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the lithosphere
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Data coverage

Earthquakes
Distributed along plate

boundaries
Huge gaps in coverage

Simmons et al. 2021



Data coverage

Receivers
 Dense in wealthy, populous
areas
* Poor coverage of oceans, less
active regions
* Huge gaps in coverage
e Typically measure ground
velocity or acceleration

Simmons et al. 2021 "



ective: high resolution Earth structure

Vsy perturbation at 100.0 km depth

Thrastarson et al. 2024



Using the full measurements

traditional traveltime tomography
traveltime measurements



Using the full measurements

traditional traveltime tomography full-waveform inversion
traveltime measurements complete seismic recordings




Traveltime
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Traveltime Full-waveform
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Basic concept

Find the Earth model that reproduces the data

Better data match -> Better models



Basic concept
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Full-waveform inversion: why is it difficult?

High computational costs — f*



Full-waveform inversion: why is it difficult?

High computational costs — f*
Large inversions running on supercomputers take weeks
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Full-waveform inversion: why is it difficult?

High computational costs — f*

We cannot directly solve -> iterative methods

Difficult to define “better” and “worse” data matching
Uncertainty quantification is difficult

Data coverage and quality can be poor

Physics assumptions can fail

High computational cost



Outline

2. Numerical modelling of seismic waves



Numerical modelling of seismic waves

Physics assumptions
Source assumptions
Finite-difference solvers

B W

Finite-element solvers



Numerical modelling of seismic waves

To use the full information content of seismic waves,
we must be able to reproduce the full complexity of

seismic waves



Wave simulation - assumptions

A general elastic stiffness tensor has 21 independent components




Wave simulation - assumptions
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Wave simulation - assumptions

A general elastic stiffness tensor has 21 independent components

Real media are not perfectly elastic, so each of these components is
also frequency-dependent

We do not have sufficient data to constrain all these parameters



Wave simulation - assumptions

Fortunately, simplified models do a good job of explaining most Earth
materials
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Wave simulation - assumptions

Fortunately, simplified models do a good job of explaining most Earth
materials

Typically, we invert for vp, Vs, density, and a small number of
anisotropy parameters

Attenuation is approximated in a scalar Q, and typically not updated

Even with this reduced set of parameters, we usually cannot constrain
all parameters well



Sources - assumptions

Earthquakes are complex!

Different parts of the same fault move in different directions, at
different speeds, with different start and end times

Estimating the source requires that we know the Earth model, and vice
versa

33



Sources - assumptions

We typically choose earthquakes small enough to treat as points in our
Inversions

We abstract the complex forces into a single moment tensor

We typically use non-full-waveform estimates and fix them during
inversion

34



Modelling the entire wavetfield

We want to solve equations like
a’V(V-u) — 4Vx(Vxu) + F = ii

Analytic solutions are not available — we use
numerical solutions of discretized approximations



Modelling the entire wavetfield
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Numerical solvers

Finite differences

 Computationally efficient
* Simple to implement

o du  u(x + Ax) — u(x — Ax)
e Cartesian grid — =

dx2 Ax

* Bad at handling irregular
surfaces



Numerical solvers

Spectral elements

* Slower computation

06

* More challenging to implement
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* Require meshing
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* Naturally handle irregular
surfaces
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Numerical solvers

Finite differences Spectral elements
* Computationally efficient * Slower computation
* Simple to implement * More challenging to implement
* Cartesian grid * Require meshing
* Bad at handling irregular * Naturally handle irregular
surfaces surfaces

e Often used at smaller scales e Often used at larger scales




Limitations

We invoke approximations in each of these approaches

Accurate approximation requires both
1. Enough time-samples per period
2. Enough space-samples per wavelength



SOURCE
_ RECEIVER-, ,r)
6 14Ax
i 0 . o0
2 Ax=172

FIRST V=8000'/s
| ARRIVAL | REFLECTION p=0.7
'1 T T | o
200 400 600
@ Alford et al. 1974
] ' SOURCE
RECEIVER o

- f N /.

i 1Ax & X 140X

6_ 0 - i_45" \_\/4 o,

Q
= FIRST

ARRIVAL - perLecTioN
-1 — )
0 200 400 600
(b)
1 SOURCE
- /
Ve

- /\( 14Ax

9‘ 0 saveessess <4 5 ¥

Q

- ].OAX\‘

RECEIVER /
DIFFRACTION ‘-
1 Y 65X
- T T 1 [o"e])
0 200 400 600

TIME ) IN mMs

FI1G. 4. Analytical solution (solid line) and fine grid (G, = 11) finite-

difference solution {circles) for the second-order scheme.

