Poincaré and Picard bundles on the Moduli Spaces of Vector Bundles

Arusha C

Indian Institute of Technology Bombay, India

Trieste Algebraic Geometry Summer School (TAGSS) 2024, International Center for Theoretical Physics, Italy

Setup and Notations

Let Y be an irreducible projective curve of genus $g_Y \ge 3$ over \mathbb{C} with only nodes as singularities and $p: X \to Y$ be its normalisation. Let $U_Y(n, d)$ (resp. $U_Y^s(n, d)$) denote the coarse moduli space of slope semistable (resp. stable) torsionfree sheaves of rank n and degree d.

- If (n, d) = 1, then $U_Y^s(n, d)$ is a fine moduli space, i.e., there exists a universal family \mathcal{U} on $U_Y^s(n, d) \times Y$. The universal family \mathcal{U} is also called the *Poincaré sheaf*.
- The restriction of \mathcal{U} to $\{\mathcal{E}\} \times Y$ is isomorphic to \mathcal{E} for all $\mathcal{E} \in U_Y^s(n, d)$.
- $U_Y^{\prime s}(n, d)$ denote the subset of $U_Y^s(n, d)$ consisting of stable locally free sheaves.
- \mathcal{U} restricted $U_Y'^s(n,d) \times Y$ is a vector bundle, called the Poincaré bundle.
- When d > 2n(g-1), $H^1(E) = 0$ for all $E \in U'^s_Y(n, d)$. Hence the direct image sheaf $p_{1*}\mathcal{U}$ over $U'^s_Y(n, d)$ is locally free where p_1 is the projection $U'^s_Y(n, d) \times Y \to U'^s_Y(n, d)$.

Projective Poincaré and Picard bundles

- Although there does not exist a universal vector bundle in the non-coprime case, there always exist a universal projective bundle.
- There exists a projective bundle \mathcal{PU} whose restriction to $Y \times \{E\}$ is isomorphic to P(E) for all $E \in U'^{s}(n, d)$ and we call it the projective Poincaré bundle.
- When d > 2n(g-1), there exists a projective bundle \mathcal{PW} on $U'_L(n,d)$ called the projective Picard bundle.

Are \mathcal{PU} and \mathcal{PW} stable?

[2009]: I. Biswas, L. Brambila-Paz and P. Newstead proved that the projective Poincaré bundle and the projective Picard bundle are stable when $(n, d) \neq 1$ for smooth curves.

- The associated vector bundle, denoted by \mathcal{W} , is called the Picard bundle over $U_Y'^s(n,d)$.
- $U'_L(n, d)$ denote the moduli space of stable vector bundles of rank n, degree d and determinant L and $U_L(n, d)$ denote its closure in $U_Y(n, d)$.

Is there a universal family when $(n, d) \neq 1$?

[Ramanan, 1973]: Let X be a non-singular algebraic curve of genus $g \ge 2$. If n and d are not coprime, there does not exist a Poincaré bundle on any Zariski open subset of $U_L(n, d)$.

Theorem 1

Let Y be an integral nodal curve of geometric genus $g(X) \ge 2$. If n and d are not coprime, then there does not exist a Poincaré family on any Zariski open subset V of $U_L(n, d)$.

A Brauer group argument for non existence $(V = U'_L(n, d))$

- If there exists a Poincaré bundle \mathcal{V} on $U'_L(n,d) \times Y$, then by uniqueness of projective Poincaré bundles, we have $\mathcal{PU} \cong P(\mathcal{V})$ and $\mathcal{PU}_x \cong P(\mathcal{V}_x)$ for a nonsingular point $x \in Y$.
- This will imply that the Brauer class of \mathcal{PU}_x is trivial as it is the projectivisation of a vector bundle.
- As a consequence we get $\operatorname{Br}(U'_L(n,d)) = \{0\}$. But $\operatorname{Br}(U'_L(n,d)) \cong \mathbb{Z}/h\mathbb{Z}$ where

How is stability defined for projective bundles?

Let U be an open subset of a projective variety W such that $\operatorname{codim}(W - U, W) \ge 2$. Let $P \xrightarrow{p} U$ be a projective bundle on U and let $P' \xrightarrow{p'} Z$ be a projective subbundle of $P|_Z$ where Z is a Zariski open subset of U with $\operatorname{codim}(U - Z, U) \ge 2$.

 $0 \to \mathcal{T}_{P'/Z} \to \mathcal{T}_{P|_Z/Z} \to N_{P'/P} \to 0$

where $\mathcal{T}_{P'/Z}$ and $\mathcal{T}_{P|_Z/Z}$ are the relative tangent bundles. Then $N = p'_*(N_{P'/P})$ is a vector bundle on Z. The projective bundle P is stable (semistable) if for every subbundle P', deg N > 0 (deg $N \ge 0$).

Remarks:

1) This definition is equivalent to the standard notion of stability for principal PGL(N)-bundles.

2) The varieties $U'_L(n, d)$ and $U'^s_L(n, d)$ are quasiprojective varieties.

Codimension of $U'_L(n,d)^c$ and $U'_L(n,d)^c$ in $U_L(n,d)$?

