Joint ICTP-IAEA Workshop on Radiation Protection in Image-Guided Radiotherapy (IGRT)

Discussion on Radiological Protection for Adaptive Radiotherapy

Livia Marrazzo University of Florence livia.marrazzo@unifi.it

ESTR Institution Member 2024

Note

Please feel free to photograph and share these slides on social media.

Conflict of Interest Disclosure

• No conflicts of interest to disclose

Outline

- Introduction: why do we talk of ART and Radiation Protection?
- Types of adaptive radiation therapy
 - Offline adaptive
 - Online adaptive
 - Real time tumour tracking
- Types of imaging that are used: balance between extra-dose from imaging and gain from treatment adaptation
- Is the gain superior to the loss in terms of extra dose to the patient?
- Dose measurements and evaluations from CBCT

ART and Radiological Protection

Adaptive Radiotherapy (ART): A treatment approach that modifies the radiation plan based on changes in the patient's anatomy or tumor characteristics over the course of treatment.

- Increased precision and effectiveness in targeting tumors.
- Potential to reduce radiation exposure to healthy tissues.

Radiological Protection: Measures and protocols to protect patients and healthcare workers from unnecessary radiation exposure.

- Justification: Ensuring the benefits outweigh the risks.
- **Optimization**: Keeping radiation doses as low as reasonably achievable (ALARA).

Why Radiological Protection in ART?

Patient Protection

- Frequent imaging increases exposure risk
- Balancing the need for imaging with minimizing dose

Techniques and Technologies

- Use of low-dose imaging protocols
- Optimize protocols (what to use) and timing (when to do it)
- Advanced imaging technologies to reduce exposure
- Increased complexity
 increase the risk
 of errors (incidental exposure)

Risk analysis to identify risks and mitigation strategies

Radiological Protection Principles in ART

The «dynamic» nature of ART requires constant monitoring and recalculations of dose distribution \Box increasing imaging (?) \Box increasing the complexity of radiological protection

ART main aim is the improvement of radiation treatment. To guarantee this improvement we need to balance:

From a dose optimization perspective, the most important thing is to adapt the plan as soon as the patient needs it.

Adaptive radiotherapy time scale

Patient-specific treatment variations:

- systematic changes in weight, tumor, and organ geometric and biological response
- stochastic variations such as organ deformation, filling change, respiration and peristaltic motion

Glide-Hurst et al., IJROBP, 2021 (https://doi.org/10.1016/j.ijrobp.2020.10.021)

Off-line adaptive

- Mostly addresses systematic and progressive changes that occur during the treatment course, such as patient weight loss and tumor morphologic changes
- Does not need dedicate equipment
- Yields improved target coverage and OAR sparing as shown in prospective clinical trials in the prostate, head and neck, and lung

Vargas et al., Int J Radiat Oncol Biol Phys 2005 (https://doi.org/10.1016/j.ijrobp.2004.12.017) Vargas et al., Int J Radiat Oncol Biol Phys 2005 (https://doi.org/10.1016/j.ijrobp.2004.12.052) Spoelstra et al., Int J Radiat Oncol Biol Phys 2009 (https://doi.org/10.1016/j.ijrobp.2008.12.027) Schwartz et al., Int J Radiat Oncol Biol Phys 2012 https://doi.org/10.1016/j.ijrobp.2011.08.017) Li et al., Int J Radiat Oncol Biol Phys 2013 (https://doi.org/10.1016/j.ijrobp.2013.04.014)

offline

between treatment fractions

Which imaging?

- Daily (or *frequent*) CBCT/MVCT/CT-on-rail for assessing variations
- New simulation CT if the acquired in-room image quality is not sufficient for treatment planning
- Direct calculation on the CBCT is also possible (no further simulation CT required) with different strategies

nt advancements in CBCT quality (e.g., Hypersight by

 Recently, there have been significant advancements in CBCT quality (e.g., Hypersight by Varian), enabling the direct use of CBCT for replanning. The primary benefit lies in improved workflow efficiency and faster replanning, rather than dose reduction.

