
Concepts developed in this lecture

• The free surface boundary conditions give rise to

interference waves which propagate parallel to the surface

and whose amplitude decays with depth.

• There are two classes of surface waves: Rayleigh waves

which are constructively-interfering P- and SV-waves, and

Love waves which are constructively-interfering SH-waves.

• Rayleigh waves exist in a uniform half-space; Love waves

exist only for a structure where the wave speed of the

material increases with depth.

• Surface waves in the Earth are dispersive and their

propagation is described by the phase velocity and the

group velocity.
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Rayleigh waves

(1842−1919)
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Rayleigh waves in a homogeneous half-space
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For the first case we look at P-

and SV-waves interacting at the

surface of a uniform half-space.

The displacements in terms of

the potentials are

u1 = φ,1 − ψ2,3 u2 = ψ1,3 − ψ3,1 u3 = φ,3 + ψ2,1

For a monochromatic wave of frequency ω propagating in the x1

direction with velocity c , the potentials φ and ψ, and the

displacement u2 are

φ = f (x3)e i(ωt−kx1) ψ = g(x3)e i(ωt−kx1) u2 = h(x3)e i(ωt−kx1)
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Rayleigh waves in a homogeneous half-space

The amplitude dependence with depth is given by the terms

f (x3), g(x3) and h(x3) and k = ω/c is the wavenumber.

Substituting these in the wave equations for φ, ψ and u2 gives

f ′′ + k2r2αf = 0 g ′′ + k2r2βg = 0 h′′ + k2r2βh = 0

where

rα =

[
c2

α2
− 1

]1/2
rβ =

[
c2

β2
− 1

]1/2
The solution for the first equation is

f (x3) = Ae−ikrαx3 + A′e ikrαx3 = Ae−ikrαx3

with similar solutions for g and h but with rα replaced with rβ.

Surface waves have an amplitude which decreases with depth, so

rα must be imaginary and A′ = 0.
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Rayleigh waves in a homogeneous half-space

There are three cases:

• If β < α < c, then both rα and rβ are real and both

P-and S-waves reflect from the surface and propagate back

into the half-space as body-waves.

• If β < c < α, then rα is imaginary, rβ is real, then

P-waves are trapped at the surface but S-waves reflect from

the surface and propagate back into the half-space.

• If c < β < α, then both rα and rβ are imaginary, then

both P- and S-waves are trapped at the surface, giving rise

to interface waves.
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Rayleigh waves in a homogeneous half-space

Substituting the amplitude terms f (x3) etc., the potentials φ

and ψ and displacement u2 are

φ = Ae [−ikrαx3+ik(x1−ct)] ψ = Be [−ikrβx3+ik(x1−ct)] u2 = Ce [−ikrβx3+ik(x1−ct)]

To evaluate A, B and C we apply the free surface boundary

condition σ13 = σ23 = σ33 = 0. Substituting the potentials for

the displacements in the free surface boundary condition at

x3 = 0

2φ,31+ψ,11−ψ,33 = 0 (λ+2µ)φ,33+λφ,11+2µψ,13 = 0 u2,3 = 0

Substituting u2 in the equation for u2,3 gives C = 0. Therefore,

the surface wave in a half-space has no transverse (SH)

component of motion.
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Rayleigh waves in a homogeneous half-space

Substituting the potentials in the remaining boundary conditions

2rαA − (1 − r2β)B = 0

α2(r2α + 1) − 2β2]A − 2β2rβB = 0

This 2 x 2 system of homogeneous linear equations has a

non-trivial solution when its determinate is zero, giving

[α2(r2α + 1) − 2β2] (1 − r2β) − 4rαrββ
2 = 0

and substituting for the values of rα and rβ gives[
2− c2

β2

]2
= 4

[
1 − c2

β2

]1/2 [
1 − c2

α2

]1/2
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Rayleigh waves in a homogeneous half-space

For the case of a Poisson solid (λ = µ, and α2/β2 = 3)

c2

β2

[
c6

β6
− 8

c4

β4
+

56c2

3β2
− 32

3

]
= 0

This equation has four real roots:

• c2/β2 = 0 – no physical significance,

• c2/β2 = 4 – β < α < c – reflected wave,

• c2/β2 = 2 + 2/
√

3 – β < α < c – reflected waves,

• c2/β2 = 2− 2/
√

3 = 0.8453 – evanescent wave.

