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SUPERVISED LEARNING



What is machine learning?

• Machine learning is the process whereby:
• Computers are given the ability to learn to make decisions from data
• without being explicitly programmed!

Examples
• Spam
• Books classificcation



Unsupervised learning

• Uncovering hidden patterns from unlabeled data
• Example:

• Grouping customers into distinct categories (Clustering)

A business may wish to group its 
customers into distinct categories based 
on their purchasing behavior without 
knowing in advance what these 
categories are. 



Supervised learning

• The predicted values are known
• Aim: Predict the target values of unseen data, given the features



Types of supervised learning
Classification: Target variable consists of
categories

• We can predict whether a bank transaction 
is fraudulent or not. As there are two 
outcomes here - a fraudulent transaction, 
or non-fraudulent transaction, this is 
known as binary classification.

Regression: Target variable is continuous

• A model can use features such as number 
of bedrooms, and the size of a property, to 
predict the target variable, price of the 
property.

https://www.f5.com/solutions/stop-online-fraud
https://medium.datadriveninvestor.com/house-prices-linear-regression-eb57efeeb965

https://www.f5.com/solutions/stop-online-fraud
https://medium.datadriveninvestor.com/house-prices-linear-regression-eb57efeeb965


Naming conventions

• Feature = predictor variable = independent variable
• Target variable = dependent variable = response variable



Before you use supervised learning

• Requirements:
• No missing values
• Data in numeric format
• Data stored in pandas DataFrame or NumPy array

• Perform Exploratory Data Analysis (EDA) first



scikit-learn syntax



The classification challenge - Classifying 
labels of unseen data
1. Build a model
2. Model learns from the labeled data we pass to it
3. Pass unlabeled data to the model as input
4. Model predicts the labels of the unseen data

Labeled data = training data



k-Nearest Neighbors - KNN

• Predict the label of a data point by
• Looking at the k closest labeled data points
• Taking a majority vote



k-Nearest Neighbors - KNN



k-Nearest Neighbors - KNN



k-Nearest Neighbors - KNN



k-Nearest Neighbors - KNN Intuition



k-Nearest Neighbors - KNN Intuition



Using scikit-learn to fit a classifier



Predicting on unlabeled data



First practice!



Measuring model performance



Measuring model performance

• In classification, accuracy is a commonly used metric

  Accuracy:



Measuring model performance

• How do we measure accuracy?
• Could compute accuracy on the data used to fit the classifier
• NOT indicative of ability to generalize



Computing accuracy



Computing accuracy



Computing accuracy



Train/test split



Model complexity

• Larger k = less complex model = can cause underfitting
• Smaller k = more complex model = can lead to overfitting



Model complexity and over/underfitting



Plotting our results



Model complexity curve



Model complexity curve



Introduction to regression



Introduction to regression



Creating feature and target arrays



Making predictions from a single feature



Plotting glucose vs. body mass index



Plotting glucose vs. body mass index



Fitting a regression model



Fitting a regression model



The basics of linear regression



Regression mechanics

𝑦 = 𝑎𝑥 + 𝑏

• Simple linear regression uses one feature
• y = target
• x = single feature
• a, b = parameters/coefficients of the model - slope, intercept

• How do we choose a and b?
• Define an error function for any given line
• Choose the line that minimizes the error function

• Error function = loss function = cost function



The loss function



The loss function



The loss function



The loss function



The loss function



The loss function
Ordinary Least Squares

𝑅𝑆𝑆 =  

𝑖=1

𝑛

(𝑦𝑖 + ො𝑦𝑖  )2

Ordinary Least Squares (OLS): minimize RSS



Linear regression in higher dimensions

𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑏

• To fit a linear regression model here:
• Need to specify 3 variables: 𝑎1, 𝑎2,b

• In higher dimensions:
• Known as multiple regression
• Must specify coefficients for each feature and the 

variable b

𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 + 𝑏

• scikit-learn works exactly the same way:
• Pass two arrays: features and target



