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What determines the elevations of the
continents?



Airy, G. B., 1855: One of the most important scientific
papers ever published in the Earth Sciences.

III. On the Computation of the Effect of the Attraction of Mountain-masses, as dis-
turbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys.
By G. B. Airy, Esq., Astronomer Royal.

Received January 25,—Read February 15, 1855.

It appears to me that the state of the earth’s crust lying
upon the lava may be compared with perfect correctness to the state of a raft of tim-
ber floating upon water ; in which, if we remark one log whose upper surface floats
much higher than the upper surfaces of the others, we are certain that its lower sur-
face lies deeper in the water than the lower surfaces of the others.
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Floating logs




Floating iceberg

pice < pwater

(pwater o pice)
H = R
pice




Airy Isostasy

Flotational equilibrium between crust and mantle

pc = 2850 kgm-3

Depth of
compensation

MANTLE

Pm = 3300 kgm-3

Airy isostasy predicts linear relation between
elevation and crustal thickness.

Depends on density contrast between crust and mantle
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Simple Airy Isostasy

Change in elevation Change in crustal thickness

/
AH = AC/a.

o= pm/(pm — pc) (Dry)

o = (pm - pw)/(pm - pc) (Wet)

For p. =- 2850 kgm=3, p,, = 3300 kgm3, p,, = 1000 kgm~3

AH ~ AC/7.3 (Dry) ora crustal increase of 7.3 km causes 1 km uplift
AH ~ AC/5.1 (Wet) or a crustal increase of 5.1 km causes 1 km uplift



Global Elevations (ETopo1, 2011)
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Global Crust (CRUST 1.0)

Crustal thickness (Crust1.0)
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Crustal thickness of stable continental interiors

Antarctica
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Elevation versus crustal thickness using CRUST1.0
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Elevation versus crustal thickness using updated crustal data

(Stephenson et al. 2024)

Crustal thickness km



Plate Tectonics!




Whole Lithosphere Isostasy

Flotational equilibrium between lithosphere and asthenosphere

AH

P~ 2850 kgm3

Lithosphere L

AC - AH
P.,~ 3300 kgm-3

MANTLE

Pa~ 3250 kgm-3

Depth of
compensation



Density g/cc
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Variation of mantle density with depth

Effect of temperature — reduces density
Effect of pressure — increases density

Pp=po(1-aT+xkP) P+T

Lithosphere

—
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- I‘\ Mean undepleted Ap ~ 0.06 g/cc
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Note very small actual variation in density < 3% down to 200 km
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Density g/cc

3.6
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Variation of mantle density with depth

Also compositional variation — Jordan 1975 isopycnal hypothesis

P+T

Lithospheric depletion reduces or removes Ap, stabilizing
lithospheric roots and resulting in effectively Airy model?
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Crustal densities required by isopycnal hypothesis

Average North American Crustal densities from

Crust from P wave velocities —™——__ isopycnal hypothesis
(Hasterok & Chapman 2007, - .

Christensen et al. 1995) — — Density kg m—3
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Whole Lithosphere Isostasy

Change in Change in
Change in elevation crustal thickness lithospheric thickness

™~ J —

AH = AC/a - AL/

Osza/(pm_pc)
(Dry)
B =p./(Pm—pa)

a = 6.5-8.5 Defines average density contrasts
B —65-110 for average asthenospheric density



Depth, km

Global lithospheric structure from seismology
(Priestley & McKenzie 2006, 2013, 2018, 2024)

1) Shear wave velocity Vs = F(T, P, material properties)

2) Use calibration from mantle nodules combined with thermal models to
calculate mantle T from Vs, given P

3) Define base of lithosphere by potential

temperature of 1315°C Thermal model of lithosphere
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Conductive lithosphere thickness

-180° -120° -60° 0’ 60° 120° 180°

S T K

|
0 50 10 150 200 250

Priestley & McKenzie 2018



Lithospheric thickness of stable continents
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Ratio of lithospheric to crustal thickness in the continents
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Typical ratio for continental interiors ~5
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Global Lithosphere
(P & M 2018)
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Europe and Asia Lithosphere
(P & M 2018)
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Western North America
Lithosphere
(P & M 2018)

Lithospheric gradients
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120° 150°

Australasian Lithosphere
(P & M 2018)

Lithospheric gradients

120° 150°

| — e km/100km
0 5 10 15 20 25




African Lithosphere
(P & M 2018)
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Antarctica
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Lithospheric profile across southern TAM

West Antarctica TAM East Antarctica

50 Lithospheric mantle

Depth (km)
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Transect distance (km)
Note ~2.4 x
vertical

exaggeration!



Global Whole Lithosphere Isostasy

Predicted Elevation
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Conductive lithosphere thickness
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Global Crust (Crust1.0)

Crustal thickness
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Whole Lithosphere Isostasy

Change in Change in
Change in elevation crustal thickness lithospheric thickness

/ —
AH = AC/a - AL/

Osza/(pm_pc)
(Dry)
B =pa/(pm_pa)

Defines average density contrasts
for average asthenospheric density
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Using gravity edge anomalies to determine a and 3

A" No topographic expression A

Simple example of Average Crust /// t/{/s/k/// 4
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Constraining density contrast from gravity edge

anomalies
New Zealand
168° 72’ _‘1.7661 ) ¥ Gravity i
Ol anomaly Models
w87 mGal SRS
3 { 60 -
e ) Pm - Pc = 500 kgm™3, L =150 km
L# ,L40° Assume WLI 4|  ——====
20 z =
Pm - Pc =400 kgm™3, L =100 km
60 40 -20 0 20 40 60 80 100 120
7 120 Distance km
-44° /"
y {-40
Gravity data “HEm ks 8 km
crustal step
A No topographlc expressi
A ' Z /////
St | 76 iy ]
Best-fit values of devth | 2 * :) =<2 Vithosphere
crust — mantle =2km RS SAel AR S Sl N P e
,.Conductive | '\ s _.'. L
1 = '\‘I‘h h |/\ ~ [
den5|ty contrast = - . ng;gﬂgre - Asthenosphere :
- - - - P :
400 to 500 kgm3 S e

Compensation depth

Crustal and lithospheric step



Calculated

- crustal and
2= o0 | mantle root =
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Bouguer edge anomaly across Transantarctic Mountains
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Reference asthenospheric density = 3250 kgm-3
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Reduced Lithospheric Elevation in WLI

Definition: elevation that a continent would have for a specified
lithospheric thickness Lg.,q42.r4, 8iven its actual elevation and
lithospheric thickness L.

hL_reduced = hL_actual + (pm — pa)/pa y (L - I-standard)

= hL_actual + (I- B I-standard)/ﬁ

Reveals the effect of crustal thickness on elevation



Reduced elevation km
(corrected for water load)

Elevation reduced to standard lithospheric thickness
(100 km) versus crustal thickness for 3 = 93

Reveals positive Airy correlation between elevation and crustal thickness
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Reduced Crustal Elevation in WLI

Definition: elevation that a continent would have for a specified
crustal thickness C.4arq, 8iven its actual elevation and crustal
thickness C.

hC_reduced = hC_actual - (pm — pc)/pa . (C - Cstandard)

= hC_actual - (C - Cstandard)/a

Reveals the effect of lithospheric thickness on elevation



Elevation reduced to standard crustal thickness

(31 km) versus lithospheric thickness

31 km [
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Reveals negative WLI correlation between elevation and lithospheric thickness
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Crustal thickness from Stephenson et al. 2024



WLI Elevation Anomalies = Observed - Predicted

(Negatively buoyant lithospheric mantle: p,, — p, = 35 kgm3or 3 = 93)

Elevation anomaly

CRUST 1.0 B =

-2000 -1000 0 1000 2000
Lithosphere from Priestley et al. (2018)




WLI Elevation Anomalies = Observed - Predicted
(Negatively buoyant lithospheric mantle: p,, — p, = 35 kgm3or 3 = 93)

Elevation anomaly

CRUST 1.0 I R

| |
-2000 -1000 0 1000 2000
Lithosphere from Priestley et al. (2024)




Misfit in WLI could be due to
a number of factors:

Errors in Crust 1.0 model (unknown, at least +/- 3 km)

Errors in P + M lithospheric model (+/- 25 km)

Heterogeneous mantle densities (+/- 30 kg/m-3)

Heterogeneous crustal densities (+/- 100 kg/m-3)

Dynamic topography (depends who you speak to)



CRUST 1.0 seismic constraints

Moho Depth from Surface Observations
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Seven Crustal Models of Africa (Meijde et al. 2015)

8 & 8
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Seven Crustal Models of South America (Meijde et al. 2015)
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Recent compilation of seismic crustal thickness
(Stephenson et al. 2024)




CRUST1.0 compared with recent seismic compilations
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Required change in crustal thickness to fit WLI model
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Required change in mantle thickness to fit WLI model
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Mantle thickness anomaly
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Required change in mantle density to fit WLI model

Mantle density anomaly
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Required change in crustal density to fit WLI model
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North American average Lithospheric mantle — asthenosphere
density contrast
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Average Lithospheric mantle — asthenosphere density contrast

Australia
Low contrast
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Archean cratons
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Europe and Asian mantle gravity anomaly
(Kaban 2001)
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Western North America crustal density anomalies
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Africa anomalies

CRUST 1.0
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Europe lithospheric thickness anomalies
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Total contribution of WLI uncertainties to predicted elevation

Crustal thickness uncertainty £350 m
Crustal density uncertainty +£1.2 km
Lithospheric thickness uncertainty £350 m

Lithospheric density uncertainty +0.9 km

If uncorrelated, will cause a total elevation uncertainty of £0.7 km

However, if correlated, uncertainty could be >> 1 km

Therefore, evidence for dynamic topography requires high
precision estimates of crustal and lithospheric parameters



