Concepts developed in this lecture

@® The free surface boundary conditions give rise to
interference waves which propagate parallel to the surface
and whose amplitude decays with depth.

@® There are two classes of surface waves: Rayleigh waves
which are constructively-interfering P- and SV-waves, and
Love waves which are constructively-interfering SH-waves.

@ Rayleigh waves exist in a uniform half-space; Love waves
exist only for a structure where the wave speed of the
material increases with depth.

@ Surface waves in the Earth are dispersive and their
propagation is described by the phase velocity and the

group velocity.
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Rayleigh waves in a homogeneous half-space

disturbance along surface

For the first case we look at P-

X1

and SV-waves interacting at the
surface of a uniform half-space.
The displacements in terms of
the potentials are

up = ¢1— 123 up = P13 — Y31 u3 = @3+

For a monochromatic wave of frequency w propagating in the x;
direction with velocity ¢, the potentials ¢ and ¢, and the
displacement up are

b= f(x3)ei(wtka1) Y= g(X3)ei(wtka1) Uy = h(X3)ei(wtka1)
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Rayleigh waves in a homogeneous half-space

The amplitude dependence with depth is given by the terms
f(x3), g(x3) and h(x3) and k = w/c is the wavenumber.
Substituting these in the wave equations for ¢, ¥ and u» gives

"+ Krif =0  g" + Krig =0  H + Krih =0
where C2 1/2 C2 1/2
ry = [—1} rg = [/6’2_1]

a2

The solution for the first equation is

f(X3) — AeflkI’aX3 + A/e/kraX3 — AeflkraX3

with similar solutions for g and h but with r, replaced with rg.
Surface waves have an amplitude which decreases with depth, so

ro must be imaginary and A’ = oes



Rayleigh waves in a homogeneous half-space

There are three cases:

® If 3 < a < c, then both r, and rg are real and both
P-and S-waves reflect from the surface and propagate back
into the half-space as body-waves.

® If 3 < c < «, then r, is imaginary, rg is real, then
P-waves are trapped at the surface but S-waves reflect from
the surface and propagate back into the half-space.

® Ifc < B < «, then both r, and rg are imaginary, then
both P- and S-waves are trapped at the surface, giving rise

to interface waves.

surface wave
P-coupled
leaking mode

. . . . . .
100 200 300 400 500 600
(seconds)
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Rayleigh waves in a homogeneous half-space

Substituting the amplitude terms f(x3) etc., the potentials ¢
and v and displacement uy are

¢ — Ae[*ierX3+ik(lect)] w — Be[*ikrﬁx3+,'k(xlfct)] Uy = Ce[*ikrﬁX3+ik(X1*Ct)]

To evaluate A, B and C we apply the free surface boundary
condition 013 = 023 = 033 = 0. Substituting the potentials for
the displacements in the free surface boundary condition at
x3=20

2031+Y11—Y33 =0 (A +21)¢ 33+ P11 +2u13 =0 p3=0
Substituting uo in the equation for us 3 gives C = 0. Therefore,
the surface wave in a half-space has no transverse (SH)
component of motion.
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Rayleigh waves in a homogeneous half-space

Substituting the potentials in the remaining boundary conditions
2r,A — (1 = r3)B = 0
A?(r2 + 1) — 28%]A — 28°r3B = 0

(67

This 2 x 2 system of homogeneous linear equations has a
non-trivial solution when its determinate is zero, giving

[az(rg + 1) — 262] (1 - ré) — 4rar552 =0

and substituting for the values of r, and rg gives
2712 211/2 211/2
-S| 41— & 1 - <
32 32 2
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Rayleigh waves in a homogeneous half-space

For the case of a Poisson solid (A = u, and a?/3? = 3)

c? [cb c* 56¢2 32
CT R R R N
This equation has four real roots:
@® c?/% =0 - no physical significance,
@ /% =4- < a< c- reflected wave,
® ?/B?=2+2/v3-<a< c- reflected waves,
® ¢?/B?=2—-2//3=0.8453 — evanescent wave.
For this case
c = 0.91943