(https://doi.org/10.1016/j.ejmp.2020.06.017)

Paper Target OARs Schwartz et al., Int J Radiat Underdosing Reduced mean dose to contralateral and ipsilateral Oncol Biol Phys, 2012 >5% avoided with ART parotids: by 0.6 Gy (2.9%) and 1.3 Gy (3.8%) (ART1) and by 0.8 Gy (3.8%) and 4.1 Gy (9%) (ART2) Chen et al., Head & neck, 2014 Improved locoregional control at 2 No difference in acute and late grade 3+ toxicity. years: 88% (ART) vs 79% (non-ART). No difference in overall survival. Dewan et al., Asian Pacific Underdosage (V<93%) and overdosage ~30% reduction in Dmax to spinal cord and mean Journal of Cancer Prevention, (V>110%) of GTV, CTV and PTV dose to ipsilateral and contralateral parotid glands 2016 significantly improved with ART Maheshwari et al., J Cancer Res Complete response was observed in Dose to spinal cord, ipsilateral, and contralateral Ther, 2020 parotid reduced by 4.3%, 6%, and 2.2%, respectively, 90% and 96.7% patients in the non-ART and ART groups, respectively, with ART. Xerostomia was statistically significantly at 6 months. higher in the non-ART group at 6 months.

Dosimetric advantages

Dosimetric advantages: Exercise

Paper	Target	OARs
Schwartz et al., Int J Radiat Oncol Biol Phys, 2012	Underdosing >5% avoided with ART	Reduced mean dose to contralateral and ipsilateral parotids: by 0.6 Gy (2.9%) and 1.3 Gy (3.8%) (ART1) and by 0.8 Gy (3.8%) and 4.1 Gy (9%) (ART2)

 33 treatment fractions
 <u>Daily CBCT</u>: H&N S20 Elekta XVI protocol 120kV 585.6 mAs Gantry rotation 205° (H&N enhanced) H&N S20 Elekta XVI protocol 100kV 36.60 mAs Gantry rotation 205° (H&N S20)
 <u>CBCT dose</u>: about 11.8 mGy daily to the parotids (H&N enhanced) about 0.9 mGy daily to the parotids (H&N S20)
 New CT scan dose: 1.2 mSy

Total parotid dose from imaging: 39.2 cGy □ 0.4Gy (H&N enhanced) 29.7 mGy □ 0.03 Gy (H&N S20)
Reduced mean dose to ipsilateral parotid: 4.1Gy

offline between treatment fractions

• MVCT is performed daily in any case

Off-line adaptive: Helical Tomotherapy

Dose (cGy)

2.5 cGy

TABLE IE. Tomo MVCT dose at the center of a 30-cm water phantom and its dependency on acquisition protocols.

MVCT in Tomo

Acquisition mode

Fine pitch (4 mm couch travel/rotation)

Coarse nitch (12 mm couch travel/rotation)	
Coarse pitch (12 min couch traventotation) 0.8	cGy
From Edward Chao, Accuray Incorporated and T. Rock Mackie, UW, M	adison

Ding et al., Report of the AAPM Therapy Physics Committee Task Group 180, Med Phys, 2018 (https://doi.org/10.1002/mp.12824)

- The imaging dose differs significantly when different pitch parameters are selected
- Select MVCT scan pitch parameters that balance imaging dose with clinical need (i.e. patient positioning or adaptive planning)

skVCT w/o AG

MVCT

kVCT

Off-line adaptive: who and when?

• Who? Patient selection

In many trials
general trend towards decreased doses to OAR and enhanced target coverage with the use of ART

Still uncertain the precise method for identifying patients who would gain maximum benefit from replanning (large variability in the literature: baseline clinical and dosimetric factors, predictors occurring during treatment, ...)

• When? Frequency and timing

Effective incorporation of ART in clinical setting requires an optimal timing of the intervention. Presently, there is a lack of consensus on the most suitable frequency and timing for replanning.

H&N: The ideal **timing** for replanning falls between the third and fourth week of the RT course. **Frequency**: at least once, twice beneficial for some patients, more than twice (?) Efforts have been initiated to develop automated methods using machine learning to anticipate the necessity for replanning interventions.