41



SOURCE 1 SOURCE
1 RECEIVER
RECEIVER-, ,T—) = /
- 10AX - o
) 14Ax = 0
e 0 . ) 5
pas J Ax=72l
e FIRST
FIRST v=3000'/s _ARRIVAL_REFLECTION,
| ARRIVAL | REFLECTION p=0.7 1 , = =
-1 T T - e 0 200 400
0 200 400 600 )
@ Alford et al. 1974
1 -
1 . RECEIVER SOURCE
RECEIVER 3 SOURCE - I A
—_ N / - TAX [7AY
e 1AAx ¢ 14Ax . }_450{\ 4>5/
© i45¥ N 4se -0 Yy S
o 0 i - ;; . 7
” RSt ARRIVAL ™ N "
ARRIVAL - perLecTioN , L =" REFLECTION
-1 . ‘ ST - - T —
0 200 400 600 0 200 400 600
(b) (b)
1 -
1 SOURCE SO%RCE
/ . e
- ’ - >’/ X
= X 140x ’ >l
8. 0 easonsssss £45° e 0 /45
o 100X ~y e ZORY 74
> RECEIVER / > : RECEIVER [
DIFFRACTION 6/ DIFFﬁAC“O - 3Ax
-1 T T ! oo -1 T T 1 oo
0 200 w0 600 0 200 400 600
TIME () IN MS

FI1G. 4. Analytical solution (solid line) and fine grid (G, = 11) finite-
difference solution {circles) for the second-order scheme.

TME O INMS  ©

FIG. 5. Analytical solution (solid line) and coarse grid (G, = 5.5) finite-
difference solution (circles) for the second-order scheme.



low velocities: short wavelength — small elements

_ long wavelength — large elements

accurate solutions: discontinuities need to coincide with element boundaries

43



Limitations

We invoke approximations in each of these approaches

Accurate approximation requires both
1. Enough time-samples per period
2. Enough space-samples per wavelength

Slow speeds and high frequencies define the computational demand



Limitations

Accurate approximation requires both
1. Enough time-samples per period
2. Enough space-samples per wavelength

Wavelength is A = ;, so increasing f lowers A in three dimensions!

Combined with the period decrease, this means cost scales with f*!
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Objective functions

Basics - L*
Cycle-skipping
Windowing
Multi-scaling
Time-frequency phase

A i

Graph-space optimal transport



Objective functions

Iterative:
Worse models -> better models

How do we
measure “worse”
or “better”?

48



Objective functions
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Objective functions

E

1000 1100 1200 1300 1400 1500 1600 1700 1800 2000 2200 , 2400 2600 2800

1500 1750 2000 2250 2500 2750 3000 600 800 1000 1200 1400
\ ; f

1750 2000 2250 2500 2750 3000 1400 1600 1800 2000 2200 2400 2600

Vsy perturbation at 100.0 km depth

Thrastarson et al. 2024 50



Objective function

Scalar measure of data-fit
We seek local improvements

Inversion is driven by the
gradient of this function

1750
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2250

2500
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Objective function

Ideally:

1. Identify the importance
of each piece of data

2. Assign a robust measure
of the agreement with A
data 1750 2000 2250 | 500 2750 ;.3000 1400
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Objective function

In practice, we often use 5 z 1 2

simpler formulations E“R“_ d||

S



Objective function

In practice, we often use 1 2
simpler formulations ¢ = ZE [IRu — d||
S

R — data sampling matrix
u — synthetic wavefield
d — measured data



Objective functions
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Objective functions
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Objective functions
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Objective functions
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Objective functions
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Objective functions

Seismogram Objective function
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Objective functions
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Objective functions

Seismogram Objective function
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Objective functions
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Cycle-skipping and insensitivity

For models that poorly match the measured data, the L? misfit does
not represent well “better” and “worse” data matches

Cycle-skipping, where mismatched peaks and troughs align, introduces
significant nonlinearity

We also see insensitivity when measurements do not overlap with
synthetics



Multi-scale inversion
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Multi-scale inversion

Lower frequencies are cheap to
model

Low frequency data have better
convexity properties

By inverting lower frequencies
first, we may be able to start
closer to the global minimum at
higher bands

(b)

(c)

(d)

(e)

il
NN A

Bunks et al. 1995
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Traveltime Full-waveform
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Multi-scale inversion

WUS324 Relative Misfit Evolution
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Windowing

2
£

0.8
0.6

04

0.2
0.0

-0.2
-04 |
-0.6

no

le—9
m firs min surface velocity + min period / 2 — data |
— synthetics
noise level
e — S e S W
first arriva 6 km/s |5 km/s 4 km/s 3 km/s 2.4 km/s

Which data to consider?