Linear regression using all features



R-squared

• 𝑅2: quantifies the variance in target values explained by the features
• Values range from 0 to 1

High 𝑅2: Low 𝑅2:



R-squared in scikit-learn



Mean squared error and root mean squared 
error

𝑀𝑆𝐸 =
1

𝑛


𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖  )2

MSE is measured in target units, squared

𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸

Measure RMSE in the same units at the target variable



RMSE in scikit-learn



Cross-validation



Cross-validation motivation

• Model performance is dependent on the way we split up the data
• Not representative of the model's ability to generalize to unseen 

data
• Solution: Cross-validation!



Cross-validation basics



Cross-validation basics



Cross-validation basics



Cross-validation basics



Cross-validation basics



Cross-validation basics



Cross-validation basics



Cross-validation basics



Cross-validation basics



Cross-validation and model performance

• 5 folds = 5-fold CV
• 10 folds = 10-fold CV
• k folds = k-fold CV
• More folds = More computationally expensive



Cross-validation in scikit-learn



Evaluating cross-validation peformance



Introduction to deep learning with
PyTorch



What is deep learning?

• Deep learning is a subset of machine learning
• Inspired by connections in the human brain
• Models require large amount of data



Importing PyTorch and related packages

• PyTorch import in Python
import torch

• PyTorch supports
• image data with torchvision
• audio data with torchaudio
• text data with torchtext



Creating our first neural network



Creating our first neural network



Getting to know the linear layer operation

Each linear layer has a .weight and .bias property



Getting to know the linear layer operation

For input 𝑋 , weights 𝑋0 and bias 𝑏0, the linear layer performs

𝑦0 =  𝑊0 𝑋 + 𝑏0

In PyTorch: output = W0 @ input + b0

• Weights and biases are initialized randomly

• They are not useful until they are tuned



Our two-layer network summary

• Input dimensions: 1 × 3
• Linear layer arguments:

• in_features = 3
• out_features = 2

• Output dimensions: 1 × 2
• Networks with only linear layers are called fully 

connected
• Each neuron in one layer is connected to each 

neuron in the next layer



Stacking layers with nn.Sequential()



Stacking layers with nn.Sequential()

• We obtain output of 1 × 5 dimensions
• Output is still not yet meaningful



Discovering activation 
functions



Stacked linear operations

• We have only seen linear layer 
networks

• Each linear layer multiplies its 
respective input with layer weights and 
adds biases

• Even with multiple stacked linear 
layers, output still has linear 
relationship with input



Why do we need activation functions?

• Activation functions add non-
linearity to the network

• A model can learn more 
complex relationships with non-
linearity



Meet the sigmoid function

• Binary classification task:
• To predict whether animal is 1 (mammal) 

or 0 (not mammal)



Meet the sigmoid function

• Binary classification task:
• To predict whether animal is 1 

(mammal) or 0 (not mammal)
• we take the pre-activation (6), pass 

it to the sigmoid,



Meet the sigmoid function

Binary classification task:
• To predict whether animal is 1 

(mammal) or 0 (not mammal)
• we take the pre-activation (6), pass 

it to the sigmoid
• and obtain a value between 0 and 

Using the common threshold of 
0.5:

• If output is > 0.5, class label = 1 
(mammal)

• If output is <= 0.5, class label = 0 
(not mammal)



Meet the sigmoid function



Activation function as the last layer



Getting acquainted with softmax

• Used for multi-class classification problems
• takes N-element vector as input and outputs 

vector of same size
• say N=3 classes:

• bird (0), mammal (1), reptile (2)
• output has three elements, so softmax 

has three elements
• outputs a probability distribution:

• each element is a probability (it’s 
bounded between 0 and 1)

• the sum of the output vector is equal to 1



Getting acquainted with softmax

• dim = -1 indicates softmax is 
applied to the  input tensor's 
last dimension

• nn.Softmax() can be used as 
last step in nn.Sequential()
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