TRIESTE ALGEBRAIC GEOMETRY SUMMER SCHOOL 2024 *Thuy Nguyen***- Sao Paulo State University, Brazil** Polynomial maps via Intersection Homology

JACOBIAN CONJECTURE

 $\text{``Let $F=(F_1,\ldots,F_n):\mathbb{K}^n\rightarrow\mathbb{K}^n$, where}$ $n \geq 1$, $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, be a polynomial map. $JF(p)$: Jacobian matrix of F at p. **Jacobian conjecture:** If $\det JF(p) \neq 0, \quad \forall p \in \mathbb{K}^n,$ (Jacobian condition) then F is an automorphism."

• $n = 2$: The conjecture is false in the real case! (Pinchuk, 1994).

The conjecture is open in the complex case.

If $\det JF(p) \neq 0, \forall p \in \mathbb{K}^n$, then F is proper. (*Hadamard Theorem, 1906*)

- The map F is proper if and only if its asymptotic set:.

 $S_F := \{a \in \mathbb{K}^n : \exists \xi_k \to \infty, F(\xi_k) \to a\}$

(*Heinrich Keller, 1939*)

• $n = 1$: the conjecture is true for both $\mathbb{K} = \mathbb{R}$ and $\mathbb{K} = \mathbb{C}$.

PROPERNESS AND JAC. CONJ.

Then $P = (p, q)$ satisfies the Jacobian condition but it is not injective/proper:

1) By changing variables $t := t(x, y)$, $h :=$ $h(x, y)$ and $f := f(x, y)$, the Pinchuk map is a polynomial map of variables t, h and f .

2) The sequence $\{z_k\} = \{(k, 1/k)\}\subset \mathbb{R}^2$ tends to infinity but $t(z_k) = h(z_k) = 0$ and $f(z_k) = 1/k$. Then the Pinchuk maps (p, q) , being polynomial maps of new variables t, h and f, satisfies that $(p(z_k), q(z_k))$ does not tend to infinity, in other words (p, q) is nonproper. Then (p, q) is not an automorphism.

In general, the singular locus of Valette variety V_F is contained in $(S_F\cup K_0(F))\times \{0_{{\Bbb R}^p}\}$, where $K_0(F) = F(\text{Sing}(F))$ (critical values) and p is the number of elements of the covering $\{U_1,\ldots,U_p\}$ that covers $\mathbb{R}^{2n}\setminus\mathrm{Sing}(F)$ (considering $F:\mathbb{C}^n\to\mathbb{C}^n$ as the one $F:\mathbb{R}^{2n}\to\mathbb{R}^{2n}$).

is empty.

INTER. HOMOL. APPROACH

Valette Theorem (A. Valette, G. Valette, 2010).

 $F: \mathbb{C}^2 \to \mathbb{C}^2$: satisfies Jacobian condition \Rightarrow \exists singular varieties V_F such that F is proper iff the intersection homology $IH_{2}^{\overline{p}}(V_{F},\mathbb{R})=0$, for any perversity $\overline{p}.$

Article: *Geometry of polynomial mappings at infinity via intersection homology*, Ann. I. Fourier vol. 64, fascicule 5 (2014), 2147-2163.

PINCHUK COUNTER-EXAMPLE

Given $(x, y) \in \mathbb{R}^2$, let: $t = xy - 1, h =$ $t(xt + 1), f = (xt + 1)^2(t^2 + y)$. Considere

 $p = f + h$

 $q = -t^2 - 6th(h+1) - 170fh - 91h^2 195fh^2 - 69h^3 - 75fh^3 - \frac{75}{4}$ 4 $h^4.$

$$
U_1 = \left\{ w \in \mathbb{R} : w > 0 \right\}, \quad U_2 = \left\{ w \in \mathbb{R} : w > 0 \right\}
$$

2) An "adapted" Valette variety in the case $F:\mathbb{C}^n\to\mathbb{C}^{n-1}$ can measure the bifurcation **set of the map.**

Theorem (Thuy N., Ruas M.A.S., 2018). Let $F = (F_1, \ldots, F_{n-1}) : \mathbb{C}^n \to \mathbb{C}^{n-1}$, where $n \geq 2$, be a generic polynomial mapping such that $K_0(F) = \emptyset$ (local submersion) and the parts at infinity of the fibres of F are complete intersections. Then there exist singular varieties \mathcal{V}_F associated

to F such that if $IH_2^{\overline{t}}(\mathcal{V}_F,\mathbb{R})$ is trivial then the bifurcation set $B(F)$ is empty, where \overline{t} is the total perversity.

Article: *Thuy N. and Ruas M.A.S, On singular varieties associated to a polynomial mapping from* C n *to* \mathbb{C}^{n-1} , Asian Journal of Mathematics, v.22, p.1157-1172, 2018.

> IH $\bar{0},c$ $I_1^{0,0}(V_{\mathcal{P}})=IH$ $\overline{0}$,cl $J_1^{0, \text{Cl}}(V_{\mathcal{P}})=0.$

RESULTS

1) **A generalization of Valettes' result**: The Valettes' Theorem is true for general case F : $\mathbb{C}^n \to \mathbb{C}^n$, $n \geq 2$, under an additional condition: "The parts at infinity of the fibres of F are complete intersections."

Article: Thuy N., Valette G. and Valette A., *On a singular variety associated to a polynomial mapping*, Journal of Singularities volume 7 (2013), 190-204.

3) **The "real version" of Valettes' Theorem is no longer true.**

Theorem (-, 2023). There exists a Valette variety V_P associated to the Pinchuk map P such that

Article: *Thuy Nguyen, A singular variety associated to the smallest degree Pinchuk map, Matemática Contemporânea, Sociedade Brasileira de Matemática, 2023.*

CONSTRUCTION OF VALETTE VARIETY THROUGH AN EXAMPLE

Example: Let $F : \mathbb{R} \to \mathbb{R}$ be a function defined by $F(x) = x^2$.

1. Sing $(F) = \{0\}.$

2. $Sing(F)$ divide R into two subsets:

 $U_1 = \{x \in \mathbb{R} : x > 0\}$, $U_2 = \{x \in \mathbb{R} : x < 0\}$

3.
$$
F(U_1) = F(U_2) = {\alpha \in \mathbb{R} : \alpha > 0}.
$$

4. Put $U := \mathbb{R} \setminus \{0\}$. There exist Nash functions:

$$
\psi_1: U \to \mathbb{R}, \quad \psi_1(x) := \frac{x}{1+x^2}
$$

$$
\psi_2: U \to \mathbb{R}, \quad \psi_2(x) := \frac{-x}{1+x^2}.
$$

satisfying the Mostowski's Seperation Lemma: ψ_i is positive on U_i and negative on U_j , $i \neq j, i, j = 1, 2.$

5. Define

$$
V_F:=\overline{(F,\psi_1,\psi_2)(U)}=\overline{\left\{\left(x^2,\frac{x}{1+x^2},\frac{-x}{1+x^2}\right):x\neq0\right\}}\subset\mathbb{R}^3
$$

.

The Valette variety associated to $F : \mathbb{R} \to \mathbb{R}, \quad F(x) = x^2$:

