
Full-waveform constraints on 
the lithosphere

Scott Keating

1



Outline

1. Overview of full-waveform inversion
2. Numerical modelling of seismic waves
3. Objective function
4. Optimization
5. Reducing computational cost
6. Uncertainty quantification
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Epicentral distance: 83.3°
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Data coverage

Earthquakes
• Distributed along plate 

boundaries
• Huge gaps in coverage

5Simmons et al. 2021



Data coverage

Receivers
• Dense in wealthy, populous 

areas
• Poor coverage of oceans, less 

active regions
• Huge gaps in coverage
• Typically measure ground 

velocity or acceleration

6Simmons et al. 2021



Objective: high resolution Earth structure

7Thrastarson et al. 2024



Using the full measurements

traditional traveltime tomography
traveltime measurements
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Using the full measurements

traditional traveltime tomography
traveltime measurements

full-waveform inversion
complete seismic recordings
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Traveltime

10Simmons et al. 2021



Traveltime Full-waveform
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Basic concept
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Find the Earth model that reproduces the data

Better data match -> Better models



Basic concept
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Basic concept
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Full-waveform inversion: why is it difficult?

High computational costs – 𝑓!
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Full-waveform inversion: why is it difficult?

High computational costs – 𝑓!
Large inversions running on supercomputers take weeks
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Full-waveform inversion: why is it difficult?

High computational costs – 𝑓!

We cannot directly solve -> iterative methods
Difficult to define “better” and “worse” data matching
Uncertainty quantification is difficult
Data coverage and quality can be poor
Physics assumptions can fail
High computational cost
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Outline

1. Overview of full-waveform inversion
2. Numerical modelling of seismic waves
3. Objective function
4. Optimization
5. Reducing computational cost
6. Uncertainty quantification
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Numerical modelling of seismic waves

1. Physics assumptions
2. Source assumptions
3. Finite-difference solvers
4. Finite-element solvers
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Numerical modelling of seismic waves
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To use the full information content of seismic waves, 

we must be able to reproduce the full complexity of 

seismic waves



Wave simulation - assumptions

A general elastic stiffness tensor has 21 independent components
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𝑐!"



Wave simulation - assumptions

A general elastic stiffness tensor has 21 independent components
Real media are not perfectly elastic, so each of these components is 
also frequency-dependent
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𝑐!"(𝜔)



Wave simulation - assumptions

A general elastic stiffness tensor has 21 independent components
Real media are not perfectly elastic, so each of these components is 
also frequency-dependent
We do not have sufficient data to constrain all these parameters
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Wave simulation - assumptions

Fortunately, simplified models do a good job of explaining most Earth 
materials
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Wave simulation - assumptions

Fortunately, simplified models do a good job of explaining most Earth 
materials
Typically, we invert for 𝑣", 𝑣#, density, and a small number of 
anisotropy parameters
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Wave simulation - assumptions
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materials
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Wave simulation - assumptions

Fortunately, simplified models do a good job of explaining most Earth 
materials
Typically, we invert for 𝑣", 𝑣#, density, and a small number of 
anisotropy parameters
Attenuation is approximated in a scalar 𝑄, and typically not updated
Even with this reduced set of parameters, we usually cannot constrain 
all parameters well
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Sources - assumptions

Earthquakes are complex!
Different parts of the same fault move in different directions, at 
different speeds, with different start and end times
Estimating the source requires that we know the Earth model, and vice 
versa
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Sources - assumptions

We typically choose earthquakes small enough to treat as points in our 
inversions
We abstract the complex forces into a single moment tensor
We typically use non-full-waveform estimates and fix them during 
inversion
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Modelling the entire wavefield

35

𝛼!∇ ∇ ⋅ 𝐮 − 𝛽!∇× ∇×𝐮 + 𝐅 = 𝐮̈

We want to solve equations like

Analytic solutions are not available – we use 
numerical solutions of discretized approximations



Modelling the entire wavefield
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Numerical solvers

Finite differences
• Computationally efficient
• Simple to implement
• Cartesian grid
• Bad at handling irregular 

surfaces
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𝑑!𝑢
𝑑𝑥!

≈
𝑢 𝑥 + Δ𝑥 − 𝑢(𝑥 − Δ𝑥)

Δ𝑥



Numerical solvers

Spectral elements
• Slower computation
• More challenging to implement
• Require meshing
• Naturally handle irregular 

surfaces

38



Numerical solvers

Finite differences
• Computationally efficient
• Simple to implement
• Cartesian grid
• Bad at handling irregular 

surfaces

• Often used at smaller scales

Spectral elements
• Slower computation
• More challenging to implement
• Require meshing
• Naturally handle irregular 

surfaces

• Often used at larger scales
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Limitations

We invoke approximations in each of these approaches

Accurate approximation requires both
1. Enough time-samples per period
2. Enough space-samples per wavelength

40
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Alford et al. 1974
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Alford et al. 1974
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accurate solutions: discontinuities need to coincide with element boundaries

low velocities: short wavelength → small elements

high velocities: long wavelength → large elements



Limitations

We invoke approximations in each of these approaches

Accurate approximation requires both
1. Enough time-samples per period
2. Enough space-samples per wavelength

Slow speeds and high frequencies define the computational demand
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Limitations

Accurate approximation requires both
1. Enough time-samples per period
2. Enough space-samples per wavelength

Wavelength is 𝜆 = $
%

, so increasing 𝑓 lowers 𝜆 in three dimensions!

Combined with the period decrease, this means cost scales with 𝑓!!
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3. Objective function
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Objective functions

1. Basics - 𝐿&

2. Cycle-skipping
3. Windowing
4. Multi-scaling
5. Time-frequency phase
6. Graph-space optimal transport
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Iterative:
Worse models -> better models

How do we 
measure “worse” 
or “better”?

Objective functions
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Objective functions

49Thrastarson et al. 2022



Objective functions

50Thrastarson et al. 2024



Objective function

Scalar measure of data-fit

We seek local improvements

Inversion is driven by the 
gradient of this function
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Objective function

Ideally:

1. Identify the importance 
of each piece of data

2. Assign a robust measure 
of the agreement with 
data
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Objective function

In practice, we often use 
simpler formulations

53

𝜙 =(
#

1
2

𝑅𝒖 − 𝒅 &



Objective function

𝜙 =(
#

1
2

𝑅𝒖 − 𝒅 &

𝑅 – data sampling matrix
𝒖 – synthetic wavefield
𝒅 – measured data
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In practice, we often use 
simpler formulations



Objective functions
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Objective functions
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Objective functions
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Objective functions
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Objective functions
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Objective functions
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Objective functions

61



Objective functions
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Objective functions
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Cycle-skipping and insensitivity

For models that poorly match the measured data, the 𝐿& misfit does 
not represent well “better” and “worse” data matches

Cycle-skipping, where mismatched peaks and troughs align, introduces 
significant nonlinearity

We also see insensitivity when measurements do not overlap with 
synthetics
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Multi-scale inversion
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Multi-scale inversion

66

Lower frequencies are cheap to 
model

Low frequency data have better 
convexity properties

By inverting lower frequencies 
first, we may be able to start 
closer to the global minimum at 
higher bands

Bunks et al. 1995



Traveltime Full-waveform

67
Rodgers et al. 2024Simmons et al. 2021



Multi-scale inversion

68Rodgers et al. 2024



Windowing

Which data to consider?

69Krischer et al. 2015



Windowing

At what times should we be able to 
see the earthquake?
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Windowing

Does the synthetic correlate well 
with the data at some time shift?
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Windowing

Is that time-shift close enough to 
prevent cycle-skipping?
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Windowing

73Krischer et al. 2015



Seismic amplitudes

Measurements and simulations of seismic amplitudes can 
be unreliable

Measurements can be highly dependent on the Earth 
properties very close to the sensor, which may be 
unknown

Simulations are highly dependent on the source strength, 
which may not be known accurately
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Phase-based objective functions

If we neglect amplitudes, only 
phase information remains in 
our inversion

The phase of the full data set has 
a very nonlinear relation to our 
time series

Localized phase information can 
make a better objective

75

Fichtner, et al. 2008



Gabor transform

76

A Fourier transform can be defined as

𝐹 𝜔 = ∫ 𝑓 𝑡 𝑒'()𝑑𝑡

The Gabor transform is effectively a windowed Fourier transform:

𝐺 𝜔, 𝜏 = ∫ 𝑓 𝑡 𝑒'()𝑒*+ )*, !𝑑𝑡

This allows us to compare spectral information in a window 



Time-frequency phase misfit

• The time-frequency phase 
misfit considers only phase 
differences between signals in 
time-frequency space 

77

Fichtner, et al. 2008



Graph-space optimal transport

Time-frequency phase misfits can allow us to neglect amplitudes, 
but they don’t help with cycle-skipping and insensitivity

Another suite of objective functions including graph-space 
optimal transport try to solve this problem

78



Graph-space optimal transport

An 𝐿& misfit can be thought of as 
a cost of moving each synthetic 
data point to match each 
measured data point
In 𝐿&, these moves can only be in 
the measurement value

79

Metivier, et al. 2019



Graph-space optimal transport

GSOT allow for moves in both 
dimensions
Many moves become possible, 
so GSOT counts only the cost of 
the most efficient redistribution
By changing the cost of moves in 
time, better convexity can be 
achieved

80

Metivier, et al. 2019
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Graph-space optimal transport

GSOT allow for moves in both 
dimensions
Many moves become possible, 
so GSOT counts only the cost of 
the most efficient redistribution
By changing the cost of moves in 
time, better convexity can be 
achieved
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Metivier, et al. 2019



GSOT

When time-shifts are cheap, we 
have a very convex objective 
function
This gets sharper (and better-
resolved) as time-shifts become 
more expensive
Ideally, we optimize over a series 
with increasing time-shift cost

83Metivier, et al. 2019



GSOT

When time-shifts are cheap, we 
have a very convex objective 
function
This gets sharper (and better-
resolved) as time-shifts become 
more expensive
Ideally, we optimize over a series 
with increasing time-shift cost

84Metivier, et al. 2019



Outline

1. Overview of full-waveform inversion
2. Numerical modelling of seismic waves
3. Objective function
4. Optimization
5. Reducing computational cost
6. Uncertainty quantification
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Optimization

1. Gradient calculation
2. Prior information
3. l-BFGS

87



Full-waveform inversion: why is it difficult?

• Objective function, 𝜙, defines better / worse models

• Iterative solutions driven by derivatives of 𝜙

• 𝜙 𝒎∗ + Δ𝒎 = 𝜙 𝒎∗ + ./
.𝐦
Δ𝒎+ 1

&
Δ𝒎2 .!/

.𝒎! Δ𝒎+ 𝑂(Δ𝒎4)
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Full-waveform inversion: why is it difficult?
𝜙 = 𝜙 𝑅𝒖 𝒎 ,𝒅
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𝑑𝜙
𝑑𝒎

= 𝑅
𝑑𝒖
𝑑𝒎

2 𝜕𝜙
𝜕𝒖



Full-waveform inversion: why is it difficult?

Uh oh

91

𝜙 = 𝜙 𝑅𝒖 𝒎 ,𝒅

𝑑𝜙
𝑑𝒎

= 𝑅
𝑑𝒖
𝑑𝒎

2 𝜕𝜙
𝜕𝒖



Full-waveform inversion: why is it difficult?

For 10! model parameters the wave propagation cost of FD estimation is 
untenable 
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Uh oh

𝜙 = 𝜙 𝑅𝒖 𝒎 ,𝒅

𝑑𝜙
𝑑𝒎

= 𝑅
𝑑𝒖
𝑑𝒎

2 𝜕𝜙
𝜕𝒖



Full-waveform inversion: why is it possible?

The inversion problem is made feasible by use of the adjoint-state 
method

This allows the derivatives with respect to any number of model 
parameters to be calculated at the cost of a single additional wave-
propagation
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Full-waveform inversion: why is it possible?

𝐿 = 𝜙 𝑅𝒖, 𝒅 + 𝐹 𝒎 𝒖 − 𝑆 "𝝀
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Full-waveform inversion: why is it possible?

𝐿(𝒖∗) = 𝜙 𝑅𝒖 𝒎 ,𝒅
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𝐿 = 𝜙 𝑅𝒖, 𝒅 + 𝐹 𝒎 𝒖 − 𝑆 "𝝀



Full-waveform inversion: why is it possible?