Nuyts et al., Cancer Med, 2024 (https://doi.org/10.1002/cam4.7192.) Avgousti et al., Cancer/Radiothérapie, 2022 (https://doi.org/10.1016/J.CANRAD.2021.08.023) Guidi et al., Phys Med, 2016 (https://doi.org/10.1016/J.EJMP.2016.10.005)

offline

On-line adaptive

 Patient's treatment plan is adjusted before treatment delivery to account for temporal and stochastic changes detected in a single treatment fraction while the patient remains in the treatment position immediately before a treatment fraction

online

- It is easier with dedicate equipment! There are approaches with standard equipment (i.e. plan of the day strategy)
- Yields **improved target coverage** and **OAR sparing** in head and neck, abdomen, pelvis and lung

Henke et al., Radiother Oncol, 2018 (https://doi.org/10.1016/j.radonc.2017.11.032) El-Bared et al., Pract Radiat Oncol, 2019 (https://doi.org/10.1016/j.prro.2018.08.010) Li et al. Radiother Oncol, 2011 (https://doi.org/10.1016/j.ijrobp.2011.08.027) Liu et al., Int J Radiat Oncol Biol Phys, 2012 (https://doi.org/10.1016/j.ijrobp.2011.12.073) Court et al., Int J Radiat Oncol Biol Phys, 2005 (https://doi.org/10.1016/j.ijrobp.2004.09.045) Ahunbay et al., Int J Radiat Oncol Biol Phys, 2010 (https://doi.org/10.1016/j.ijrobp.2009.10.013) Mohan et al., Int J Radiat Oncol Biol Phys, 2005 (https://doi.org/10.1016/j.ijrobp.2004.11.033) Heijkoop et al., Int J Radiat Oncol Biol Phys, 2014 (https://doi.org/10.1016/j.ijrobp.2014.06.046) Henke et al., Adv Radiat Oncol, 2019 (https://doi.org/10.1016/j.adro.2018.10.003)

On-line adaptive: MR-linac

No extra dose in the MR workflow

Elekta Unity 1.5 T MRI and 7MV FFF linac

online

immediately before a treatment fraction

MR-linac: a consideration

Is **dose reduction** the main reason to choose MR-guidance over X-ray guidance?

I don't think so.

In my view, MR-guidance provides far superior imaging quality compared to X-rays, which is a valuable advantage for treating certain types of tumors.

The absence of additional radiation dose is certainly an added benefit, but it's not the primary reason to opt for MR-guidance.

Dose reduction is a "nice to have," but not a "must have."

On-line adaptive: Ethos (Varian)

Online CBCT-guided adaptive radiation therapy

Adapted from Davide Cusumano

Dosimetric Features

6MV FFF Linac Dose Rate: 800 MU/min Double stacked MLC 0.5x0.5 cm² minimum field 28x28 cm² max field

Geometric Features

Bore: wide 100 cm, depth 75 cm

<u>CBCT dose</u>

 $CTDI_{weighted} = (1.3\pm0.3) mGy$

van de Schoot et al., J Appl Clin Med Phys. 2023 https://doi.org/10.1002/acm2.13905 online immediately before a treatment fraction

Mechanical Features

Leaf Speed: 5cm/sec (x2.5) Gantry Speed: 4 rpm (x4) 2 min Beam-on time for IMRT or Rapid Arc

iCBCT Iterative reconstruction 15-sec full CBCT acquisition

On-line adaptive

Plan of the day strategy: cervical cancer case

- Large and complex day-to-day variations in the pelvic area
 bladder-filling variations can have a large
 impact on shape and position of the cervix-uterus
- 15 mm margins are inadequate for many patients □ increase margins to 24-40 mm □ jeopardize tissue-sparing properties of IMRT

Lim et al., Int J Radiat Oncol Biol Phys, 2009 (https://doi.org/10.1016/j.ijrobp.2008.12.043) Ahmad et al., Radiotherapy and Oncology, 2011 (https://doi.org/ 10.1016/j.radonc.2010.11.010) Heijkoop et al., Int J Radiat Oncol Biol Phys. 2014 (https://doi.org/10.1016/j.ijrobp.2014.06.046)

- Full and an empty bladder CT scan
- Model for predicting any intermediate position of bladder/cervix
- <u>Plan of the day strategy dramatically reduces the percentage of bladder</u> <u>and rectum inside the PTV and the CTV-to-PTV volume</u>

---- empty-to-half-full model-predicted ITV ---- half-full-to-full model-predicted ITV

Paper	Target	OARs
Liu et al., Medical Physics. 2014	CTV V100 were 88.0%, 98.4%, 99.2%, and 99.3% for the IGRT, ART, reoptimization, and original plans, respectively. ART and reoptimization provided better target coverage.	Rectal V45Gy (V60Gy) were 58.7% (27.3%), 48.1% (20.7%), 43.8% (16.1%), and 44.9% (16.8%). The results for bladder were comparable among three schemes. ART and reoptimization provide better OAR sparing.
Keall et a., International Journal of Radiation Oncology, Biology, Physics. 2020	With real-time IGRT, no patient had CTV D98% 5% less than planned. Without real-time IGRT, 5.5% would have this level of underdosing. CTVD98% was 1.0% closer to planned with real-time correction.	

Online ART based on prostate motion can allow safe margin reduction. (Deutschmann et al., 2012; Ost et al., 2011)

Dosimetric advantages

Innovations in image-guided radiotherapy

Dirk Verellen, Mark De Ridder, Nadine Linthout, Koen Tournel, Guy Soete and Guy Storme

Real-time adaptive

- It does need dedicate equipment!
- Yields **smaller PTV volumes**
 improved doses to OARs

real-time

during a treatment fraction

Real-time adaptive

Couch X.Y.7 tab

• Cyber Knife (Accuray)

• Radixact Synchrony (Accuray)

• VERO (Brainlab)

• MLC linac tracking

real-time

during a treatment fraction

Real-time adaptive: Cyber Knife

Physica Medica 103 (2022) 11–17

<u>Frequent acquisition</u> of radiographs during treatment delivery comes at the expense of patient imaging dose, the amount of which also depends on imaging protocol and imaged anatomy.

The <u>registration uncertainty</u> depends on the <u>image</u> <u>quality</u> of the acquired radiographs from the image guidance system.

It can be improved (e.g., mAs increase) □ increased patient dose

Patient radiation

Cyber Knife: imaging dose estimation

Head case

Thoracic spine case

Maximum imaging dose = 1.5 mGy (close to the surface of the patient's head and in the nasal and orbital bones) Average (±1σ) imaging dose to the eye lenses per acquisition = 0.37 (±0.05) mGy Healthy brain tissue dose per acquisition < 0.2 mGy Maximum imaging dose = 0.6 mGy (rib bones) Entrance dose = 0.4 mGy Maximum dose per image pair acquisition to the thoracic pleura = 0.6 mGy Dose delivered to the heart < 0.2 mGy

Archontakis et al., Physica Medica, 2022 https://doi.org/10.1016/j.ejmp.2022.09.011 Spatial distribution of the imaging dose (MC calculation) overlayed on the corresponding axial CT slices (synchronous acquisition of a pair of radiographs, 120 kV - 10 mAs). [80-140 kV, 5-30 mAs]

Dose

(mGy/10mAs

Assuming a total number of 100 image pair acquisitions for treatment completion imaging dose to the eye lenses of 3.7 cGy can be calculated.

AAPM Task Group 75

TABLE I. Measured planar radiographic entrance dose levels per image for the CyberKnife image-guided radiosurgery system.

Site	kV	mA	ms	mAs	mGy
Cranium and C-spine	105-125	100	100	10	0.25
T-spine	120-125	100-150	100-125	10-20	0.25-0.50
L-spine	120-125	100-200	100-150	10-30	0.25-0.75
Sacrum	120-125	100-300	100-300	10-90	0.25-2.00
Synchrony	120-125	100-300	50-75	5-22.5	0.10-0.50

Murphy et al., Med Phys, 2007 https://doi.org/10.1118/1.2775667

MC imaging dose calculations using the PCXMC code and phantom geometries simulating adult patients of different sizes.

Typical organ doses (single exposure): 0.23 mGy to the brain, 0.29 mGy to the heart, 0.08 mGy to the kidneys, depending on the imaging protocol and site. Sullivan and Ding, Med Phys, 2015 https://doi.org/10.1118/1.4924094

				CyberKnife	dality	Mod
1DO	the RAM	using	Surface dose	se [cGy]	Surface Do	S
ilms	nromic fi	radioch	phantom and	4.33 ± 0.07	Ant	Head
's of	100 pair	nber of	for a total nur	0.50 ± 0.01	Post	
			radiographs .	2.27 ± 0.04	Left	
2014		Nabab		2.09 ± 0.04	Right	
, 2014 5.5006	/jacmp.v15i6	rg/10.1120/	https://doi.o	3.86 ± 0.06	Ant	Thorax
				0.45 ± 0.01	Post	
				1.75 ± 0.03	Left	
				1.74 ± 0.03	Right	
				6.50 ± 0.10	Ant	Pelvis
				0.30 ± 0.01	Post	
mA	Total	Pagm	Peak Acquisition Technique	3.30 ± 0.05	Left	
MU	Quality	Energy	reak Acquisition recimique	3.25 ± 0.05	Right	
125	5.4 mm Al	100 kV	6D Skull / 100 image pairs	Head		
150	5.7 mm Al	110 kV	C-spine / 100 image pairs	Thorax		
400	6.4 mm Al	125 kV	L-Spine / 100 image pairs	Pelvis		

mAs /

MUs

1250

1500

4000

real-time during a treatment fraction

Real-time adaptive: Radixact Synchrony

TABLE III. Simulated patient dose in mGy from 100 radiographs.

