

Machine Learning

With scikit-learn

Luis Alejandro Torres

Administrador HPC – SC3UIS Universidad Industrial de Santander

Javier Montoya

Profesor de Física Universidad de Cartagena

SUPERVISED LEARNING

What is machine learning?

- Machine learning is the process whereby:
	- Computers are given the ability to learn to make decisions from data
	- without being explicitly programmed!

Examples

- Spam
- Books classificcation

Unsupervised learning

- Uncovering hidden patterns from unlabeled data
	- Example:
		- Grouping customers into distinct categories (Clustering)

A business may wish to group its customers into distinct categories based on their purchasing behavior without knowing in advance what these categories are.

Supervised learning

- The predicted values are known
- **Aim**: Predict the target values of unseen data, given the features

Types of supervised learning

Classification: Target variable consists of categories

• We can predict whether a bank transaction is fraudulent or not. As there are two outcomes here - a fraudulent transaction, or non-fraudulent transaction, this is known as **binary classification**.

Regression: Target variable is continuous

• A model can use features such as number of bedrooms, and the size of a property, to predict the target variable, price of the property.

Naming conventions

- Feature = predictor variable = independent variable
- Target variable = dependent variable = response variable

Before you use supervised learning

- Requirements:
	- No missing values
	- Data in numeric format
	- Data stored in pandas DataFrame or NumPy array
- **Perform Exploratory Data Analysis (EDA) first**

scikit-learn syntax

from sklearn.module import Model $model = Model()$ model.fit (X, y) $predictions = model.predict(X_new)$ print(predictions)

$array([0, 0, 0, 0, 1, 0])$

The classification challenge - Classifying labels of unseen data

- 1. Build a model
- 2. Model learns from the labeled data we pass to it
- 3. Pass unlabeled data to the model as input
- 4. Model predicts the labels of the unseen data

Labeled data = training data

- Predict the label of a data point by
	- Looking at the k closest labeled data points
	- Taking a majority vote

k-Nearest Neighbors - KNN Intuition

k-Nearest Neighbors - KNN Intuition

Using scikit-learn to fit a classifier

```
from sklearn.neighbors import KNeighborsClassifier
X = churn_dff[["total_day_charge", "total_eve_charge"]].valuesy = churn_dff["churn"].values
print(X.shape, y.shape)
```
 $(3333, 2), (3333,)$

 $knn = KNeighborsClassifier(n_neighbors=15)$ $knn.fit(X, y)$

Predicting on unlabeled data

```
X_new = np.array([[56.8, 17.5],[24.4, 24.1],[50.1, 10.9]]print(X_new.shape)
```
$(3, 2)$

 $predictions = knn.predict(X_new)$ print('Predictions: {}'.format(predictions))

Predictions: [1 0 0]

First practice!

Measuring model performance

Measuring model performance

• In classification, accuracy is a commonly used metric

Accuracy:

correct predictions *total observations*

Measuring model performance

- How do we measure accuracy?
- Could compute accuracy on the data used to fit the classifier
- **NOT** indicative of ability to generalize

Computing accuracy

Computing accuracy

Computing accuracy

Train/test split

```
from sklearn.model_selection import train_test_split
X_train, X_ttest, y_train, y_ttest = train_test_split(X, y, test_size=0.3,
                                                     random\_state=21, stratify=y)
```
 $knn = KNeighborsClassifier(n_neighbors=6)$ $knn.fit(X_train, y_train)$ print(knn.score(X_test, y_test))

0.8800599700149925

Model complexity

- Larger k = less complex model = can cause underfitting
- **Smaller k** = more complex model = can lead to overfitting

Model complexity and over/underfitting

```
train_accuracies = \{\}test_a accuracies = \{\}neighbours = np.arange(1, 26)for neighbor in neighbors:
    knn = KNeighborsClassifier(n\_neighbors=neighbor)knn.fit(X_train, y_train)train_accuracies[neighbor] = knn.score(X_train, y_train)test_accuracies[neighbor] = knn.score(X_test, y_test)
```


Plotting our results

```
plt.figure(figsize=(8, 6))
plt.title("KNN: Varying Number of Neighbors")
plt.plot(neighbors, train_accuracies.values(), label="Training Accuracy")
plt.plot(neighbors, test_accuracies.values(), label="Testing Accuracy")
plt.length()plt.xlabel("Number of Neighbors")
plt.ylabel("Accuracy")
plt.show()
```