Using WLI to calculate crustal thickness in
regions of sparse data — an example from
Antarctica



Bedrock elevation of Antarctica
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Antarctica
(b)
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Ice unloaded bedrock elevation Conductive lithosphere thickness
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Calculating crustal structure using Whole Lithosphere Isostasy

Reference
Lithosphere | AH
Cref
I-ref I AC — AH
For arbitrary L. assume C;, o, B, AL - AH

then for AH and AL:
C=C,s+ax(AH + AL/B)

Use global average zero elevation lithosphere (C,.s = 32 km, L, = 100 km) and
typical crustal, mantle and asthenospheric densities (e.g. a = 6.5, B = 65),
searching for best fit to seismic data.
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Antarctic crustal model from Whole Lithosphere Isostasy
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Antarctic crustal model shows excellent fit (+/- 3 km)
to surface wave tomography (Shen et al. 2018)
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Comparison of crustal structure from WLI and surface wave

tomography (Shen et al. 2018)
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Lithospheric and Elastic thickness of the continents

Elastic thickness from gravity anomalies Lithospheric scaling Te = 0.35L
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Ratio of elastic thickness to lithospheric thickness

Probability density

Mode =0.35
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Reduced elevation km
(corrected for water load)

Reduced elevation versus crustal thickness for 3 = 93
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Antarctica has been close to the South Pole for much of Phanerozoic.
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Reduction in long term erosion due to persistent cold conditions
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Conclusions

1) The concept of a negatively buoyant (more dense) mantle

2)

3)

4)

lithosphere of variable thickness floating on a lighter
asthenosphere (Whole Lithosphere Isostasy or WLI), that
works so well in the oceans, is essential to understanding
the elevation of the continents.

The important tectonic difference between the oceanic
and continental plates is that the latter are generally
thicker and contain thicker crust.

WLI provides a way to assess the role of dynamic

topography, and test global models of both crustal and
lithospheric thickness.

Lithospheric thickness is the key parameters in
understanding the variation in elastic thickness of the
tectonic plates.
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« Variations in lithosphere thickness
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whole lithosphere isostasy (WLI)
WLI explains most elevations for
lithospheric mantle density
contrasts with crust and
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Elastic thickness is typically 25% to
50% of the thickness of the
conductive lithosphere, with a mode
of 35%
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Global Whole Lithosphere Isostasy: Implications

for Surface Elevations, Structure, Strength, and
Densities of the Continental Lithosphere
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"Institute of Geophysics, SGEES, Victoria University of Wellington, Wellington, New Zealand, *Earth Observatory of
Singapore, Nanyang Technological University of Singapore, Singapore, "M ARUM—Center for Marine Environmental
Sciences, University of Bremen, Bremen, Germany

Abstract The observed variations in the thickness of the conductive lithosphere, derived from surface
wave studies, have a first-order control on the elevation of the continents, in addition to variations in the
thickness of the crust—this defines whole lithosphere isostasy (WLI). Negative buoyancy of the mantle
lithosphere counters the positive buoyancy of the crust, and together, their respective thicknesses and
density contrasts determine elevation of the continents both in their interiors and at their edges. The average
density contrasts for lithospheric mantle with crust and with asthenosphere are typically 300 to 550 and
20 to 40 kg m ™, respectively, with a ratio 10 to 16, suggesting moderate average depletion of lithospheric
mantle. We show that a crustal model for Antarctica, assuming WLI and using these density contrasts,
provides a close fit to estimates of crustal thickness from surface wave tomography and gravity observations.
We use a global model of WLI as a framework to assess factors controlling topography, showing that
plausible regional variations in crustal and mantle densities, together with uncertainties in the crustal and
conductive lithospheric thicknesses, are sufficient to account for global elevations without invoking
dynamic topography greater than a few hundred meters. Estimates of elastic thickness T, in the continents
are typically 25-50% of the thickness of the conductive lithosphere, indicating that the mantle part supports
some of the elastic strength of the lithosphere.

1. Introduction

Isostasy exerts a fundamental control on the elevation of the continents, determined by the density structure
of the lithosphere and asthenosphere. The largest density contrast in the continental lithosphere is at the
Moho, and so it is widely assumed that crustal thickness is the principal factor determining surface heights,
as originally proposed by George Airy (Airy, 1855). At the time that Airy published his ideas on isostasy, the
thickness and nature of the crust and mantle were unknown. It is likely that Airy's ideas stemmed from his
work on the average density of the Earth, based on the gradient of gravity down deep mine shafts (Airy, 1856),
presumably prompting the idea at the heart of Airy isostasy of a light outer layer of crust “floating” on a
denser interior. In simple Airy Isostasy, flotational equilibrium is assumed to occur at the base of the thickest
crust, defined as the depth of compensation (Figure 1a). In this case, variations in elevation (AH, increase is
positive) of the Earth's surface above sea level are determined by both variations in crustal thickness (AC,
increase is positive) and the densities of the crust (p.) and mantle (p,,):



Now, try the practical!
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European Transect
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