Patient	u _{med,10%T} (%)	D _{iso}	Volume	Dave	D _{50%}	D _{10%}	D _{1%}
Large lung	10	6.8	Heart	6.8	6.9	8.5	10.1
L thorax			Lungs	7.4	7.3	11.4	15.1
			Ribs	12.7	8.9	33.4	47.7
			Skin	3.8	1.5	11.4	16.3
			Soft tissue	4.6	3.5	10.1	15.0
			Spinal cord	6.6	6.4	10.0	32.2
Small lung	8	4.1	Heart	3.2	3.2	4.4	5.3
XS Thorax			Lungs	3.2	3.1	4.8	6.2
			Ribs	6.4	4.7	15.0	20.2
			Skin	1.7	1.1	4.2	6.0
			Soft tissue	2.2	2.0	4.4	6.2
			Spinal cord	1.8	1.6	3.3	6.0
Prostate	9	6.8	Bladder	7.2	6.9	9.2	10.
M Pelvis			Pubic bone	11.9	12.6	19.1	26.
			Prostate	5.4	5.4	6.1	6.
			Rectum	6.0	6.1	7.3	8.
			Skin	2.9	1.8	6.9	10.
			Soft tissue	3.1	2.6	6.6	9.
Endothelium	9	10.9	Bladder	11.4	11.4	13.5	15.
XL Pelvis			Femurs	11.1	6.8	29.9	46.
			Pubic bone	29.8	25.4	52.0	71.
			Rectum	12.8	12.6	16.5	20.
			Skin	6.1	1.8	21.6	35.
			Soft tissue	7.3	4.6	18.4	31.0
Pancreas	10	6.9	Liver	8.3	8.3	10.6	13.
L Pelvis			Lungs	4.4	3.7	8.4	11.9
			Pancreas	10.4	10.5	12.2	13.
			Skin	3.9	1.5	11.7	18.2
			Soft tissue	4.5	3.0	10.6	15.
			Spinal cord	5.9	5.9	9.7	16.

Equipped with a pair of kV (X-ray tube voltage) radiography and a flat detector panel mounted on the gantry.

Target position is calculated based on the fiducial marker position detected by successive 2D kV radiographs, and the target motion is compensated by the jaw sweeping in the longitudinal direction and MLC shifting in the lateral and vertical directions.

Monte Carlo simulation.

Ferris et al, Med Phys. 2020

https://doi.org/ 10.1002/mp.14461.

Real-time adaptive: VERO

TABLE III. Entrance air kerma at the patient from the Hokkaido fluoroscopic tracking system for an exposure period of 60 s at 30 image frames per second.

			Air kerma @ Patient (mGy)						
kV	mA	ms	@Isocenter	5 cm from Isocenter	30 cm from Isocenter				
60	80	2	1.11	1.14	1.38				
		4	2.07	2.15	2.60				
80	80	2	2.45	2.54	3.07				
		4	4.28	4.44	5.37				
100	80	2	4.35	4.51	5.46				
		4	7.41	7.68	9.30				
120	80	2	6.69	6.94	8.39				
		4	10.90	11.30	13.67				

Gimbaled linac

Stereoscopic dual-source kV X-ray imaging system and flat panel detectors

60 kVp - 120 kVp FPD size 40 cm × 30 cm. Distance kV X-ray source /isocenter = 100 cm Distance source /FPD = 188 cm Isocenter FOV = 21 cm (in the O-ring plane) × 16 cm (perpendicular to the O-ring plane).

> Kamino et al., IJROBP, 2006 https://doi.org/10.1016/j.ijrobp.2006.04.044.

Hiraoka et al., Radiotherapy and Oncology, 2020 https://doi.org/10.1016/j.radonc.2020.07.002.

