional families of M–curves degenerate to rational curves
and the corresponding regular finite-gap solutions degenerate to soliton solutions (not
necessarily real and regular!). In this limit the theta-function becomes a finite sum. This is
compatible with the form of multiline-soliton KP2 solutions.

Real regular KP multi-solitons and Gr≥0(k, n)

Soliton data: (K, [A]), with K = {κ1 < · · ·κn}, A real k × n matrix

τ (x, y, t) = Wrx(f
(1), . . . f (k)), with f (i) =

∑n
j=1A

i
j exp(κjx+κ2

jy+κ3
jt)

u(x, y, t) = 2∂2
x log(τ ) is regular for real (x, y, t) iff all maximal minors of A are

non–negative [KW-2013]

Main results:
Question: is it possible to associate to real regular multiline KP2 solutions the rational
degeneration of an M-curve and a divisor fulfilling the conditions in [DN-1988]?
Answer: Yes! we did it in [AG-2018, AG-2019, AG-2022b] using the combinatorial
structure of Gr≥0(k, n), and thus verified that any real regular multi-line KP2 soliton is
the tropical limit of a real regular finite-gap solution.
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In [AG-2022b], we start from soliton data (K, [A] ∈ SM. Then, any plabic graph
representing SM is dual to the topological model of a reducible rational curve on
which one can consistently assign spectral data (divisor) fulfilling the conditions of
[DN-1988] by solving a system of relations on the graph.

If one chooses the Le-graph, the M curve has genus g equal to the dimension of SM
[AG-2019]

Constructive approach! the divisor is computed solving a system of relations on the
graph [AG-2022a, AG-2023] with a statistical mechanical interpretation [A-2021].

In Gr>0(k, n) one can alternatively use classical total positivity [AG-2018a]
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The Sato divisor on Γ0

Soliton data: (K, [A]) 7→ Sato algebraic geometric data Γ0 rational curve, marked
points P0, κ1, . . . , κn, k-point real non–special divisor

D(k)
S = {κ1 < γ1 < · · · < γk ≤ κn} [Mal-1991]

Intermezzo on Gr≥0(k, n)

[Pos-06]: Each [A] ∈ Gr≥0(k, n) belongs to a unique positroid cell SM = {[A] ∈
GrTNN(k, n) : ∆I(A) > 0 for I ∈M, and ∆I(A) = 0 for I 6∈ M}. SM is
represented by a Le-diagram (=Young diagram with a filling rule for 0s and 1s) and by an
equivalence class of planar bicolored (=plabic) graphs in the disk.
There is a bijection between SM ⊂ GrTNN(k, n) and { Le–diagrams } in k × n boxes.

A Le–diagram is a filling of Young diagram with 0’s and 1’s s.t. for any 3 boxes (i′, j),
(i, j′), (i′, j′), with i < i′, j < j′, a, c = 1 =⇒ b = 1:

 

Le diagram (tableau) ⇐⇒ perfectly oriented bipartite Le–graph (network) in the disk:
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[Pos-2006]: Classification of planar networks in the disk representing [A] ∈ SM
The construction of Γ rational degeneration of M–curve

• Take soliton data in SM and choose a graph in the disk G representing SM in Postnikov
classification.

• G is dual to the reducible rational curve Γ:

G Γ

Boundary of disk Sato component Γ0

Boundary vertex bl Marked point κl on Γ0

Internal vertex Σs Copy of CP1 denoted Σs

Internal white vertex Γl Copy of CP1 denoted Γl

Edge e Intersection/node

Face f Oval

• Perturb Γ to Γε opening gaps so that Γε is an M–curve of genus g = F − 1, where F is
the number of faces of the graph (g ≥ dim SM, [AG-2019]: have = for the Le–graph)

Example: g = 4 M-curve for soliton data in Gr>0(2, 4)
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0 = P0(λ, µ) = µ·
(
µ−(λ−κ1)

)
·
(
µ+(λ−κ2)

)
·
(
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)
·
(
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)
.

Genus 4 M–curve after desingularization:

Γ(ε) : P (λ, µ) = P0(λ, µ) + ε(β2 − µ2) = 0, 0 < ε� 1,

β = κ4−κ1

4
+ 1

4
max {κ2 − κ1, κ3 − κ2, κ4 − κ3},

κ1 = −1.5, κ2 = −0.75, κ3 = 0.5, κ4 = 2.

Level plots for KP-2 finite gap solutions: ε = 10−2 [left], ε = 10−18 [right].
Horizontal axis is −60 ≤ x ≤ 60, vertical axis is 0 ≤ y ≤ 120, t = 0.
White (black) = lowest (highest) value of u.

Alternative approaches

In [AFMS-2023,FM-2024] they start from a reducible rational curve and associate a
KP2-soliton solution in the finite dimensional reduction of the Sato Grassmannian
generalizing [Nak-2019]. In [ACFM-xxx] we build a dictionary using both
[AG-2019,AG-2022,A-2021] and [AFMS-2023,FM-2024].
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