The apparent velocity of the Rayleigh wave in a homogeneous
Poisson solid half-space is independent of frequency and is

~0.92 the shear wave speed of the medium.
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Rayleigh waves in a homogeneous half-space

For a Poisson solid r, = 0.85/ and rg = 0.39/ and substituting in
the expressions for the wave amplitude and taking the real part
of the displacement gives

vy = —Aksin(wt — /<x1)(e0'85kx3 — 0.58e0'3gkx3)
u3 = —Akcos(wt — /(Xl)(—0.85e0'85kx3 + 1.47e0'39kx3)
At the surface x3 = 0 and these become
up = 0.42asin(wt — kxq)
uz = 0.62acos(wt — kxi)
where a = —Ak. Then the Rayleigh wave is polarized in the

vertical-radial plane; the horizontal component leads the vertical
component of motion by 7/2 and the amplitude of the vertical
component is about 1.5 times the amplitude of the horizontal
component. Therefore, the Rayleigh wave has retrograde

elliptical particle motion.
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Rayleigh waves in a homogeneous half-space

.42 0.62
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retrograde propagation
direction
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The particle displacement is the same for all frequencies, but the
absolute values depend on w or A.

Since the decay of displacement with depth is controlled by
factors like exp(—kix3) = exp(—2mx3/)), long wavelength
Rayleigh waves penetrate deeper than shorter wavelength
Rayleigh waves.
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Observed Rayleigh waves
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Lamb’s problem

Lamb (1904) extended Rayleigh's results by finding the
complete response of a homogeneous half-space to a vertical

point force acting on the surface of the half-space.

Horace Lamb
(1849-1934)

(a) (b)
Jo (radial) .
source receiver

\ / Yy dsem Ty
Ra¥lelgh
/ wo (@\ 'L vertical } ~

Figure: Lamb's Problem. (a) Lamb's transient solution to an impulsive
vertical point force applied to the surface of a half-space; (b) recording
of the vertical motion from a vertical point force on the surface of a
half-space. (adapted from Ewing et al, 1957)
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Love waves
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Love waves — Multiple surface reflecting S—waves
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Love wave period equation

Distance
free surface ’

Depth

ray path

) ) Bi<B,
- ic <i,

SH-wavefronts
There is no phase shift in the wavefront when it reflects from
the free surface. The phase shift on reflecting from the interface

at Bis © = 2tan*1(u2r*2/u1rgl). The phase delay along the
path ABC is —kg, times the path length

—kg,(BC cos2iy + h/ cosir) = —kg,(hcos2ii/ cos iy + h/ cos i)

= —2hkg, cos iy
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Love wave period equation

For constructive interference to occur

205
2tan! <M62> — 2hkg, cosiy = 2nm

or 11l

tan(hkg, cosiy) = tan(hkg rz) = —=

which is the Love wave period equation. For this case the waves
are dispersive, c(w). The tangent has positive values between
zero and oo for various intervals of krg, h, the first for 0 — /2
which corresponds to the fundamental mode, the second for

m — 37/2 which corresponds to the first higher mode, and so
on. Both the dispersion and the modes come from the
finite dimension of the layer.

16 /48



Love wave period equation
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Love wave period equation

The period equation has real roots only for 51 < ¢ < fs.

The right side is independent of w; the left side is periodic and
has zeros at £ = nm/w. The n =1 tangent curve enters the
range when 7/we1 = (h/B1)(1 — 52/53)Y/2. For w higher than
wei, two Love waves exist, both having the same frequency but
with different velocities.