[U.N. Bhosle, 2020]: Let Y be an integral nodal curve of arithmetic genus $g \ge 2$ with m nodes, $m \ge 1$. For $n \ge 2$, $\operatorname{codim}(U_L(n,d) - U'_L(n,d), U_L(n,d)) \ge 2$.

h = gcd(n, d) and is generated by the Brauer class of \mathcal{PU}_x [Bhosle and Biswas, 2014].

Idea of proof of Theorem 1

- If we assume the existence of a Poincaré bundle on $V \times Y$, it gives rise to a vector bundle on the moduli space (taking direct image), say E.
- We show that P(E) parametrises a family of vector bundles on Y, say \mathcal{V} .
- Next, we show that there is a morphism from the open set corresponding to the stable vector bundles in the family \mathcal{V} to another projective bundle.
- This morphism gives rise to a surjective map between their Picard groups.
- Further, we show that the Picard group in the codomain is \mathbb{Z} and the image is generated by gcd(n, d).
- The surjectivity forces the rank and degree to be coprime.

How do we handle the node?

Observations:

1) The subset $\overline{U}_L^{\prime s}(n,d)$ of $U_L^{\prime}(n,d)$ consisting of vector bundles whose pullback to the normalisation of Y is stable behaves nicely.

2) If $\overline{U}_L^{\prime s}(n,d)$ forms a big open set of the moduli space, some arguments used for the case of smooth curves transcends to nodal curves.

Theorem 4: Let Y be an integral nodal curve of arithmetic genus $g \ge 3$. Then $\operatorname{codim}(U'_L(n,d) - U'^s_L(n,d), U'_L(n,d)) \ge 2$.

Theorem 5: $\mathcal{P}\mathcal{U}$ and $\mathcal{P}\mathcal{W}$ are stable

Define $\mathcal{PU}_x = \mathcal{PU}|_{\{x\} \times U_L^{\prime_s}(n,d)}$.

PU_x is stable for all x ∈ Y_{reg} where Y_{reg} is the set of all nonsingular points of Y.
Let η and θ_L be divisors defining the polarisation on Y and U'^s_L(n, d) respectively. Then PU is stable with respect to aη + bθ_L, a, b > 0.
Suppose further that d > 2n(g - 1). Then the projective Picard bundle PW|_{U's}(n,d) is stable.

Remark: The proof uses Hecke cycles to obtain a projective space P, an injective morphism $\psi: P \to U_L'^{s}(n, d)$. We show that deg $\psi^* N > 0$.

Another Application of Theorem 4

Let Y be an integral nodal curve of arithmetic genus $g \ge 2$. Assume that if n = 2 and g = 2, then d is odd. Then

- $\bullet \operatorname{Pic} U_L^{\prime s}(n,d) \cong \mathbb{Z}.$
- $e \operatorname{Pic} U'_L(n,d) \cong \mathbb{Z} .$

3 The class group $\operatorname{Cl}(U_L(n,d)) \cong \mathbb{Z}$. The class group $\operatorname{Cl}(U'_L(n,d)) \cong \mathbb{Z}$.

Theorem 2

Some References

Let $p: X \to Y$ denote the normalisation. Denote by $\overline{U}_L^{'ss}(n,d)$ (resp. $\overline{U}_L^{'s}(n,d)$) the subset of $U_L(n,d)$ consisting of vector bundles F such that p^*F is semistable (resp. stable). Then • $\operatorname{codim}(U'_L(n,d) - \overline{U}_L^{'s}(n,d), U'_L(n,d)) \ge 2g(X) - 2$ (resp. g(X) - 1) • $\operatorname{codim}(\overline{U}_L^{'ss}(n,d) - \overline{U}_L^{'s}(n,d), \overline{U}_L^{'ss}(n,d)) \ge 2g(X) - 2$ (resp. g(X) - 1)

Another application of Theorem 2

[U.N. Bhosle, 1995]: The Narasimhan-Seshadri theorem is not true for nodal curves.

Theorem 3: Let Y be a complex nodal curve with $g(X) \ge 2$. The subset of $U'_Y(n, d)$ (respectively of $U'_L(n, d)$) consisting of vector bundles which come from representations $\pi_1(Y)$ has complement of codimension at least 2 for $g(X) \ge 2$ except possibly when n = g(X) = 2, d even. [1] C. Arusha, Usha N. Bhosle, Sanjay Kumar Singh, Projective Poincaré and Picard bundles for moduli spaces of vector bundles over nodal curves, *Bul. Sci. Math*, 166 (2021).

- [2] Ramanan S., The moduli spaces of vector bundles over an algebraic curve, Math. Ann. 200 (1973), 69 - 84.
- [3] Biswas, I., Brambila-Paz, L., and Newstead, P. E. (2009). Stability of projective Poincare and Picard bundles. *Bull. Lond. Math. Soc.* 41(3): 458-472.
- [4] Bhosle, Usha., Biswas, Indranil., Brauer Group and Birational Type of Moduli Spaces of Torsionfree Sheaves on a Nodal Curve. *Comm. Alg*, 42 (2012).
- [5] Bhosle, Usha N., Representations of the fundamental group and vector bundles. *Math. Ann.* 302 (1995), 601-608.

Acknowledgments. I thank the organizers of TAGSS 2024 for giving me the opportunity to present my work.