TRIESTE ALGEBRAIC GEOMETRY SUMMER SCHOOL 2024 *Thuy Nguyen - Sao Paulo State University, Brazil* **Polynomial maps via Intersection Homology**

JACOBIAN CONJECTURE

"Let $F = (F_1, \ldots, F_n) : \mathbb{K}^n \to \mathbb{K}^n$, where $n \ge 1, \mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, be a *polynomial map*. JF(p) : Jacobian matrix of F at p. **Jacobian conjecture:** If $\det JF(p) \ne 0, \quad \forall p \in \mathbb{K}^n,$ (Jacobian condition) then F is an automorphism."

RESULTS

1) A generalization of Valettes' result: The Valettes' Theorem is true for general case $F : \mathbb{C}^n \to \mathbb{C}^n$, $n \ge 2$, under an additional condition: "The parts at infinity of the fibres of F are complete intersections."

Article: Thuy N., Valette G. and Valette A., *On a singular variety associated to a polynomial mapping*, Journal of Singularities volume 7 (2013), 190-204.

2) An "adapted" Valette variety in the case $F : \mathbb{C}^n \to \mathbb{C}^{n-1}$ can measure the bifurcation set of the map.

Theorem (Thuy N., Ruas M.A.S., 2018). Let $F = (F_1, \ldots, F_{n-1}) : \mathbb{C}^n \to \mathbb{C}^{n-1}$, where $n \ge 2$, be a generic polynomial mapping such that $K_0(F) = \emptyset$ (local submersion) and the parts at infinity of the fibres of F are complete intersections. Then there exist singular varieties \mathcal{V}_F associated

(Heinrich Keller, 1939)

• n = 1: the conjecture is true for both $\mathbb{K} = \mathbb{R}$ and $\mathbb{K} = \mathbb{C}$.

• n = 2: The conjecture is false in the real case! (Pinchuk, 1994).

The conjecture is **open** in the **complex** case.

PROPERNESS AND JAC. CONJ.

If det $JF(p) \neq 0, \forall p \in \mathbb{K}^n$, then *F* is proper. (*Hadamard Theorem*, 1906)

- The map *F* is proper if and only if its asymptotic set:.

 $S_F := \{ a \in \mathbb{K}^n : \exists \xi_k \to \infty, \, F(\xi_k) \to a \}$

is empty.

INTER. HOMOL. APPROACH

to F such that if $IH_2^{\overline{t}}(\mathcal{V}_F, \mathbb{R})$ is trivial then the bifurcation set B(F) is empty, where \overline{t} is the total perversity.

Article: *Thuy N. and Ruas M.A.S, On singular varieties associated to a polynomial mapping from* \mathbb{C}^n *to* \mathbb{C}^{n-1} , Asian Journal of Mathematics, v.22, p.1157-1172, 2018.

3) The "real version" of Valettes' Theorem is no longer true.

Theorem (-, 2023). There exists a Valette variety $V_{\mathcal{P}}$ associated to the Pinchuk map \mathcal{P} such that

 $IH_1^{\overline{0},c}(V_{\mathcal{P}}) = IH_1^{\overline{0},cl}(V_{\mathcal{P}}) = 0.$

Article: Thuy Nguyen, A singular variety associated to the smallest degree Pinchuk map, Matemática Contemporânea, Sociedade Brasileira de Matemática, 2023.

CONSTRUCTION OF VALETTE VARIETY THROUGH AN EXAMPLE

Example: Let $F : \mathbb{R} \to \mathbb{R}$ be a function defined by $F(x) = x^2$.

1. $Sing(F) = \{0\}.$

2. $\operatorname{Sing}(F)$ divide \mathbb{R} into two subsets:

 $U_1 = \{ r \in \mathbb{R} : r > 0 \} \qquad U_2 = \{ r \in \mathbb{R} : r < 0 \}$

Valette Theorem (A. Valette, G. Valette, 2010).

 $F : \mathbb{C}^2 \to \mathbb{C}^2$: satisfies Jacobian condition $\Rightarrow \exists$ singular varieties V_F such that Fis proper iff the intersection homology $IH_2^{\overline{p}}(V_F, \mathbb{R}) = 0$, for any perversity \overline{p} .

Article: Geometry of polynomial mappings at infinity via intersection homology, Ann. I. Fourier vol. 64, fascicule 5 (2014), 2147-2163.

PINCHUK COUNTER-EXAMPLE

Given $(x, y) \in \mathbb{R}^2$, let: $t = xy - 1, h = t(xt + 1), f = (xt + 1)^2(t^2 + y)$. Considere

p = f + h

 $q = -t^2 - 6th(h+1) - 170fh - 91h^2 - 195fh^2 - 69h^3 - 75fh^3 - \frac{75}{4}h^4.$

$$C_1 = \left[x \subset \mathbb{I}_{\mathbb{X}} \cdot x > 0 \right] \quad , \quad C_2 = \left[x \subset \mathbb{I}_{\mathbb{X}} \cdot x < 0 \right]$$

3. $F(U_1) = F(U_2) = \{ \alpha \in \mathbb{R} : \alpha > 0 \}.$

4. Put $U := \mathbb{R} \setminus \{0\}$. There exist Nash functions:

$$\psi_1: U \to \mathbb{R}, \quad \psi_1(x) := \frac{x}{1+x^2}$$

$$\psi_2: U \to \mathbb{R}, \quad \psi_2(x) := \frac{-x}{1+x^2}$$

satisfying the Mostowski's Separation Lemma: ψ_i is positive on U_i and negative on U_j , $i \neq j, i, j = 1, 2$.

5. Define

$$V_F := \overline{(F, \psi_1, \psi_2)(U)} = \overline{\left\{ \left(x^2, \frac{x}{1+x^2}, \frac{-x}{1+x^2} \right) : x \neq 0 \right\}} \subset \mathbb{R}^3$$

The Valette variety associated to $F : \mathbb{R} \to \mathbb{R}$, $F(x) = x^2$:

Then $\mathcal{P} = (p, q)$ satisfies the Jacobian condition but it is not injective/proper:

1) By changing variables t := t(x, y), h := h(x, y) and f := f(x, y), the Pinchuk map is a polynomial map of variables t, h and f.

2) The sequence $\{z_k\} = \{(k, 1/k)\} \subset \mathbb{R}^2$ tends to infinity but $t(z_k) = h(z_k) = 0$ and $f(z_k) = 1/k$. Then the Pinchuk maps (p, q), being polynomial maps of new variables t, hand f, satisfies that $(p(z_k), q(z_k))$ does not tend to infinity, in other words (p, q) is nonproper. Then (p, q) is not an automorphism.

In general, the singular locus of Valette variety V_F is contained in $(S_F \cup K_0(F)) \times \{0_{\mathbb{R}^p}\}$, where $K_0(F) = F(\operatorname{Sing}(F))$ (critical values) and p is the number of elements of the covering $\{U_1, \ldots, U_p\}$ that covers $\mathbb{R}^{2n} \setminus \operatorname{Sing}(F)$ (considering $F : \mathbb{C}^n \to \mathbb{C}^n$ as the one $F : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$).