Krischer et al. 2015

69



Windowin
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Windowing
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Windowing
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Windowing
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Seismic amplitudes

Measurements and simulations of seismic amplitudes can
be unreliable

Measurements can be highly dependent on the Earth
properties very close to the sensor, which may be
unknown

Simulations are highly dependent on the source strength,
which may not be known accurately



Phase-based objective functions

Fichtner, et al. 2008
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Gabor transform

A Fourier transform can be defined as
F(w) = [ f(t)etdt
The Gabor transform is effectively a windowed Fourier transform:

G(w, 1) = ff(t)ei“’te_“(t_f)zdt

This allows us to compare spectral information in a window



Time-frequency phase misfit

Fichtner, et al. 2008
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Graph-space optimal transport

Time-frequency phase misfits can allow us to neglect amplitudes,
but they don’t help with cycle-skipping and insensitivity

Another suite of objective functions including graph-space
optimal transport try to solve this problem

Objective function

)i~

time shift




Graph-space optimal transport

Metivier, et al. 2019

An L? misfit can be thought of as

a cost of moving each synthetic [%
data point to match each 15
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Graph-space optimal transport

Metivier, et al. 2019
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Graph-space optimal transport

Metivier, et al. 2019
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Graph-space optimal transport

Metivier, et al. 2019
(c)
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GSOT

When time-shifts are cheap, we
have a very convex objective
function

This gets sharper (and better-
resolved) as time-shifts become
more expensive

|deally, we optimize over a series
with increasing time-shift cost

Metivier, et al. 2019
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Optimization

1. Gradient calculation
2. Prior information
3. |-BFGS



Full-waveform inversion: why is it difficult?

* Objective function, ¢, defines better / worse models

* [terative solutions driven by derivatives of ¢

2
« p(m* + Am) = p(m*) + Z—iAm + %AmT ¢ Am + 0(Am3)

dm?




Full-waveform inversion: why is it difficult?
¢ = ¢(Ru(m), d)
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Full-waveform inversion: why is it difficult?
¢ = ¢(Ru(m), d)
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Uh oh



Full-waveform inversion: why is it difficult?
¢ = ¢(Ru(m), d)

9 _ gy 00

dm \ dm/) ou

Uh oh

For 107 model parameters the wave propagation cost of FD estimation is
untenable



Full-waveform inversion: why is it possible?

The inversion problem is made feasible by use of the adjoint-state
method

This allows the derivatives with respect to any number of model

parameters to be calculated at the cost of a single additional wave-
propagation
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L=a¢Rud)+ (Fm)u—S)TA

dp _dL . oL . 0Ldu

dm_dm(u)_am(u) ou* dm
L %)
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Full-waveform inversion: why is it possible?

L=a¢Rud)+ (Fm)u—S)TA

dp _dL . oL . 0Ldw
dm_dm(u)_am(u) ou* dm
L 9
o (A°) =0 6u*+ (m)TA
d
Fim)TA* = — P

ou*
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Prior information

Earth’s 1D elastic structure is
known to a very good degree of
approximation

Seismic inversion is used to
recover the changes from this
trend

R R R These are relatively small in

amplitude, but significant for
structural insights

0 ' 2000 ' 4000 ' 6000
Depth (km)




I-BFGS
g(m* + Am) = g(m*) + HAm + 0(Am?)

To find a minimum, then

Am ~ H 1g
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I-BFGS

Unfortunately, H has a dimension the square of the model, and isn’t
accessible in real problems

We instead estimate H based on what we learn about ¢ and g during
the inversion

Specifically, we try to find an estimate of the inverse of H, B such that
B =BT and BAg = Am

Many B’s satisfy this condition, so we add the condition
B = argmin [|B — Bo||



I-BFGS

e Even the memory requirements of this reduced problem (one model
and gradient per iteration) can be large enough to cause problems

* [-BFGS manages this by considering only a finite number of prior
models and gradients



I-BFGS

Oth approximation of H > Hy=1=M
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1st approximation of H > H;=M

based on my, m;
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I-BFGS

2nd gapproximation of H 2 H,=M

based on my, m;, m,
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I-BFGS

3rd gpproximation of H > H;=M

based on my, m;, m,, m,
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I-BFGS

4t approximation of H > H,=M

based on m;, m,, m;, m,
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I-BFGS

5th approximation of H > H:=M

based on m,, m;, m,, mg
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I-BFGS

6t approximation of H > H;=M

based on m;, m,, mg, m,
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I-BFGS

7t approximation of H > H,=M

based on m,, m;, mg, m,
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Outline

5. Reducing computational cost



Improving efficiency

1. Wavefield-adaptive meshes
2. Mini-batches
3. Source-stacking
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Improving efficiency
General modelling of lots of seismic wavefields is expensive

What can we do to reduce cost?

