
Machine Learning
With scikit-learn

Luis Alejandro Torres
Administrador HPC – SC3UIS
Universidad Industrial de Santander

Javier Montoya
Profesor de Física
Universidad de Cartagena

SUPERVISED LEARNING

What is machine learning?

• Machine learning is the process whereby:
• Computers are given the ability to learn to make decisions from data
• without being explicitly programmed!

Examples
• Spam
• Books classificcation

Unsupervised learning

• Uncovering hidden patterns from unlabeled data
• Example:

• Grouping customers into distinct categories (Clustering)

A business may wish to group its
customers into distinct categories based
on their purchasing behavior without
knowing in advance what these
categories are.

Supervised learning

• The predicted values are known
• Aim: Predict the target values of unseen data, given the features

Types of supervised learning
Classification: Target variable consists of
categories

• We can predict whether a bank transaction
is fraudulent or not. As there are two
outcomes here - a fraudulent transaction,
or non-fraudulent transaction, this is
known as binary classification.

Regression: Target variable is continuous

• A model can use features such as number
of bedrooms, and the size of a property, to
predict the target variable, price of the
property.

https://www.f5.com/solutions/stop-online-fraud
https://medium.datadriveninvestor.com/house-prices-linear-regression-eb57efeeb965

https://www.f5.com/solutions/stop-online-fraud
https://medium.datadriveninvestor.com/house-prices-linear-regression-eb57efeeb965

Naming conventions

• Feature = predictor variable = independent variable
• Target variable = dependent variable = response variable

Before you use supervised learning

• Requirements:
• No missing values
• Data in numeric format
• Data stored in pandas DataFrame or NumPy array

• Perform Exploratory Data Analysis (EDA) first

scikit-learn syntax

The classification challenge - Classifying
labels of unseen data
1. Build a model
2. Model learns from the labeled data we pass to it
3. Pass unlabeled data to the model as input
4. Model predicts the labels of the unseen data

Labeled data = training data

k-Nearest Neighbors - KNN

• Predict the label of a data point by
• Looking at the k closest labeled data points
• Taking a majority vote

k-Nearest Neighbors - KNN

k-Nearest Neighbors - KNN

k-Nearest Neighbors - KNN

k-Nearest Neighbors - KNN Intuition

k-Nearest Neighbors - KNN Intuition

Using scikit-learn to fit a classifier

Predicting on unlabeled data

First practice!

Measuring model performance

Measuring model performance

• In classification, accuracy is a commonly used metric

 Accuracy:

Measuring model performance

• How do we measure accuracy?
• Could compute accuracy on the data used to fit the classifier
• NOT indicative of ability to generalize

Computing accuracy

Computing accuracy

Computing accuracy

Train/test split

Model complexity

• Larger k = less complex model = can cause underfitting
• Smaller k = more complex model = can lead to overfitting

Model complexity and over/underfitting

Plotting our results

Model complexity curve

Model complexity curve

Introduction to regression

Introduction to regression

Creating feature and target arrays

Making predictions from a single feature

Plotting glucose vs. body mass index

Plotting glucose vs. body mass index

Fitting a regression model

Fitting a regression model

The basics of linear regression

Regression mechanics

𝑦 = 𝑎𝑥 + 𝑏

• Simple linear regression uses one feature
• y = target
• x = single feature
• a, b = parameters/coefficients of the model - slope, intercept

• How do we choose a and b?
• Define an error function for any given line
• Choose the line that minimizes the error function

• Error function = loss function = cost function

The loss function

The loss function

The loss function

The loss function

The loss function

The loss function
Ordinary Least Squares

𝑅𝑆𝑆 =

𝑖=1

𝑛

(𝑦𝑖 + ො𝑦𝑖)2

Ordinary Least Squares (OLS): minimize RSS

Linear regression in higher dimensions

𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑏

• To fit a linear regression model here:
• Need to specify 3 variables: 𝑎1, 𝑎2,b

• In higher dimensions:
• Known as multiple regression
• Must specify coefficients for each feature and the

variable b

𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 + 𝑏

• scikit-learn works exactly the same way:
• Pass two arrays: features and target

