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Optical levitation of dielectric objects in vacuum provides a unique optomechanical platform 
due to versatile optical control of potentials and good isolation from the environment. Recently, 
tunable and nonreciprocal optical interactions have been measured between two nanoparticles, 
levitated in two distinct optical tweezers, with single-site readout of particle motion [1]. I will 
present our experimental platform for tweezer arrays of nanoparticles, and show our recent 
results on non-Hermitian collective dynamics of two nonreciprocally interacting nanoparticles 
[2]. We also observe a mechanical lasing transition once a threshold coupling rate is achieved, 
supported by our nonlinear theory model. Nonreciprocal interactions are expected to result in 
an even richer phase diagram of nonequilibrium dynamics for larger arrays of nanoparticles. 
This work paves the way towards upscaling this platform to such multiparticle arrays, in view 
of studying their nonequilibrium and collective mechanical behaviour in the quantum regime. 
 
References: 
[1] Jakob Rieser, Mario A. Ciampini, Henning Rudolph, Nikolai Kiesel, Klaus Hornberger, 
Benjamin A. Stickler, Markus Aspelmeyer, Uroš Delić, Science 377, 987-990 (2022) 
[2] M. Reisenbauer, H. Rudolph, L. Egyed, K. Hornberger, A. V. Zasedatelev, M. Abuzarli, B. 
A. Stickler, and U. Delić, Nat. Phys. (2024) 
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Despite nature's inherent tendency toward disorder, systems that adjust their rhythms to oscillate 

in harmony—referred to as synchronization—are found everywhere. Synchronization can be 

observed in various contexts, from planetary orbits and cardiac rhythms to chemical reactions, 

wherever oscillating systems and weak interactions among them exist. Advances in the 

electronics industry have harnessed this phenomenon to improve the performance of digital 

processing elements. As integrated photonic technology now aims to process optical signals on a 

chip, the need for reference signals to synchronize actions becomes crucial to prevent errors in 

optical systems and communication interfaces. Here, optomechanics, the branch of physics that 

explores interactions between light and mechanical excitations, can provide a solution. 

Optomechanical oscillators (OMOs) can generate high-amplitude, self-sustained mechanical 

motion driven and controlled by optical fields, making them ideal for serving as clock reference 

signals in photonic integrated circuits. 

Among the various optomechanical devices [2], silicon optomechanical crystal cavities (OMCs) 

stand out as promising candidates for this task. They are compatible with routing microwave 

phonons [3], allowing for the extension of this approach to phonon-photon hybrid circuits, where 

multiple OMOs can interact with each other. However, the large optical resonant frequency 

dispersion between nominally equivalent OMCs due to fabrication disorders complicates all-

optical synchronized operation of these devices. 

In this work, we present two different approaches for achieving the synchronization of the 

dynamics of two chip-integrated OMCs acting as OMOs. In our platform, the cavities support 

separated optical resonances, enabling the independent driving and monitoring of each resonator. 

The two configurations are distinguished by their interaction mechanisms. In one approach, 

oscillators communicate through an external optical feedback where the output modulation 

generated by one of the OMOs modulates the laser light driving the other. In the other approach, 

the geometries interact through a weak mechanical link that enables the spontaneous 

synchronization of their dynamics over a certain range of detuning between their natural 

mechanical frequencies. Additionally, we demonstrate the cascaded locking of the dynamics of 

both oscillators to an external reference signal injected into one of the OMOs. 

The results, which are supported by a numerical model, lay the ground work for the distribution 

of reference signals among large networks of OMOs in photonic integrated circuits.   

[1] T.J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K.J. Vahala. Phys. Rev. Lett. 95, 033901 (2005) 

[2] M. Aspelmeyer, T.J. Kippenberg, F. Marquardt. Rev. Mod. Phys. 86, 1391-1452 (2014) 

[3] K. Fang, M.H. Matheny, X. Luan, O. Painter. Nat. Photonics. 10, 489-496 (2016) 
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Nanomechanical logic with atomically thin resonators 
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Nanomechanical computers provide efficient and low-energy information processing 
capabilities. As electronic computing encounters escalating challenges in sustained scaling and 
performance improvement, there is a growing interest in mechanical computing. Leveraging 
the mechanical degrees of freedom and nonlinearities inherent in nanoscale mechanical 
resonators have the potential to offer alternative solutions for upcoming memory and 
computing systems. In our work, we utilize the bistability of atomically thin membranes to 
establish logical states. Additionally, our objective is to showcase parametron based computing 
by harnessing the substantial tunability of resonance frequency and spring constant modulation 
in ultrathin resonators. Our CMOS-compatible architecture, coupled with atomic-scale 
miniaturization, aims to minimize energy consumption, approaching the fundamental Landauer 
limit. This paves the way for large-scale reconfigurable nanomechanical computers and 
neuromorphic networks capable of simulating computationally challenging problems and 
understanding complex interactions. 
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We investigate a system composed of two coupled oscillators subject to stochastic fluctuations 