AAPM Task Group 75

Murphy et al., Med Phys, 2007 https://doi.org/10.1118/1.2775667 real-time during a treatment fraction

Real-time adaptive: MLC linac tracking

MLC tracking is a form of real-time adaptive radiotherapy enabled on a conventional linear accelerator utilizing the MLC to adapt to location and position changes during treatment, representing a potentially highly accessible motion management solution.

Booth et al., Radiotherapy and Oncology, 2021 https://doi.org/10.1016/j.radonc.2020.10.036.

KV or MV imaging/fluoroscopy

MLC tracking is often coupled with electromagnetic transponders implanted in or near the tumor. These transponders emit signals that are detected, allowing for precise tracking of the tumor's position, even as the patient moves or breathes \Box no extra dose to the patient

Real time tumor tracking: dosimetric advantages

Table 1

A summary of feasibility studies for dynamic tumor tracking in Japan.

Site of cancer	Number of patients	Patient chara	cteristics		Treatment deliver	Treatment delivery			Difference irradiation	from non-tr	acking	Treatment outcomes		
		Age [y]	Gender [M:F]	Motion amplitude [mm]	Prescription	Technique	Treatment time [min]	Tracking error [mm]*	GTV D95	PTV volume	OAR doses	Local control	Severe AE	
Lung [7]	16	83 (58-87)	11:5	17 (10–46)	48-56 Gy/4 fr	SBRT	36.2 (19–70)	2.4	-0.4%	-30.2%	Lung V20, –19.5%	94%	None	
Liver [25]	10	71 (44–88)	7:5	7 (2–17)	48-60 Gy/4-8 fr	SBRT	28 (17–48)	2.3	-0.4%	-35.1%	Liver mean, -16.2%	90%	G3 liver enzyme, 1	
Pancreas [9]	10	71 (64–79)	8:2	13 (SD, 3.3)	45–51 Gy/15 fr	IMRT	24.5	2.9	-	-18.0%	-	74%	G3 gastritis, 1	

Abbreviations: SBRT, stereotactic body radiotherapy; IMRT, intensity-modulated radiotherapy; GTV, gross tumor volume; PTV, planning target volume; AE, adverse event, * Tracking errors were defined as the 95th-percentiles of the absolute errors in the cranio-caudal direction.

Hiraoka et al., Radiotherapy and Oncology, 2020 https://doi.org/10.1016/j.radonc.2020.07.002.

Lung and liver lesions:

Average PTV volume reduction using Real Time Tumor Tracking (RTTT) was 35% (range 16–53%) relative to the PTV_{ITV} volume

Average values (over 10 patients) of lung, liver, heart, oesophagus and spinal cord doses were reduced in the RTTT plan compared to the ITV plan, but with a large inter-patient variability

Depuydt et al., Radiotherapy and Oncology, 2014 https://doi.org/10.1016/j.radonc.2014.05.017.

Real time tumor tracking: dosimetric advantages

kV image guidance for application of real-time adaptation with MLC tracking for lung SBRT delivers lower integral dose to OAR than an ITV-based approach, particularly if respiratory motion is large.

real-time during a treatment fraction

Prabhjot et al., Radiotherapy and Oncology, 2016 https://doi.org/10.1016/j.radonc.2016.08.030.

Outline

• Introduction: why do we talk of ART and Radiation Protection?

- Types of adaptive radiation therapy
 - Offline adaptive
 - Online adaptive
 - Real time tumour tracking
- Types of imaging that is used: balance between extra-dose from imaging and gain from treatment adaptation
- Is the gain superior to the loss in terms of extra dose to the patient?
- Dose measurements and evaluations from CBCT

Adriana Taddeucci

Measurement of incident air kerma at the

Ka,i (FDD): incident air kerma at the detector FDD= focal spot-to-detector distance

CBCT protocols dose measurement with dosimeter attached to EPID

- Elekta XVI
- PTW Nomex dosimeter
- 0.50 mm Pb lead shielding to prevent EPID damage

We tested measurement repeatability: dose deviation <1%

Estimating $\mathsf{D}_{_{\rm FOV}}$ in CBCT

$$D_{FOV} = K_{a,i} (FDD) \cdot \frac{b}{a} \cdot \frac{d}{c}$$

Estimation of the average dose calculated over the diameter of the FOV.