𝑑𝜙
𝑑𝒎

=
𝑑𝐿
𝑑𝒎

(𝒖∗) =
𝜕𝐿
𝜕𝑚

(𝒖∗) +
𝜕𝐿
𝜕𝒖∗

𝑑𝒖∗

𝑑𝒎

96

𝐿 = 𝜙 𝑅𝒖, 𝒅 + 𝐹 𝒎 𝒖 − 𝑆 "𝝀



Full-waveform inversion: why is it possible?

𝜕𝐿
𝜕𝒖∗

(𝝀∗) = 𝟎 =
𝜕𝜙
𝜕𝒖∗

+ 𝐹 𝒎 5𝝀∗
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𝑑𝒎
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𝜕𝐿
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(𝒖∗) +
𝜕𝐿
𝜕𝒖∗

𝑑𝒖∗

𝑑𝒎
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Full-waveform inversion: why is it possible?

𝐹 𝒎 5𝝀∗ = −
𝜕𝜙
𝜕𝒖∗
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𝜕𝐿
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𝑑𝜙
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(𝒖∗) +
𝜕𝐿
𝜕𝒖∗
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Full-waveform inversion: why is it possible?
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(𝒖∗) + 𝟎



Full-waveform inversion: why is it possible?

𝑑𝜙
𝑑𝒎

𝑢∗ =
𝜕𝐹
𝜕𝒎

𝒖∗
5

𝝀∗
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Forward
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Forward
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Adjoint
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Adjoint
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Adjoint
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Adjoint
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Adjoint
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𝒖(𝒕𝑭)

𝝀(𝑻 − 𝒕𝑭)

𝒖(𝒕𝑭) ∗ 𝝀(𝑻 − 𝒕𝑭)

"
𝒏"𝟏

𝒕𝑭

𝒖(𝒕𝒏) ∗ 𝝀(𝑻 − 𝒕𝒏)
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𝒖(𝒕𝑭)
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"
𝒏"𝟏

𝒕𝑭

𝒖(𝒕𝒏) ∗ 𝝀(𝑻 − 𝒕𝒏)
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𝒖(𝒕𝑭)

𝝀(𝑻 − 𝒕𝑭)
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"
𝒏"𝟏

𝒕𝑭

𝒖(𝒕𝒏) ∗ 𝝀(𝑻 − 𝒕𝒏)
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𝒖(𝒕𝑭)
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"
𝒏"𝟏

𝒕𝑭

𝒖(𝒕𝒏) ∗ 𝝀(𝑻 − 𝒕𝒏)
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𝒖(𝒕𝑭)
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"
𝒏"𝟏
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𝒖(𝒕𝑭)
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𝒖(𝒕𝑭)

𝝀(𝑻 − 𝒕𝑭)
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"
𝒏"𝟏
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𝒖(𝒕𝑭)
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"
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𝒖(𝒕𝑭)

𝝀(𝑻 − 𝒕𝑭)

𝒖(𝒕𝑭) ∗ 𝝀(𝑻 − 𝒕𝑭)

"
𝒏"𝟏

𝒕𝑭

𝒖(𝒕𝒏) ∗ 𝝀(𝑻 − 𝒕𝒏)
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Prior information
Earth’s 1D elastic structure is 
known to a very good degree of 
approximation
Seismic inversion is used to 
recover the changes from this 
trend
These are relatively small in 
amplitude, but significant for 
structural insights

123



l-BFGS

𝑔 𝑚∗ + Δ𝑚 = 𝑔 𝑚∗ +𝐻Δ𝑚 + 𝑂(Δ𝑚&)

To find a minimum, then 

Δ𝑚 ≈ 𝐻*1𝑔
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l-BFGS

Unfortunately, 𝐻 has a dimension the square of the model, and isn’t 
accessible in real problems
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l-BFGS

Unfortunately, 𝐻 has a dimension the square of the model, and isn’t 
accessible in real problems
We instead estimate 𝐻 based on what we learn about 𝜙 and 𝑔 during 
the inversion
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l-BFGS

Unfortunately, 𝐻 has a dimension the square of the model, and isn’t 
accessible in real problems
We instead estimate 𝐻 based on what we learn about 𝜙 and 𝑔 during 
the inversion
Specifically, we try to find an estimate of the inverse of 𝐻, 𝐵 such that
𝐵 = 𝐵2 and 𝐵𝚫𝒈 = 𝚫𝒎
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l-BFGS