in its internal parameters. In particular, we answer the question whether the well-known 

classical analogy of the quantum dynamics of two-level systems (TLS), i.e. qubits, provided 

by two coupled oscillators [1] can be extended to simulate the dynamics of dissipative quantum 

systems. In the context of nanomechanics, the analogy in the dissipation free case has already 

been tested in multiple experimental setups, e.g., doubly clamped or cantilever string resonators 

and optically levitated particles [2,3]. A well-known result of this classical analogy is that the 

relaxation and decoherence times of the analog quantum system must be equal, i.e. T1=T2, in 

contrast to the general case of quantum TLS.  We show 

that this fundamentally quantum feature, i.e. T1≠T2, can 

be implemented as well in the aforementioned classical 

systems by adding stochastic fluctuations in their internal 

parameters. Moreover, we show that these stochastic 

contributions can be engineered in the control apparatus 

of those systems, discussing, in particular, the application 

of this theory to levitated nanoparticles and to nanostring 

resonators. However, a limit of this improved quantum-

classical analogy is that the analog Bloch vector of our 

system (see figure) always collapses to the center of the 

sphere, i.e., the state corresponding to an effective infinite 

temperature. Eventually, we investigate how to extend the 

present model to simulate finite temperature states. 

 

 

[1] Frimmer, Novotny. Am. J. Phys. 82, 947 (2014). 

[2] Faust, Rieger, Seitner, Kotthaus, Weig. Nature Phys. 9, 485 (2013). 

[3] Frimmer, Gieseler, Novotny. Phys. Rev. Lett. 117, 163601 (2016). 

[4] Bernazzani, Burkard. Phys. Rev. Res. 6, 013284 (2024). 
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Time crystals (TCs) are many-body systems that display spontaneous breaking of time
translation symmetry. Microcavity exciton-polaritons are bosonic quasiparticles result-
ing from the strong coupling between excitons and photons in a driven-dissipative open
system and exhibit a transition to a nonequilibrium Bose-Einstein condensate state. The
platform for this study is a polaromechanical (Ga,Al)As microcavity, where micrometer
traps confine polaritons and ∼ 20 GHz mechanical vibrations that are very efficiently
coupled. Polaritons exhibit a pseudospin degree of freedom, with its dynamics manifested
through the polarization of the emitted light. Recently, under nonresonant continuous
wave excitation, a robust time crystal behavior of the polariton condensate was observed:
spontaneous and stable oscillation in the spinor dynamics occurs and locks to the rhythm
of the GHz-cavity phonons. Different time-crystalline phases were observed as a function
of the applied laser excitation power: i) Larmor-like precession of the condensate pseu-
dospins; ii) locking of the precession frequency to self-sustained coherent phonons; and
iii) doubling of the TC period by phonons.[1]

In this work, we demonstrate the tuning of the time-crystalline phases in a polariton
state of a micrometer trap, through two additional control parameters, that evidence
and exploit the critical role of the exciton reservoir that feeds the polariton condensate
in the trap. Namely, i) the polarization ellipticity of the continuous wave excitation
laser, that is able to induce a spin imbalance in the reservoir and thus induce a synthetic
magnetic field affecting the condensate; and (ii) the position of the excitation spot laser
respect to the trap, which determines the spatial distribution of the reservoir and is
shown to favor a mechanically driven dynamics of the reservoir. These results establish
microcavity polaritons affected by mechanics as a platform for the investigation of time-
broken symmetry in nonhermitian systems. In addition, it is argued that the mechanically
induced time modulation of the coupling between spinor modes could be used to control
quantum gates based on polariton fluids proposed for classical and quantum computing.

[1] I. Carraro-Haddad, D. L. Chafatinos, A. S. Kuznetsov, I. A. Papuccio-Fernandez, A. A.
Reynoso, A. E. Bruchhausen, K. Biernmann, P. V. Santos, and A. Fainstein, Solid-state
continuous time crystal in a polariton condensate with a built-in mechanical clock, Science
384, 995-1000 (2024).
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External coherent fields can drive quantum materials into non-equilibrium states, 
revealing exotic properties that are unattainable under equilibrium conditions -- an 
approach known as “Floquet engineering.” While optical lasers have commonly been 
used as the driving fields, recent advancements have introduced nontraditional 
sources, such as coherent phonon drives. Building on this progress, we demonstrate 
that driving a metallic quantum nanowire with a coherent wave of terahertz phonons 
can induce an electronic steady state characterized by a persistent quantized current 
along the wire. The quantization of the current is achieved due to the coupling of 
electrons to the nanowire's vibrational modes, providing the low-temperature heat 
bath and energy relaxation mechanisms. Our findings underscore the potential of 
using non-optical drives, such as coherent phonon sources, to induce non-
equilibrium phenomena in materials. Furthermore, our approach suggests a new 
method for the high-precision detection of coherent phonon oscillations via transport 
measurements.  
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Mechanical resonators offer many applications in quantum information processing due to their
bosonic nature. The modes of these resonators can be manipulated using tunable bilinear in-
teractions, including beamsplitter and squeezing operations. To engineer these interactions,
bosonic modes can be coupled to a nonlinear element, such as a transmon ancilla, driven by two
parametric drives [1]. Recently, a beamsplitter-type interaction has been demonstrated in our
circuit quantum acoustodynamics (cQAD) system [2]. To provide a universal gate set for con-
tinuous variable quantum information processing within one cQAD device, we also introduced
single-mode squeezing (SMS) to our tool box [3].