For this case

c = 0.9194β

The apparent velocity of the Rayleigh wave in a homogeneous

Poisson solid half-space is independent of frequency and is

∼0.92 the shear wave speed of the medium.
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Rayleigh waves in a homogeneous half-space

For a Poisson solid rα = 0.85i and rβ = 0.39i and substituting in

the expressions for the wave amplitude and taking the real part

of the displacement gives

u1 = −Ak sin(ωt − kx1)(e0.85kx3 − 0.58e0.39kx3)

u3 = −Ak cos(ωt − kx1)(−0.85e0.85kx3 + 1.47e0.39kx3)

At the surface x3 = 0 and these become

u1 = 0.42a sin(ωt − kx1)

u3 = 0.62a cos(ωt − kx1)

where a = −Ak . Then the Rayleigh wave is polarized in the

vertical–radial plane; the horizontal component leads the vertical

component of motion by π/2 and the amplitude of the vertical

component is about 1.5 times the amplitude of the horizontal

component. Therefore, the Rayleigh wave has retrograde

elliptical particle motion.
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Rayleigh waves in a homogeneous half-space
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The particle displacement is the same for all frequencies, but the

absolute values depend on ω or λ.

Since the decay of displacement with depth is controlled by

factors like exp(−k1x3) = exp(−2πx3/λ), long wavelength

Rayleigh waves penetrate deeper than shorter wavelength

Rayleigh waves.
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Observed Rayleigh waves
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Lamb’s problem

Lamb (1904) extended Rayleigh’s results by finding the

complete response of a homogeneous half-space to a vertical

point force acting on the surface of the half-space.

Rayleigh
wave

4.9 cm

receiversource

SP

(radial)

(vertical)

(b)(a)

vertical

Horace Lamb
(1849−1934)

Figure: Lamb’s Problem. (a) Lamb’s transient solution to an impulsive

vertical point force applied to the surface of a half-space; (b) recording

of the vertical motion from a vertical point force on the surface of a

half-space. (adapted from Ewing et al, 1957)
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Love waves
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Love wave period equation
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There is no phase shift in the wavefront when it reflects from

the free surface. The phase shift on reflecting from the interface

at B is Θ = 2tan−1(µ2r
∗
β2
/µ1rβ1). The phase delay along the

path ABC is −kβ1 times the path length

−kβ1(BC cos 2i1 + h/ cos i1) = −kβ1(h cos 2i1/ cos i1 + h/ cos i1)

= −2hkβ1 cos i1
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Love wave period equation

For constructive interference to occur

2 tan−1
(
µ2 r

∗
β2

µ1 rβ1

)
− 2hkβ1 cos i1 = 2nπ

or

tan(hkβ1 cos i1) = tan(hkβ1rβ1) =
µ2 r

∗
β2

µ1 rβ1

which is the Love wave period equation. For this case the waves

are dispersive, c(ω). The tangent has positive values between

zero and ∞ for various intervals of krβ1h, the first for 0→ π/2

which corresponds to the fundamental mode, the second for

π → 3π/2 which corresponds to the first higher mode, and so

on. Both the dispersion and the modes come from the

finite dimension of the layer.
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Love wave period equation
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Love wave period equation

The period equation has real roots only for β1 < c < β2.

The right side is independent of ω; the left side is periodic and

has zeros at ξ = nπ/ω. The n = 1 tangent curve enters the

range when π/ωc1 = (h/β1)(1− β21/β22)1/2. For ω higher than

ωc1, two Love waves exist, both having the same frequency but

with different velocities.