Broadly, we can

1. Model less generally

2. Model fewer wavefields



Wavefield-adaptive meshes

600 fm Regular finite-element meshes
= certain number of elements per minimum wavelength
= ensure reasonable numerical accuracy
300 km .
18
Wavelength is anisotropic
0 km = Wavefield varies rapidly parallel to propagation direction.
0 km 300 km 600 km W Velochies = Wavefield varies slowly perpendicular to propagation direction.
600 km
= Reduce number of elements with anisotropic meshes
= =  Complexity-adapted mesh.
300 km | - )
= =8 times less elements [1250 vs. 10°000].
‘ = Number of azimuthal elements can be adapted to medium complexity
0 km . 7/
0 km 300 km 600 km

Fichtner, pers. comm. e



Wavefield-adaptive meshes
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Mini-batch optimization
Waves traversing the same media give us similar information

Much of the information contained in our is redundant

We can do optimization with a subset of sources and achieve similar
results



Mini-batch optimization

Similar gradients can be estimated
using only a fraction of the 123 sourees. | souree

angular difference=0.0° angular difference=53.2°
earthquakes ‘ |

10 sources, 40 sources,
angular difference=27.8° angular difference=8.8°

Van Herwaarden et al. 2020
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Stochastic optimization

Optimization proceeds very quickly far from the solution with
stochastic optimization

Closer to the solution, slowness and non-convergence become issues



Source stacking

Our wavefield is linear with respect to source amplitudes

We can treat sums of measurements as data and simulate multiple
sources in a single simulation

This increases efficiency, but introduces the possibility of cross-talk



Source stacking

A
” \:v, \ =
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Source stacking - encoding

Normally, we measure and simulate u,,(t)
Suppose we replace this with u,, (t) * p,,(t), with p,,(t) * p,,(t) = q(t)6,,1m,
Then, we can limit the cross-talk between different sources in a stack

This process is called encoding



Source stacking - encoding

Event 1
(200.0 Hz)
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Individual simulation
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Limitations

Each of these approaches is best suited for improving convergence to a
reasonable model

The details of a model can be difficult to get with these efficient
approaches

Often a two-stage procedure is used, in which a fast approach is
followed by a slower, more accurate one



Outline

Overview of full-waveform inversion
Numerical modelling of seismic waves
Objective function

Optimization

Reducing computational cost

o Uk wWwhE

Uncertainty quantification
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Uncertainty quantification

Bayesian approaches
Shuttling approaches
Curvature approaches
Brute-force hypothesis testing

B W



Bayesian uncertainty quantification

The probability of a given model is closely tied to its objective function
value

Bayesian approaches attempt to comprehensively map out a
probability density in model space

This solves the uncertainty problem almost completely, but typically
comes at very large computational cost



Deterministic inversion

305
forward
and
adjoint

Vsy perturbation at 100.0 km depth

Thrastarson et al. 2024 160



SVGD
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HMC

130,000 forward
and adjoint
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Nullspace shuttling

The inversion nullspace is the set of models which satisfy our model
and priors “acceptably”

Characterizing the nullspace gives us a less expensive, but less
complete form of UQ



Nullspace shuttling
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Curvature estimation
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Curvature estimation

At the minimum of the objective function,
1
d(m+ Am) = ¢p(m) + EAmTHAm

So, if we know both the minimum of the objective function
and the Hessian, we can characterize the uncertainty!

The Hessian is too big to calculate, but we already estimate it!



Uncertainty quantification

log 1 log 2 log 3

Uncertainty analysis based on
curvature estimates or

ensemble approaches can be
achieved at much lower cost -

These approaches get an
incomplete picture, and tend to ‘ ]
chronically underestimate the

uncertainties

T T T T T T T T T T T T T T T
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Hoffman et al. 2024
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Brute-force

Unfortunately, cost constraints mean that we most often revert to
brute-force hypothesis testing

This means checking the objective function for a model both with and
without a given feature to determine which is preferred

The strong tendency of these tests is to prefer the inversion result as
our “alternatives” are typically ad hoc



Takeaways

1. Full-waveform inversion tries to build Earth models using the full
information content of measurements

2. This requires computationally intensive modelling

Inversions are driven by objective functions — these are tricky to
define well

4. The adjoint-state method allows us to use gradient-based
optimization

5. Computational speedups exist, but always have tradeoffs
Uncertainty quantification remains elusive
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