Model complexity curve

Model complexity curve

Introduction to regression

Introduction to regression

import pandas as pd $diabetes_df = pd.read_csv("diabetes.csv")$ print(diabetes_df.head())

Creating feature and target arrays

 $X =$ diabetes_df.drop("glucose", axis=1).values $y = diabetes_dff["glucose"]$.values

 $print(type(X), type(y))$

<class 'numpy.ndarray'> <class 'numpy.ndarray'>

Making predictions from a single feature

 $X_bmi = X[:, 4]$ print(y.shape, X bmi.shape)

 $(768,)(768,)$

```
X_bmi = X_bmi.reshape(-1, 1)
print(X_bmi.shape)
```
 $(768, 1)$

Plotting glucose vs. body mass index

import matplotlib.pyplot as plt $plt.scatter(X_bmi, y)$ plt.ylabel("Blood Glucose (mg/dl)") plt.xlabel("Body Mass Index") plt.show()

Plotting glucose vs. body mass index

Fitting a regression model

```
from sklearn.linear_model import LinearRegression
req = LinearRegression()reg.fit(X_bmi, y)predictions = reg.predict(X_bmi)plt.setter(X_bmi, y)plt.plot(X_bmi, predictions)
plt.ylabel("Blood Glucose (mg/dl)")
plt.xlabel("Body Mass Index")
plt.show()
```


Fitting a regression model

The basics of linear regression

Regression mechanics

$$
y = ax + b
$$

- Simple linear regression uses one feature
	- $y = target$
	- $x =$ single feature
	- a, b = parameters/coefficients of the model slope, intercept
- How do we choose a and b?
	- Define an error function for any given line
	- Choose the line that minimizes the error function
- Error function = loss function = cost function

The loss function Ordinary Least Squares

$$
RSS = \sum_{i=1}^{n} (y_i + \hat{y}_i)^2
$$

Ordinary Least Squares (OLS): minimize RSS

Linear regression in higher dimensions

$$
y = a_1 x_1 + a_2 x_2 + b
$$

- To fit a linear regression model here:
	- Need to specify 3 variables: a_1, a_2 , b
- In higher dimensions:
	- Known as multiple regression
	- Must specify coefficients for each feature and the variable b

$$
y = a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n + b
$$

- scikit-learn works exactly the same way:
	- Pass two arrays: features and target

Linear regression using all features

```
from sklearn.model_selection import train_test_split
from sklearn. Linear_model import LinearRegression
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
                                                    random_state=42)reg\_all = LinearRegression()
```

```
reg_all.fit(X_train, y_train)
```

```
y pred = reg_all.predict(X_t test)
```


R-squared

- \bullet R^2 : quantifies the variance in target values explained by the features
	- Values range from 0 to 1

High R^2

 \blacksquare 2 :

R-squared in scikit-learn

reg_all.score(X_test, y_test)

0.356302876407827

Mean squared error and root mean squared error

$$
MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
$$

MSE is measured in target units, squared

$$
RMSE = \sqrt{MSE}
$$

Measure **RMSE** in the same units at the target variable

RMSE in scikit-learn

from sklearn.metrics import mean_squared_error mean_squared_error(y_test, y_pred, squared=False)

24.028109426907236

Cross-validation

Cross-validation motivation

- Model performance is dependent on the way we split up the data
- Not representative of the model's ability to generalize to unseen data
- **Solution**: Cross-validation!

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Test Data

Cross-validation and model performance

- 5 folds = 5-fold CV
- \cdot 10 folds = 10-fold CV
- k folds = k-fold CV
- More folds = More computationally expensive

Cross-validation in scikit-learn

```
from sklearn.model_selection import cross_val_score, KFold
kf = KFold(n_splits=6, shuffle=True, random-state=42)reg = LinearRegression()cv_rresults = cros_rval_score(reg, X, y, cv=kf)
```


Evaluating cross-validation peformance

print(cv_results)

 $[0.70262578, 0.7659624, 0.75188205, 0.76914482, 0.72551151, 0.73608277]$

print(np.mean(cv_results), np.std(cv_results))

0.7418682216666667 0.023330243960652888

 $print(np.quitile(cv_results, [0.025, 0.975]))$

array([0.7054865, 0.76874702])

Introduction to deep learning with PyTorch

What is deep learning?