The nth curve enters from the right when

ω =
nπβ1
h

(
1 − β21

β22

)−1/2
= ωcn

18 / 48



Love wave particle motion with depth

The displacements for the Love wave are

uL2 = (B1e
ikrβ1x3 + B ′1e

−ikrβ1x3) e ik(x1 − ct)

uHS
2 = B2e

−ikrβ2x3 e ik(x1 − ct)

Using the boundary conditions at the surface and interface, the

displacements are

uL2 = 2B1 cos
[
krβ1h

(
1 − x3

h

)]
cos[k(rβ1h + x1 − ct)]

uHS2 = 2B1 cos(krβ1h) e
ikr∗β2

x3 cos[k(rβ1h + x1 − ct)]

where r∗β2 = i(1 − c2/β2)1/2. In the half-space the

displacement decreases exponentially with depth; in the layer the

displacement varies with depth depending on krβ1h with a

different variation for each mode.
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Love wave particle motion with depth

3
x   = 0

x   = H
3

x
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oo0<  <ω

ooω =

w

fundamental mode

2B

ω =0

1 For the fundamental mode

k = 0 |u2| = 2B1 for all values of x3

k = ∞ |u2| =

{
2B1 for x3 = h

0 for x3 = 0

At x3 = h, u2 = 2B1 for all ω, at x3 = 0,

0 ≤ u2 ≤ 2B1 for ∞ ≥ ω ≥ 0, and in the

half-space u2 decays exponentially with

depth.
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Love wave particle motion with depth
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π ≤ krβ1h ≤ 3π/2

k = π/rβ1h |u2| =
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Group velocity

The displacement of a dispersive wave with a continuous

distribution of frequencies is given by

u(x , t) =

∫ ∞
−∞

A(k) e i(kx − ωt) dk

The amplitude A(k) of the integrand varies slowly compared to

the phase (kx − ωt) and there is only a contribution to the

amplitude of the wave for values of x and t when the phase is

stationary. In this case

dΦ

dk
=

d

dk
(kx−ωt) = x−dω

dk
t = x−Ut = 0 −→ U =

x

t

This is the group velocity corresponding to the frequency ω0 or

wavenumber k0 which makes the phase stationary. At this point

and time there is a contribution to the seismogram u(x , t).
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Group velocity

To determine the amplitude we expand the argument in a Taylor

series about ω0

kx − ωt = (k0x − ω0t) + (k − k0)
d

dk
[kx − ωt]k=k0

+
1

2
(k − k0)2

d2

dk2
[kx − ωt]k=k0 + .....

For a point where the phase is stationary, the first derivative is

zero and using d
dk (kx − ωt) = x − Ut, the integral becomes

u(x , t) = A(k0)e i(k0x − ω0t)

∫ ∞
−∞

exp

{
i
1

2
(k − k0)2

dU

dk
t

}
dk

Making the change of variable ξ2 = (1/2)(k − k0)2(dU/dk)t

u(x , t) = A(k0)e i(k0x−ω0t)

[
t

2

dU

dk

]−1/2
k0

∫ ∞
−∞

e−iξ
2
dξ

= A(k0)e i(k0x−ω0t)

[
t

2

dU

dk

]−1/2
k0

(iπ)1/2
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Group velocity

Taking the real part we obtain

u(x , t) = A(k0)

[
2π

(x/U) (dU/dk)

]1/2
cos(k0x − ω0t ± π/4)

Then for a given x and t, energy is contained in a cosine wave

of frequency k0 or ω0 corresponding to dΦ/dω = 0. The

largest amplitude corresponds to dU/dk = 0 and is called the

Airy phase. When the second derivative is zero, we need the

next term in the Taylor expansion. The Airy phase amplitude is

u(x , t) = A(k0)

[
2π

(x/U) (d2U/dk2)

]1/3
cos(k0x − ω0t ± π/4)
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Group velocity
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Observed group velocity
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Observed group velocity
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Depth resolution
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Spherical Earth model
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Correspondence between rays and modes
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Surface wave summary

• The free surface boundary conditions give rise to

interference waves which propagate parallel to the surface

and whose amplitude decays with depth.

