

Machine Learning

With scikit-learn

Luis Alejandro Torres

Administrador HPC – SC3UIS Universidad Industrial de Santander

Javier Montoya

Profesor de Física Universidad de Cartagena

SUPERVISED LEARNING

What is machine learning?

- Machine learning is the process whereby:
 - Computers are given the ability to learn to make decisions from data
 - without being explicitly programmed!

Examples

- Spam
- Books classificcation

Unsupervised learning

- Uncovering hidden patterns from unlabeled data
 - Example:
 - Grouping customers into distinct categories (Clustering)

A business may wish to group its customers into distinct categories based on their purchasing behavior without knowing in advance what these categories are.

Supervised learning

- The predicted values are known
- Aim: Predict the target values of unseen data, given the features

	Features						
	points_per_game	assists_per_game	rebounds_per_game	steals_per_game	blocks_per_game	position	
0	26.9	6.6	4.5	1.1	0.4	Point Guard	
1	13	1.7	4	0.4	1.3	Center	
2	17.6	2.3	7.9	1.00	0.8	Power Forward	
3	22.6	4.5	4.4	1.2	0.4	Shooting Guard	

Types of supervised learning

Classification: Target variable consists of categories

• We can predict whether a bank transaction is fraudulent or not. As there are two outcomes here - a fraudulent transaction, or non-fraudulent transaction, this is known as **binary classification**. **Regression:** Target variable is continuous

• A model can use features such as number of bedrooms, and the size of a property, to predict the target variable, price of the property.

Naming conventions

- Feature = predictor variable = independent variable
- Target variable = dependent variable = response variable

	Features						
	points_per_game	assists_per_game	rebounds_per_game	steals_per_game	blocks_per_game	position	
0	26.9	6.6	4.5	1.1	0.4	Point Guard	
1	13	1.7	4	0.4	1.3	Center	
2	17.6	2.3	7.9	1.00	0.8	Power Forward	
3	22.6	4.5	4.4	1.2	0.4	Shooting Guard	

Before you use supervised learning

- Requirements:
 - No missing values
 - Data in numeric format
 - Data stored in pandas DataFrame or NumPy array
- Perform Exploratory Data Analysis (EDA) first

scikit-learn syntax

from sklearn.module import Model
model = Model()
model.fit(X, y)
predictions = model.predict(X_new)
print(predictions)

array([0, 0, 0, 0, 1, 0])

	Features						
	points_per_game	assists_per_game	rebounds_per_game	steals_per_game	blocks_per_game	position	
0	26.9	6.6	4.5	1.1	0.4	Point Guard	
1	13	1.7	4	0.4	1.3	Center	
2	17.6	2.3	7.9	1.00	0.8	Power Forward	
3	22.6	4.5	4.4	1.2	0.4	Shooting Guard	

The classification challenge - Classifying labels of unseen data

- 1. Build a model
- 2. Model learns from the labeled data we pass to it
- 3. Pass unlabeled data to the model as input
- 4. Model predicts the labels of the unseen data

Labeled data = training data

- Predict the label of a data point by
 - Looking at the k closest labeled data points
 - Taking a majority vote

k-Nearest Neighbors - KNN Intuition

k-Nearest Neighbors - KNN Intuition

Using scikit-learn to fit a classifier

```
from sklearn.neighbors import KNeighborsClassifier
X = churn_df[["total_day_charge", "total_eve_charge"]].values
y = churn_df["churn"].values
print(X.shape, y.shape)
```

(3333, 2), (3333,)

knn = KNeighborsClassifier(n_neighbors=15)
knn.fit(X, y)

Predicting on unlabeled data

(3, 2)

predictions = knn.predict(X_new)
print('Predictions: {}'.format(predictions))

Predictions: [1 0 0]

First practice!

Measuring model performance

Measuring model performance

• In classification, accuracy is a commonly used metric

Accuracy:

 $\frac{correct\ predictions}{total\ observations}$

Measuring model performance

- How do we measure accuracy?
- Could compute accuracy on the data used to fit the classifier
- **NOT** indicative of ability to generalize

Computing accuracy

Computing accuracy

Computing accuracy

Train/test split

knn = KNeighborsClassifier(n_neighbors=6)
knn.fit(X_train, y_train)
print(knn.score(X_test, y_test))

0.8800599700149925

Model complexity

- Larger k = less complex model = can cause underfitting
- Smaller k = more complex model = can lead to overfitting

Model complexity and over/underfitting

```
train_accuracies = {}
test_accuracies = {}
neighbors = np.arange(1, 26)
for neighbor in neighbors:
    knn = KNeighborsClassifier(n_neighbors=neighbor)
    knn.fit(X_train, y_train)
    train_accuracies[neighbor] = knn.score(X_train, y_train)
    test_accuracies[neighbor] = knn.score(X_test, y_test)
```