Linear regression using all features

R-squared

• 𝑅2: quantifies the variance in target values explained by the features
• Values range from 0 to 1

High 𝑅2: Low 𝑅2:

R-squared in scikit-learn

Mean squared error and root mean squared
error

𝑀𝑆𝐸 =
1

𝑛

𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖)2

MSE is measured in target units, squared

𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸

Measure RMSE in the same units at the target variable

RMSE in scikit-learn

Cross-validation

Cross-validation motivation

• Model performance is dependent on the way we split up the data
• Not representative of the model's ability to generalize to unseen

data
• Solution: Cross-validation!

Cross-validation basics

Cross-validation basics

Cross-validation basics

Cross-validation basics

Cross-validation basics

Cross-validation basics

Cross-validation basics

Cross-validation basics

Cross-validation basics

Cross-validation and model performance

• 5 folds = 5-fold CV
• 10 folds = 10-fold CV
• k folds = k-fold CV
• More folds = More computationally expensive

Cross-validation in scikit-learn

Evaluating cross-validation peformance

Introduction to deep learning with
PyTorch

What is deep learning?

• Deep learning is a subset of machine learning
• Inspired by connections in the human brain
• Models require large amount of data

Importing PyTorch and related packages

• PyTorch import in Python
import torch

• PyTorch supports
• image data with torchvision
• audio data with torchaudio
• text data with torchtext

Creating our first neural network

Creating our first neural network

Getting to know the linear layer operation

Each linear layer has a .weight and .bias property

Getting to know the linear layer operation

For input 𝑋 , weights 𝑋0 and bias 𝑏0, the linear layer performs

𝑦0 = 𝑊0 𝑋 + 𝑏0

In PyTorch: output = W0 @ input + b0

• Weights and biases are initialized randomly

• They are not useful until they are tuned

Our two-layer network summary

• Input dimensions: 1 × 3
• Linear layer arguments:

• in_features = 3
• out_features = 2

• Output dimensions: 1 × 2
• Networks with only linear layers are called fully

connected
• Each neuron in one layer is connected to each

neuron in the next layer

Stacking layers with nn.Sequential()

Stacking layers with nn.Sequential()

• We obtain output of 1 × 5 dimensions
• Output is still not yet meaningful

Discovering activation
functions

Stacked linear operations

• We have only seen linear layer
networks

• Each linear layer multiplies its
respective input with layer weights and
adds biases

• Even with multiple stacked linear
layers, output still has linear
relationship with input

Why do we need activation functions?

• Activation functions add non-
linearity to the network

• A model can learn more
complex relationships with non-
linearity

Meet the sigmoid function

• Binary classification task:
• To predict whether animal is 1 (mammal)

or 0 (not mammal)

Meet the sigmoid function

• Binary classification task:
• To predict whether animal is 1

(mammal) or 0 (not mammal)
• we take the pre-activation (6), pass

it to the sigmoid,

Meet the sigmoid function

Binary classification task:
• To predict whether animal is 1

(mammal) or 0 (not mammal)
• we take the pre-activation (6), pass

it to the sigmoid
• and obtain a value between 0 and

Using the common threshold of
0.5:

• If output is > 0.5, class label = 1
(mammal)

• If output is <= 0.5, class label = 0
(not mammal)

Meet the sigmoid function

Activation function as the last layer

Getting acquainted with softmax

• Used for multi-class classification problems
• takes N-element vector as input and outputs

vector of same size
• say N=3 classes:

• bird (0), mammal (1), reptile (2)
• output has three elements, so softmax

has three elements
• outputs a probability distribution:

• each element is a probability (it’s
bounded between 0 and 1)