• There are two classes of surface waves: Rayleigh waves

which are constructively-interfering P- and SV-waves and

Love waves which are constructively-interfering SH-waves.

• Rayleigh waves exist in a uniform half-space; Love waves

exist only for a structure where the wave speed of the

material increases with depth.

• Surface waves in the Earth are dispersive and their

propagation is described by the phase velocity and the

group velocity.
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Surface wave tomography

The region of interest is gridded by a two-dimensional finite

element mesh of triangular elements with sides of length 1◦ on a

spherical surface. Each node point of the triangular element is

defined by a position vector from the center of the Earth.
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Surface wave tomography

The velocity/slowness is calculated at the nodes of these

triangles from intersecting earthquake-receiver paths for which

Rayleigh wave group velocity dispersion measurements were

made.

t =

∫
path

s dx (1)

where the integral is over the source-receiver path and s is the

slowness (inverse velocity). Summing over all triangles along the

ray path

t =
n∑

i=1

∫ li

0
s dx (2)

where li denotes the length of the ray path segment within the

ith triangle.
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Surface wave tomography

Within each triangle slowness at any given point X along the ray

path is given by:

s = ε0 · s0(X0) + ε1 · s1(X1) + ε2 · slow(X2) (3)

where X0,X1 and X2 are the position vectors of node points of

the triangle (labeled anti-clockwise) with the center of the Earth

taken as the origin.

Substituting equation 3 in equation 2

t =
n∑

i=1

[
s0(X0)

∫ li

0
ε0dx + s1(X1)

∫ li

0
ε1dx + s2(X2)

∫ li

0
ε2dx

]
(4)

where ε0, ε1, ε2 are the weights assigned to the three nodes and

ε0 + ε1 + ε2 = 1
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Surface wave tomography

Summing over the node points of the triangles, equation 4 can

be re-written as:

t =
∑
points

s(X)
∑

triangles

∫
εdx (5)

The forward problem can be expressed as:

d = [A] x m (6)

where d is an N-dimensional vector of travel time data (t), m is

an M-dimensional vector that describes the model (slowness

values at nodes) and [A] is the operator that maps vectors in

the model space into vectors in the data space. [A] represents

the numerical computation of distances for the formulation of

the operator [A]). We invert the matrix [A] to obtain the model

vector m.
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Vs vs T relationship

Laboratory measurements of µ for polycrystalline olivine at

seismic frequencies show a strong decrease for temperatures

considerably below the macroscopic solidus. They also show a

strong dependence on grain size which is several orders of

magnitude smaller in the laboratory experiments than the

mantle grain size.

Priestley and McKenzie (2006)
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Vs vs T relationship

Shear wave velocity beneath the Pacific Ocean, obtained from

surface wave tomography using the fundamental and first five

higher modes, averaged as a function of age.
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Vs vs T relationship

Plate model for the oceanic lithosphere.
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Vs vs T relationship

Comparisons of the geophysical and petrological values of

Vsv (T , z) used as constraints.
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Thermal lithosphere

Geotherms calculated from Vsv using the parameters from the

fitting.
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Summary

• Laboratory measurements of the µ for polycrystalline olivine

at seismic frequencies show a strong decrease in µ with

increasing T below the macroscopic solidus.

• This effect is probably due to stress relaxation on grain

boundaries caused by diffusion.

• Laboratory experiments also show a strong dependence on

grain size which is usually several orders of magnitude

smaller in the laboratory experiments than in the mantle.

• This strong grain size-dependence makes it difficult to

directly apply the laboratory results to mantle structure.

• Priestley & McKenzie took a simple empirical approach to

relate seismic wave speed and temperature, allowing them

to use the surface wave tomography results to map the

upper mantle geotherm.
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An application of surface wave tomography
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