Plotting our results

```
plt.figure(figsize=(8, 6))
plt.title("KNN: Varying Number of Neighbors")
plt.plot(neighbors, train_accuracies.values(), label="Training Accuracy")
plt.plot(neighbors, test_accuracies.values(), label="Testing Accuracy")
plt.legend()
plt.xlabel("Number of Neighbors")
plt.ylabel("Accuracy")
plt.show()
```


Model complexity curve

Model complexity curve

Introduction to regression

Introduction to regression

import pandas as pd
diabetes_df = pd.read_csv("diabetes.csv")
print(diabetes_df.head())

	pregnancies	glucose	triceps	insulin	bmi	age	diabetes
0	6	148	35	0	33.6	50	1
1	1	85	29	0	26.6	31	0
2	8	183	0	0	23.3	32	1
3	1	89	23	94	28.1	21	0
4	0	137	35	168	43.1	33	1

Creating feature and target arrays

X = diabetes_df.drop("glucose", axis=1).values
y = diabetes_df["glucose"].values

print(type(X), type(y))

<class 'numpy.ndarray'> <class 'numpy.ndarray'>

Making predictions from a single feature

X_bmi = X[:, 4]
print(y.shape, X_bmi.shape)

(768,) (768,)

```
X_bmi = X_bmi.reshape(-1, 1)
print(X_bmi.shape)
```

(768, 1)

Plotting glucose vs. body mass index

import matplotlib.pyplot as plt
plt.scatter(X_bmi, y)
plt.ylabel("Blood Glucose (mg/dl)")
plt.xlabel("Body Mass Index")
plt.show()

Plotting glucose vs. body mass index

Fitting a regression model

```
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_bmi|, y)
predictions = reg.predict(X_bmi)
plt.scatter(X_bmi, y)
plt.plot(X_bmi, predictions)
plt.ylabel("Blood Glucose (mg/dl)")
plt.xlabel("Body Mass Index")
plt.show()
```


Fitting a regression model

The basics of linear regression

Regression mechanics

$$y = ax + b$$

- Simple linear regression uses one feature
 - y = target
 - x = single feature
 - a, b = parameters/coefficients of the model slope, intercept
- How do we choose a and b?
 - Define an error function for any given line
 - Choose the line that minimizes the error function
- Error function = loss function = cost function

The loss function Ordinary Least Squares

$$RSS = \sum_{i=1}^{n} (y_i + \hat{y}_i)^2$$

Ordinary Least Squares (OLS): minimize RSS

Linear regression in higher dimensions

$$y = a_1 x_1 + a_2 x_2 + b$$

- To fit a linear regression model here:
 - Need to specify 3 variables: a_1, a_2, b
- In higher dimensions:
 - Known as multiple regression
 - Must specify coefficients for each feature and the variable b

$$y = a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n + b$$

- scikit-learn works exactly the same way:
 - Pass two arrays: features and target

Linear regression using all features

```
reg_all.fit(X_train, y_train)
```

```
y_pred = reg_all.predict(X_test)
```


R-squared

- R^2 : quantifies the variance in target values explained by the features
 - Values range from 0 to 1

High R^2 :

Low R^2 :

R-squared in scikit-learn

reg_all.score(X_test, y_test)

0.356302876407827

Mean squared error and root mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

MSE is measured in target units, squared

$$RMSE = \sqrt{MSE}$$

Measure **RMSE** in the same units at the target variable

RMSE in scikit-learn

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, y_pred, squared=False)

24.028109426907236

Cross-validation

Cross-validation motivation

- Model performance is dependent on the way we split up the data
- Not representative of the model's ability to generalize to unseen data
- **Solution**: Cross-validation!

Split 1Fold 1Fold 2Fold 3Fold 4Fold 5

Test Data

Split Fold Fold 2 Fold 3 Fold 4 Fold 5 Metric 1	Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
---	---------	--------	--------	--------	--------	--------	----------

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 5

Cross-validation and model performance

- 5 folds = 5-fold CV
- 10 folds = 10-fold CV
- k folds = k-fold CV
- More folds = More computationally expensive

Cross-validation in scikit-learn

```
from sklearn.model_selection import cross_val_score, KFold
kf = KFold(n_splits=6, shuffle=True, random_state=42)
reg = LinearRegression()
cv_results = cross_val_score(reg, X, y, cv=kf)
```


Evaluating cross-validation peformance

print(cv_results)

[0.70262578, 0.7659624, 0.75188205, 0.76914482, 0.72551151, 0.73608277]

print(np.mean(cv_results), np.std(cv_results))

0.7418682216666667 0.023330243960652888

print(np.quantile(cv_results, [0.025, 0.975]))

array([0.7054865, 0.76874702])

Introduction to deep learning with PyTorch

What is deep learning?