Unfortunately, 𝐻 has a dimension the square of the model, and isn’t 
accessible in real problems
We instead estimate 𝐻 based on what we learn about 𝜙 and 𝑔 during 
the inversion
Specifically, we try to find an estimate of the inverse of 𝐻, 𝐵 such that
𝐵 = 𝐵2 and 𝐵𝚫𝒈 = 𝚫𝒎
Many 𝐵’s satisfy this condition, so we add the condition

𝐵 = argmin
>
| 𝐵 − 𝐵? |
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l-BFGS

• Even the memory requirements of this reduced problem (one model 
and gradient per iteration) can be large enough to cause problems
• l-BFGS manages this by considering only a finite number of prior 

models and gradients
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m0

0th approximation of Hà H0=I=M

l-BFGS
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m0

1st approximation of Hà H1=M
based on m0, m1

m1

l-BFGS
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m0

2nd approximation of Hà H2=M
based on m0, m1, m2

m1

m2

l-BFGS

132



m0

3rd approximation of Hà H3=M
based on m0, m1, m2, m3

m1

m2
m3

l-BFGS
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m1

m2
m3 m4

4th approximation of Hà H4=M
based on m1, m2, m3, m4

l-BFGS
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m2
m3 m4

m5

5th approximation of Hà H5=M
based on m2, m3, m4, m5

l-BFGS
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m3 m4

m5
m6

6th approximation of Hà H6=M
based on m3, m4, m5, m6

l-BFGS
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m4

m5
m6 m7

7th approximation of Hà H7=M
based on m4, m5, m6, m7

l-BFGS
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Outline

1. Overview of full-waveform inversion
2. Numerical modelling of seismic waves
3. Objective function
4. Optimization
5. Reducing computational cost
6. Uncertainty quantification
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Improving efficiency

1. Wavefield-adaptive meshes
2. Mini-batches
3. Source-stacking
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Improving efficiency

General modelling of lots of seismic wavefields is expensive

What can we do to reduce cost?
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Improving efficiency

General modelling of lots of seismic wavefields is expensive

What can we do to reduce cost?
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Broadly, we can 

1. Model less generally
2. Model fewer wavefields



Regular finite-element meshes
§ certain number of elements per minimum wavelength
§ ensure reasonable numerical accuracy

Wavelength is anisotropic
§ Wavefield varies rapidly parallel to propagation direction.
§ Wavefield varies slowly perpendicular to propagation direction.

Reduce number of elements with anisotropic meshes
§ Complexity-adapted mesh.
§ ≈8 times less elements [1’250 vs. 10’000].
§ Number of azimuthal elements can be adapted to medium complexity

Wavefield-adaptive meshes

142Fichtner, pers. comm.



406’944 elements 36’704 elements

Wavefield-adaptive meshes

For complex media with high-amplitude 
perturbations, this approach must sacrifice 
either cost or efficiency

For relatively small amplitude wave-scattering, 
it is very efficient

143Fichtner, pers. comm.



Mini-batch optimization

Waves traversing the same media give us similar information

Much of the information contained in our is redundant

We can do optimization with a subset of sources and achieve similar 
results
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Mini-batch optimization

145

Similar gradients can be estimated 
using only a fraction of the 
earthquakes

Van Herwaarden et al. 2020



Stochastic optimization

Optimization proceeds very quickly far from the solution with 
stochastic optimization

Closer to the solution, slowness and non-convergence become issues
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Source stacking

Our wavefield is linear with respect to source amplitudes

We can treat sums of measurements as data and simulate multiple 
sources in a single simulation

This increases efficiency, but introduces the possibility of cross-talk
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Source stacking
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Source stacking - encoding
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Normally, we measure and simulate 𝒖𝒏 𝑡



Source stacking - encoding
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Normally, we measure and simulate 𝒖𝒏 𝑡

Suppose we replace this with 𝒖𝒏 𝑡 ∗ 𝒑𝒏(𝑡), with 𝒑𝒏 𝑡 ∗ 𝒑𝒎 𝑡 ≈ 𝛿 𝑡 𝛿AB



Source stacking - encoding
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Normally, we measure and simulate 𝒖𝒏 𝑡