The n*" curve enters from the right when

w:mrﬁl _ﬁ —1/2:w
h B% cn
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Love wave particle motion with depth

The displacements for the Love wave are

Ué_ — (Blelkr51X3 + Bieflkrfglm) e/k(x1 — ct)
ué—IS — Bzeflkrgzx‘v, elk(X1 — ct)

Using the boundary conditions at the surface and interface, the
displacements are
ut = 2B; cos [krglh (1 - X—;)} cos[k(rg,h + x1 — ct)]

kr

us’s = 2B cos(krs,h) €2 coslk(rs, h + x1 — ct)]

where r5 = i(1 — ¢?/B%)'/2. In the half-space the
displacement decreases exponentially with depth; in the layer the
displacement varies with depth depending on krg h with a

different variation for each mode.
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Love wave particle motion with depth

fundamental mode

|
0<w<o0o

X3y

For the fundamental mode

k =0 |u] =2B; for all values of x3

2B, forxz = h
k =00 || =

0 forx3 = 0
At x3 = h, up = 2B for all w, at x3 =0,
0<u <2Bj for oo > w >0, and in the

half-space up decays exponentially with
depth.
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Love wave particle motion with depth

first higher mode
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For the first higher mode
7w < krg,h < 3m/2
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Group velocity

The displacement of a dispersive wave with a continuous

distribution of frequencies is given by
oo

u(x,t) = A(k) el =) g
The amplitude A(k) of the integrand varies slowly compared to
the phase (kx — wt) and there is only a contribution to the
amplitude of the wave for values of x and t when the phase is
stationary. In this case

do d dw
pr J(kx—wt) = X—Et = x-Ut=0 — U =

X
t

This is the group velocity corresponding to the frequency wq or
wavenumber kg which makes the phase stationary. At this point
and time there is a contribution to the seismogram u(x, t).
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Group velocity

To determine the amplitude we expand the argument in a Taylor
series about wyq
kx —wt = (kox — wot) + (k — ko)i[kx — Wt|k=k,
1 d?
+5 (k= k0)2 Z[kx—wt]k ko oo
For a point where the phase is stationary, the first derivative is

zero and using & (kx — wt) = x — Ut, the integral becomes

u(x,t) = A(ky)e’lkox —wot) / exp{i;(k — k0)2cclll:t} dk

Making the change of variable €2 = (1/2)(k — ko)?(dU/dk)t

~1/2 .
U(X, t) — A(k ) i(kox—wot) |:t dU:| / 7,§2d§

2 dk
~1/2
th] (im)H/?

— A(k i(kox—wot)
(ko)e [2 dk |,
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Group velocity

Taking the real part we obtain

1/2
u(x,t) = Alko) [(X/U)2(7CT/U/ko cos(kox — wot £ 1/4)
Then for a given x and t, energy is contained in a cosine wave
of frequency ko or wg corresponding to d®/dw = 0. The
largest amplitude corresponds to dU/dk = 0 and is called the
Airy phase. When the second derivative is zero, we need the
next term in the Taylor expansion. The Airy phase amplitude is

2w 1/3

(x/U) (d?U/dk?)

u(x,t) = A(ko) cos(kox — wot £+ 7/4)
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Group velocity
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Observed group velocity
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Observed group velocity
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Depth resolution
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Spherical Earth model
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Correspondence between rays and modes
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Surface

wave summary

The free surface boundary conditions give rise to
interference waves which propagate parallel to the surface
and whose amplitude decays with depth.

There are two classes of surface waves: Rayleigh waves
which are constructively-interfering P- and SV-waves and

Love waves which are constructively-interfering SH-waves.

Rayleigh waves exist in a uniform half-space; Love waves
exist only for a structure where the wave speed of the
material increases with depth.

Surface waves in the Earth are dispersive and their
propagation is described by the phase velocity and the
group velocity.
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Surface wave tomography

The region of interest is gridded by a two-dimensional finite
element mesh of triangular elements with sides of length 1° on a
spherical surface. Each node point of the triangular element is
defined by a position vector from the center of the Earth.
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Surface wave tomography

The velocity/slowness is calculated at the nodes of these
triangles from intersecting earthquake-receiver paths for which
Rayleigh wave group velocity dispersion measurements were
made.

t :/ s dx (1)
path

where the integral is over the source-receiver path and s is the
slowness (inverse velocity). Summing over all triangles along the

ray path
n I;
t=>_ / s dx (2)
i=1 70

where /; denotes the length of the ray path segment within the
ith triangle.
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Surface wave tomography

Within each triangle slowness at any given point X along the ray
path is given by:

s=c¢o0-5(Xo)+¢e1-51(X1) + &2 - slow(Xz) (3)

where Xp, X1 and X, are the position vectors of node points of
the triangle (labeled anti-clockwise) with the center of the Earth
taken as the origin.