In this poster, we present SMS and two-mode squeezing of bosonic modes of a mechanical
resonator. We show that off-resonant coupling to the qubit leads to a tunable nonlinearity in
our resonator mode. This allows us to prepare non-Gaussian quantum states with high quantum
Fisher information, with applications in for example quantum metrology and sensing [3].

[1] Y. Zhang, et al. Engineering bilinear mode coupling in circuit QED: Theory and experiment. Phys.
Rev. A. 99, 012314 (2019).

[2] U. v. Lüpke, et al. Engineering multimode interactions in circuit quantum acoustodynamics. Nat.
Phys. 20, 564–570 (2024).

[3] S. Marti, U. v. Lüpke, et al. Quantum squeezing in a nonlinear mechanical oscillator. Nat. Phys.
(2024).
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Strong nonlinear interactions between quantized excitations are an important resource for 

quantum technologies based on bosonic oscillator modes. However, most electromagnetic and 

mechanical nonlinearities arising from intrinsic material properties are far too weak compared 

to dissipation in the system to allow for nonlinear effects to be observed on the single-quantum 

level. To overcome this limitation, electromagnetic resonators in both the optical and 

microwave frequency regimes have been coupled to other strongly nonlinear quantum systems 

such as atoms and superconducting qubits, allowing for the demonstration of effects such as 

photon blockade [1, 2] and coherent quantum protocols using the Kerr effect [3]. Here, I will 

present the realization of a single-phonon nonlinear regime in a solid-state mechanical system. 

The single-phonon anharmonicity in our system exceeds the decoherence rate by a factor of 

6.8, allowing us to use the lowest two energy levels of the resonator as a mechanical qubit, for 

which we show initialization, readout, and a complete set of direct single qubit gates. This work 

adds another unique capability to a powerful quantum acoustics platform for quantum 

simulations [4], sensing [5, 6], and information processing [7, 8, 9]. 

 

 

[1] Birnbaum, K. M. et al. Nature 436, 87–90 (2005). 

[2] Lang, C. et al. Phys. Rev. Lett. 106, 243601 (2011).  

[3] Kirchmair, G. et al. Nature 495, 205–209 (2013). 

[4] von Lüpke, U. et al. Nature Physics 20, 564-570 (2024). 

[5] Goryachev, M. et al. Phys. Rev. D 90, 102005 (2014). 

[6] Aggarwal, N. et al. Living Reviews in Relativity 24 (2021). 

[7] Pechal, M. et al. Quantum Science and Technology 4, 015006 (2018). 

[8] Chamberland, C. et al. PRX Quantum 3, 010329 (2022). 

[9] Kok, P. et al. Reviews of modern physics 79, 135 (2007). 
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Mechanical resonators are systems which present high quality factors and can easily couple 

to a wide range of forces, which makes them excellent candidates for quantum information 

processing and quantum sensing. In our group, we are developing a hybrid platform where a 

charge qubit defined in a double-quantum-dot is coupled to the mechanical vibrations of a 

suspended carbon nanotube. The nature of the coupling allows to reach the so-called 

ultrastrong coupling regime, that could open the possibility of exploring and realizing new 

regimes in a circuit quantum electrodynamics (cQED) framework.  

 

In particular, the anharmonicity induced by the qubit in the mechanical vibrations when the 

system is in the ground state could allow the realization of a mechanical qubit, i.e. a qubit 

based on phonon’s fock state transitions [1]. The effective mechanical non-linear potential in 

the ultrastrong coupling regime can also serve to realize a macroscopic quantum 

superposition similar to the one proposed in [2], with potential applications of studying 

collapse models in quantum mechanics, or the interplay of quantum effects and gravity, 

among others.  

 

 

[1] F. Pistolesi, A.Cleland, A. Bachtold, Phys. Rev. X 11, 3 (2021). 

[2] Roda-Llordes, M., Riera-Campeny, A., Candoli, D., Grochowski, P. T., Romero-Isart, O. Phys. 

Rev. Lett.132, 2 (2024). 
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