Suppose we replace this with 𝒖𝒏 𝑡 ∗ 𝒑𝒏(𝑡), with 𝒑𝒏 𝑡 ∗ 𝒑𝒎 𝑡 ≈ 𝒒 𝑡 𝛿AB

Then, we can limit the cross-talk between different sources in a stack



Source stacking - encoding
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Normally, we measure and simulate 𝒖𝒏 𝑡

Suppose we replace this with 𝒖𝒏 𝑡 ∗ 𝒑𝒏(𝑡), with 𝒑𝒏 𝑡 ∗ 𝒑𝒎 𝑡 ≈ 𝒒 𝑡 𝛿AB

Then, we can limit the cross-talk between different sources in a stack

This process is called encoding



Source stacking - encoding

155Tromp and Bachmann, 2019



Limitations

Each of these approaches is best suited for improving convergence to a 
reasonable model

The details of a model can be difficult to get with these efficient 
approaches

Often a two-stage procedure is used, in which a fast approach is 
followed by a slower, more accurate one
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Outline

1. Overview of full-waveform inversion
2. Numerical modelling of seismic waves
3. Objective function
4. Optimization
5. Reducing computational cost
6. Uncertainty quantification
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Uncertainty quantification

1. Bayesian approaches
2. Shuttling approaches
3. Curvature approaches
4. Brute-force hypothesis testing
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Bayesian uncertainty quantification

The probability of a given model is closely tied to its objective function 
value

Bayesian approaches attempt to comprehensively map out a 
probability density in model space

This solves the uncertainty problem almost completely, but typically 
comes at very large computational cost
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305 
forward 

and 
adjoint

Deterministic inversion

160Thrastarson et al. 2024



SVGD

360,000 forward 
and adjoint

161

Zhang et al. 2020



HMC

130,000 forward 
and adjoint

162

Gebraad et al. 2020



Nullspace shuttling

163

The inversion nullspace is the set of models which satisfy our model 
and priors “acceptably”

Characterizing the nullspace gives us a less expensive, but less 
complete form of UQ



Nullspace shuttling
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Zunino, pers. comm.



Curvature estimation

At the minimum of the objective function, 

𝜙 𝒎+ Δ𝒎 = 𝜙 𝒎 + 𝒈Δ𝒎+
1
2
Δ𝒎2𝐻Δ𝒎+ 𝑂(Δ𝒎4)
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Curvature estimation

At the minimum of the objective function, 

𝜙 𝒎+ Δ𝒎 = 𝜙 𝒎 + 𝒈Δ𝒎+
1
2
Δ𝒎2𝐻Δ𝒎+ 𝑂(Δ𝒎4)
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Curvature estimation

At the minimum of the objective function, 

𝜙 𝒎+ Δ𝒎 ≈ 𝜙 𝒎 +
1
2
Δ𝒎2𝐻Δ𝒎
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Curvature estimation

At the minimum of the objective function, 

𝜙 𝒎+ Δ𝒎 ≈ 𝜙 𝒎 +
1
2
Δ𝒎2𝐻Δ𝒎

So, if we know both the minimum of the objective function 
and the Hessian, we can characterize the uncertainty!
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Curvature estimation

At the minimum of the objective function, 

𝜙 𝒎+ Δ𝒎 ≈ 𝜙 𝒎 +
1
2
Δ𝒎2𝐻Δ𝒎

So, if we know both the minimum of the objective function 
and the Hessian, we can characterize the uncertainty!

The Hessian is too big to calculate, but we already estimate it!

169



Uncertainty quantification

Uncertainty analysis based on 
curvature estimates or 
ensemble approaches can be 
achieved at much lower cost
These approaches get an 
incomplete picture, and tend to 
chronically underestimate the 
uncertainties

170

Hoffman et al. 2024



Brute-force

Unfortunately, cost constraints mean that we most often revert to 
brute-force hypothesis testing

This means checking the objective function for a model both with and 
without a given feature to determine which is preferred

The strong tendency of these tests is to prefer the inversion result as 
our “alternatives” are typically ad hoc
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Takeaways

1. Full-waveform inversion tries to build Earth models using the full 
information content of measurements

2. This requires computationally intensive modelling
3. Inversions are driven by objective functions – these are tricky to 

define well
4. The adjoint-state method allows us to use gradient-based 

optimization
5. Computational speedups exist, but always have tradeoffs
6. Uncertainty quantification remains elusive
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