- Deep learning is a subset of machine learning
- Inspired by connections in the human brain
- Models require large amount of data

Importing PyTorch and related packages

- PyTorch import in Python import torch
- PyTorch supports
 - image data with torchvision
 - audio data with torchaudio
 - text data with torchtext

Creating our first neural network

Creating our first neural network

import torch.nn as nn

Create input_tensor with three features
input_tensor = torch.tensor(
 [[0.3471, 0.4547, -0.2356]])

Define our first linear layer
linear_layer = nn.Linear(in_features=3, out_features=2)

Pass input through linear layer
output = linear_layer(input_tensor)
print(output)

tensor([[-0.2415, -0.1604]],
 grad_fn=<AddmmBackward0>)

Getting to know the linear layer operation

Each linear layer has a .weight and .bias property

linear_layer.weight

Parameter containing: tensor([[-0.4799, 0.4996, 0.1123], [-0.0365, -0.1855, 0.0432]], requires_grad=True) linear_layer.bias

Parameter containing: tensor([0.0310, 0.1537], requires_grad=True)

Getting to know the linear layer operation

output = linear_layer(input_tensor)

For input X, weights X_0 and bias b_0 , the linear layer performs

 $y_0 = W_0 X + b_0$

In PyTorch: output = W0 @ input + b0

- Weights and biases are initialized randomly
- They are not useful until they are tuned

Our two-layer network summary

- Input dimensions: 1 × 3
- Linear layer arguments:
 - in_features = 3
 - out_features = 2
- Output dimensions: 1 × 2
- Networks with only linear layers are called fully connected
- Each neuron in one layer is connected to each neuron in the next layer

Stacking layers with nn.Sequential()

```
# Create network with three linear layers
model = nn.Sequential(
    nn.Linear(10, 18),
    nn.Linear(18, 20),
    nn.Linear(20, 5)
)
```


Stacking layers with nn.Sequential()

print(input_tensor)

tensor([[-0.0014, 0.4038, 1.0305, 0.7521, 0.7489, -0.3968, 0.0113, -1.3844, 0.8705, -0.9743]])

Pass input_tensor to model to obtain output output_tensor = model(input_tensor) print(output_tensor)

tensor([[-0.0254, -0.0673, 0.0763, 0.0008, 0.2561]], grad_fn=<AddmmBackward0>)

- We obtain output of 1 × 5 dimensions
- Output is still not yet meaningful

Discovering activation functions

Stacked linear operations

- We have only seen linear layer networks
- Each linear layer multiplies its respective input with layer weights and adds biases
- Even with multiple stacked linear layers, output still has linear relationship with input

Why do we need activation functions?

- Activation functions add nonlinearity to the network
- A model can learn more complex relationships with nonlinearity

- Binary classification task:
 - To predict whether animal is 1 (**mammal**) or 0 (**not mammal**)

- Binary classification task:
 - To predict whether animal is 1 (mammal) or 0 (not mammal)
 - we take the pre-activation (6), pass it to the sigmoid,

Binary classification task:

- To predict whether animal is 1 (mammal) or 0 (not mammal)
- we take the pre-activation (6), pass it to the sigmoid
- and obtain a value between 0 and

Using the common threshold of 0.5:

- If output is > 0.5, class label = 1 (mammal)
- If output is <= 0.5, class label = 0 (not mammal)

import torch
import torch.nn as nn

```
input_tensor = torch.tensor([[6.0]])
sigmoid = nn.Sigmoid()
output = sigmoid(input_tensor)
```

tensor([[0.9975]])

Activation function as the last layer

```
model = nn.Sequential(
    nn.Linear(6, 4), # First linear layer
    nn.Linear(4, 1), # Second linear layer
    nn.Sigmoid() # Sigmoid activation function
)
```


Getting acquainted with softmax

- Used for multi-class classification problems
- takes N-element vector as input and outputs vector of same size
- say N=3 classes:
 - bird (0), mammal (1), reptile (2)
 - output has three elements, so softmax has three elements
- outputs a probability distribution:
 - each element is a probability (it's bounded between 0 and 1)
 - the sum of the output vector is equal to 1

Getting acquainted with softmax

import torch
import torch.nn as nn

```
# Create an input tensor
input_tensor = torch.tensor(
   [[4.3, 6.1, 2.3]])
```

Apply softmax along the last dimension
probabilities = nn.Softmax(dim=-1)
output_tensor = probabilities(input_tensor)

```
print(output_tensor)
```

tensor([[0.1392, 0.8420, 0.0188]])

- dim = -1 indicates softmax is applied to the input tensor's last dimension
- nn.Softmax() can be used as last step in nn.Sequential()