• the sum of the output vector is equal to 1

Getting acquainted with softmax

• dim = -1 indicates softmax is
applied to the input tensor's
last dimension

• nn.Softmax() can be used as
last step in nn.Sequential()

	Slide 1: Machine Learning
	Slide 2: SUPERVISED LEARNING
	Slide 3: What is machine learning?
	Slide 4: Unsupervised learning
	Slide 5: Supervised learning
	Slide 6: Types of supervised learning
	Slide 7: Naming conventions
	Slide 8: Before you use supervised learning
	Slide 9: scikit-learn syntax
	Slide 10: The classification challenge - Classifying labels of unseen data
	Slide 11: k-Nearest Neighbors - KNN
	Slide 12: k-Nearest Neighbors - KNN
	Slide 13: k-Nearest Neighbors - KNN
	Slide 14: k-Nearest Neighbors - KNN
	Slide 15: k-Nearest Neighbors - KNN Intuition
	Slide 16: k-Nearest Neighbors - KNN Intuition
	Slide 17: Using scikit-learn to fit a classifier
	Slide 18: Predicting on unlabeled data
	Slide 19: First practice!
	Slide 20: Measuring model performance
	Slide 21: Measuring model performance
	Slide 22: Measuring model performance
	Slide 23: Computing accuracy
	Slide 24: Computing accuracy
	Slide 25: Computing accuracy
	Slide 26: Train/test split
	Slide 27: Model complexity
	Slide 28: Model complexity and over/underfitting
	Slide 29: Plotting our results
	Slide 30: Model complexity curve
	Slide 31: Model complexity curve
	Slide 32: Introduction to regression
	Slide 33: Introduction to regression
	Slide 34: Creating feature and target arrays
	Slide 35: Making predictions from a single feature
	Slide 36: Plotting glucose vs. body mass index
	Slide 37: Plotting glucose vs. body mass index
	Slide 38: Fitting a regression model
	Slide 39: Fitting a regression model
	Slide 40: The basics of linear regression
	Slide 41: Regression mechanics
	Slide 42: The loss function
	Slide 43: The loss function
	Slide 44: The loss function
	Slide 45: The loss function
	Slide 46: The loss function
	Slide 47: The loss function Ordinary Least Squares
	Slide 48: Linear regression in higher dimensions
	Slide 49: Linear regression using all features
	Slide 50: R-squared
	Slide 51: R-squared in scikit-learn
	Slide 52: Mean squared error and root mean squared error
	Slide 53: RMSE in scikit-learn
	Slide 54: Cross-validation
	Slide 55: Cross-validation motivation
	Slide 56: Cross-validation basics
	Slide 57: Cross-validation basics
	Slide 58: Cross-validation basics
	Slide 59: Cross-validation basics
	Slide 60: Cross-validation basics
	Slide 61: Cross-validation basics
	Slide 62: Cross-validation basics
	Slide 63: Cross-validation basics
	Slide 64: Cross-validation basics
	Slide 65: Cross-validation and model performance
	Slide 66: Cross-validation in scikit-learn
	Slide 67: Evaluating cross-validation peformance
	Slide 68: Introduction to deep learning with PyTorch
	Slide 69: What is deep learning?
	Slide 70: Importing PyTorch and related packages
	Slide 71: Creating our first neural network
	Slide 72: Creating our first neural network
	Slide 73: Getting to know the linear layer operation
	Slide 74: Getting to know the linear layer operation
	Slide 75: Our two-layer network summary
	Slide 76: Stacking layers with nn.Sequential()
	Slide 77: Stacking layers with nn.Sequential()
	Slide 78: Discovering activation functions
	Slide 79: Stacked linear operations
	Slide 80: Why do we need activation functions?
	Slide 81: Meet the sigmoid function
	Slide 82: Meet the sigmoid function
	Slide 83: Meet the sigmoid function
	Slide 84: Meet the sigmoid function
	Slide 85: Activation function as the last layer
	Slide 86: Getting acquainted with softmax
	Slide 87: Getting acquainted with softmax