Elekta XVI geometry

Different collimators (and panel positions) are used for different FOV (small, medium, large): only imaging protocols with "small FOV" use a symmetric cone beam

Results

	Preset XVI	Collimator	Filter	kV	Gantry rotation [°]	NSD [mGy]	mAs	K _{a,i} [mGy]	D _{FOV} [mGy]
100	[Head and Neck Enhanced CW]	S20	F1	120	205	0,6	585,6	7,79	18,4
	[Head and Neck S20 CW]	S20	FO	100	205	0,6	36,6	0,68	1,6
	[Head and Neck S10 CW]	S10	FO	100	205	1,1	36,6	0,71	3,4
	[Head and Neck Fast S20 CW]	S20	FO	100	205	0,6	18,3	0,38	0,9
	[Chest M20 CW]	M20	F1	120	360	4,6	264,0	4,28	10,1
	[Chest Fast M20 Enhanced CW]	M20	F1	120	360	11,8	330,0	5,84	13,8
	[Symmetry Lung CW]	S20	FO	120	200	11,4	312,0	9,57	22,6
and of	[Breast LT CW]	S20	F1	120	215	9,5	234,2	6,81	16,1
France	[Liver HalfScan CW]	S20	F1	120	200	12,0	1040,0	14,39	33,9
	[Liver CW]	M20	F1	120	360	24,0	1040,0	17,68	41,7
	[Symmetry Liver CW]	S20	F1	120	200	26,0	520,0	24,62	58,1
	[Peds Right]	S10	FO	100	205	1,1	33,0	0,72	3,5
	[Prostate Fast M20 Enhanced CW]	M20	F1	120	360	29,5	844,8	15,04	35,5
	[Prostate Fast M20 Low Dose CW]	M20	F1	120	360	18,4	422,4	7,45	17,6
	[Prostate Seed S10 CW]	S10	FO	120	205	5	117,1	3,89	9,2
	[Prostate Seed Fast S10 CW]	S10	FO	120	205	2,5	46,8	1,64	3,9
	[Prostate M10 CW]	M10	F1	120	360	26,9	1689,6	24,60	58,0
	[Prostate M15 CW]	M15	F1	120	360	29,5	1689,6	24,45	57,7
T e	[Pelvis Fast L20 CW]	L20	F1	120	360	18,8	844,8	9,36	22,1
	[Pelvis M20 CW]	M20	F1	120	360	18,4	1056,0	17,64	41,6
	[Pelvis Fast M20 Enhanced CW]	M20	F1	120	360	18,4	422,4	7,46	17,6
	[Pelvis M15 CW]	M15	F1	120	360	17,9	1056,0	15,50	36,6

Results

We tested measurement variation at different linacs (7 protocols @4 linacs)

Maximum deviation: 2.2 mGy Average deviation: (0.0±1.0) mGy Average abs deviation: (0.8±0.6)mGy

In the context of performing adaptive radiotherapy (real-time tumor tracking), the kV motion view (fluoroscopy) protocols are particularly interesting.

kV Motion View Protocol	Collimator	Filter	kV	Time (s)	Frames	Dose [mGy]
Chest	S20	FO	120	27	150	4,8
Chest 15x15	15x15	FO	120	27	150	4,8

Simulations:PCXMC software

PCXMC (2.0,STUK,Helsinki, Finland) is a computer program for calculating patients' organ doses and effective doses in medical X-ray examinations (radiography and fluoroscopy).

🗱 DefForm []			_ 🗆 ×
File			
👖 Main menu 🛛 🔅 New Form 🛛 🗁 Open Form 🛛 🔒	Save Form 🔙 Save Form A	As 🚊 Print As Text	-
Header text Phantom data Age: C 0 C 1 C 5 C 10 C 15 C Adult FSD Beam width Beam height 100 Projection angle Cranio-caudal angle LATE=180 AP=270 [post CranialX-ray tube]	ht Phantom mass 70 Arms i 1.6 Standard: 73.2 7 Draws 0 83.5 0 2ref 0 93.5 0 93.5	n phantom x-ray field traw te Field	
LATL=0 PA=90 (neg) CaudalX-ray tube MonteCarlo simulation parameters Max energy (keV) Number of photons 150 20000 Field size calculator 20000 Fibl Image width Image height 110 18 24 Phantom exit- image distance: 5.0 FSD Beam width Beam height Use this data	▼ Skelaton ▼ Pancri ▼ Brain ▼ Uterus ▼ Heart ▼ Liver ▼ Testes ▼ Upper ▼ Spleen ▼ Lower ▼ Longs ▼ Small ▼ Ovaries ▼ Thyroi ▼ Longs ▼ Small ▼ Ovaries ▼ Thyroi ▼ Stomach ▼ Ossop ▼ Salivary glands ▼ Prosta ▼ Oral mucosa ▼ Phage	eas large intestine large intestine identifies the source of the sour	View angle (270