Substituting equation 3 in equation 2

n I; I; i
t= Z [SO(XO)/ godx + Sl(Xl)/ e1dx + 52(X2)/ 52dX:|
) 0 0 0
(4)
where g¢, €1, €2 are the weights assigned to the three nodes and

eotert+er=1
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Surface wave tomography

Summing over the node points of the triangles, equation 4 can

=3 s 3 / cdx (5)

points triangles

be re-written as:

The forward problem can be expressed as:
d=[Alxm (6)

where d is an N-dimensional vector of travel time data (t), m is
an M-dimensional vector that describes the model (slowness
values at nodes) and [A] is the operator that maps vectors in
the model space into vectors in the data space. [A] represents
the numerical computation of distances for the formulation of
the operator [A]). We invert the matrix [A] to obtain the model

vector m.
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Vs vs T relationship

Laboratory measurements of p for polycrystalline olivine at
seismic frequencies show a strong decrease for temperatures
considerably below the macroscopic solidus. They also show a
strong dependence on grain size which is several orders of
magnitude smaller in the laboratory experiments than the

mantle grain size.
Laboratory measurements of Vs

Q
£, :
g Faul & Jackson, 100 s, 3 microns
o === Faul & Jackson, 3.3 s, 3 microns
I @ Jackson et al, 100 s, 3 microns
W Jackson et al, 3.3 s, 3 microns
1t @ Gribb & Cooper, 100 s, 3 microns
M Gribb & Cooper, 3.3 s, 3 microns
0
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Vs vs T relationship

Shear wave velocity beneath the Pacific Ocean, obtained from
surface wave tomography using the fundamental and first five

higher modes, averaged as a function of age.
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Vs vs T relationship

Plate model for the oceanic lithosphere.

plate model
E Intraplate earthquake depths
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Vs vs T relationship

Comparisons of the geophysical and petrological values of
Ve (T, z) used as constraints.
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Thermal lithosphere

Geotherms calculated from Viv using the parameters from the

fitting.
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Summary

@ Laboratory measurements of the u for polycrystalline olivine
at seismic frequencies show a strong decrease in p with
increasing T below the macroscopic solidus.

@ This effect is probably due to stress relaxation on grain
boundaries caused by diffusion.

@ Laboratory experiments also show a strong dependence on
grain size which is usually several orders of magnitude
smaller in the laboratory experiments than in the mantle.

@® This strong grain size-dependence makes it difficult to
directly apply the laboratory results to mantle structure.

@ Priestley & McKenzie took a simple empirical approach to
relate seismic wave speed and temperature, allowing them
to use the surface wave tomography results to map the
upper mantle geotherm.
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An application of surface wave tomography

[N i

SCB — South Caspian Basin

UDMA — Urumieh-Dokhtar magmatic
assemblage

MZRF — Main Zagros Reverse Fault

SSZ — Sanandaj-Sirjan Zone

SFB — Simply Folded Belt
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An application of surface wave tomography

enthiElex ationtmy
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An application of surface wave tomography

a5 & { s

L

25

Vg 1ol = 4.347 kmis

5 -4 2 0 2 4 6
=25 peak-te-peak azimuthal Zhisotrapy

& 2 2 &

25
gt
w | PR

25

T Ve 4499 ks

a4 E D 2 4
~ 2% paak-to-peak szimuthal anisotrony

44/ 48



An application of surface wave tomography
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An application of surface wave tomography
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An application of surface wave tomography
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An application of surface wave tomography
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