- Deep learning is a subset of machine learning
- Inspired by connections in the human brain
- Models require large amount of data

Importing PyTorch and related packages

- PyTorch import in Python import torch
- PyTorch supports
	- image data with torchvision
	- audio data with torchaudio
	- text data with torchtext

Creating our first neural network

Creating our first neural network

import torch.nn as nn

Create input_tensor with three features input tensor = torch.tensor($[0.3471, 0.4547, -0.2356]]$

Define our first linear layer $linear\$ = nn. Linear(in features=3, out features=2)

Pass input through linear layer output = linear_layer(input_tensor) print(output)

tensor($[[-0.2415, -0.1604]]$, grad_fn=<AddmmBackward0>)

Getting to know the linear layer operation

Each linear layer has a **.weight** and **.bias** property

linear_layer.weight

Parameter containing: tensor($[[-0.4799, 0.4996, 0.1123],$ $[-0.0365, -0.1855, 0.0432]]$, requires_grad=True)

linear_layer.bias

Parameter containing: $tensor([0.0310, 0.1537], requires_grad=True)$

Getting to know the linear layer operation

 $output = Linear_layer(input_tensor)$

For input X, weights X_0 and bias b_0 , the linear layer performs

 $y_0 = W_0 X + b_0$

In PyTorch: output = $W0$ @ input + b0

- Weights and biases are initialized randomly
- They are not useful until they are tuned

Our two-layer network summary

- Input dimensions: 1 × 3
- Linear layer arguments:
	- in_features = 3
	- out_features = 2
- Output dimensions: 1 × 2
- Networks with only linear layers are called **fully connected**
- Each neuron in one layer is connected to each neuron in the next layer

Stacking layers with nn.Sequential()

```
# Create network with three linear layers
model = nn.Sequential(nn.Linear(10, 18),nn.Linear(18, 20),
    nn.Linear(20, 5)
```


Stacking layers with nn.Sequential()

print(input_tensor)

tensor([[-0.0014, 0.4038, 1.0305, 0.7521, 0.7489, -0.3968, 0.0113, -1.3844, 0.8705, -0.9743]])

Pass input_tensor to model to obtain output $output_{tensor = model(input_{tensor})$ print(output_tensor)

tensor($[[-0.0254, -0.0673, 0.0763,$ 0.0008 , 0.2561]], $grad_f$ n=<AddmmBackward0>)

- We obtain output of 1 × 5 dimensions
- Output is still not yet meaningful

Discovering activation functions

Stacked linear operations

- We have only seen linear layer networks
- Each linear layer multiplies its respective input with layer weights and adds biases
- Even with multiple stacked linear layers, output still has linear relationship with input

Why do we need activation functions?

- Activation functions add **nonlinearity** to the network
- A model can learn more **complex** relationships with nonlinearity

- Binary classification task:
	- To predict whether animal is 1 (**mammal**) or 0 (**not mammal**)

- Binary classification task:
	- To predict whether animal is 1 (**mammal**) or 0 (**not mammal**)
	- we take the pre-activation (6), pass it to the sigmoid,

Binary classification task:

- To predict whether animal is 1 (**mammal**) or 0 (**not mammal**)
- we take the pre-activation (6), pass it to the sigmoid
- and obtain a value between 0 and

Using the common threshold of 0.5:

- If output is > 0.5 , class label = 1 (**mammal**)
- If output is \leq 0.5, class label = 0 (**not mammal**)

import torch import torch.nn as nn

```
input_{\text{t}} = torch.tensor([6.0])
sigmoid = nn.Sigmoid()output = sigmoid(input_tensor)
```
tensor([[0.9975]])

Activation function as the last layer

```
model = nn.Sequential(nn.Linear(6, 4), # First Linear Layernn.Linear(4, 1), # Second Linear Layernn.Sigmoid() # Sigmoid activation function
```


Getting acquainted with softmax

- Used for multi-class classification problems
- takes N-element vector as input and outputs vector of same size
- say N=3 classes:
	- bird (0) , mammal (1) , reptile (2)
	- output has three elements, so **softmax** has three elements
- outputs a probability distribution:
	- each element is a probability (it's bounded between 0 and 1)
	- the sum of the output vector is equal to 1

Getting acquainted with softmax

import torch import torch.nn as nn

```
# Create an input tensor
input_{t} = torch.tensor(
    [[4.3, 6.1, 2.3]])
```
Apply softmax along the last dimension $probabilities = nn.Softmax(dim=-1)$ $output_{tensor} = probabilities(input_{tensor})$

```
print(output_tensor)
```
tensor([[0.1392, 0.8420, 0.0188]])

- dim = -1 indicates softmax is applied to the input tensor's last dimension
- **nn.Softmax()** can be used as last step in **nn.Sequential()**