The program calculates the **effective dose** with both the present tissue weighting factors of ICRP Publication 103 (2007) and the old tissue weighting factors of ICRP Publication 60 (1991). The anatomical data are based on the mathematical hermaphrodite phantom models of Cristy and Eckerman (1987), and the sizes are adjustable to mimic patients of arbitrary weight and height.

Protocol	Organ	PCXMC	TLD	% diff
	Oral mucosa	0.89	0.82	8
Head & neck	Salivary glands	0.93	0.95	-3
	Respiratory airways	0.84	1.01	-16
	Lungs	8.9	7.9	12
Chest 4D (symmetry)	Heart	10.1	10.2	-1
	Breasts	15.6	16.0	-2
	Lungs	21.7	19.9	9
Chest F0	Heart	20.4	20.2	1
	Breasts	21.3	19.2	11
	Lungs	20.9	21.5	-3
Chest F1	Heart	23.1	23.3	-1
	Breasts	18.6	17.3	8
	Ovaries	19.7	22.3	-12
D-1-1-	Colon	16.4	18.2	-10
Pelvis	Prostate	16.0	13.5	18
	Bladder	22.5	21.5	5

Rampado et al., Med Phys. 2016 (https://doi.org/10.1118/1.4947129.)

Some criticalities

Rampado et al., Med Phys. 2016 (https://doi.org/10.1118/1.4947129.)

FIG. 2. Adaptation of beam geometry for asymmetric beam simulation by the program PCXMC. With the collimator M20, the beam width at isocenter LR was 276 mm, with a left side LA of 213 mm and a right side AR of 63 mm. In the simulated geometry, the same beam width was considered, but with a symmetric beam centered 75 mm off axis, like the *B* and *C* centers as examples for 0° and 90° projections.

Asymmetric beams cannot be simulated in the program.

As an alternative, a symmetric beam with a displaced isocenter can be used.

F1 (bow-tie) filter cannot be simulated in the program.

In the presence of F1 filter, two simulations were performed for each projection, considering a beam over the total irradiated area with a contribution of 2/3 of total KAP and a second beam component with half width and 1/3 of total KAP.

Simulations

- Comparison between two simulations: the first with sampling every 5°, the second every 10°
- Comparison between two simulations: F1 filter as described in the article, homogeneous F1 filter
- Simulations for each protocol, for different patients' sizes:

Adult		Paediatric		
Height (cm)	Weight (kg)	Height (cm)	Weight (kg)	Age
152	41	102	14	3
163	60	110	18	3
165	65	119	24	5
173	91	126	14	5
176	73	138	31.5	10
188	111	150	44	10

Results

No difference between the two sampling strategies (<0.3%)

	[Liver Half Scan CW]	
	Dose (mGy)	_
Adrenals	15,5	
Gall bladder	12,6	
Heart	9,0	
Kidneys	18,4	_
Liver	11,7	
Pancreas	14,3	
Spleen	17,1	
Stomach	17,1	
Average dose in total body	3,8	_

W	176-73

	[Breast LT CW]	[Chest Fast M20 Enhanced CW]	[Symmetry Lung CW]
	Dose (mGy)	Dose (mGy)	Dose (mGy)
Breasts	6,6	6,2	11,6
Heart	7,1	5,8	9,6
Liver	3,6	2,4	2,2
Lungs	7,8	6,0	11,5
Oesophagus	4,9	3,7	6,2
Thymus	7,7	6,3	10,4
Average dose in total body	1,8	1,5	2,9

		[Head and Neck Enhanced CW]		[Head and Neck S20 CW]	
		Dose (mGy)		Dose (mGy)	
	Brain	8,6		0,6	
E	xtrathoracic airways	8,4		0,6	
(Dral mucosa	9,2		0,6	
Sa	livary glands	11,8		0,9	
	Thyroid	8,8		0,9	
A i	verage dose n total body	1,1		0,1	
		[Pelvis Fast L20 CW]	[Prostate	Fast M20 Enhanced CW]	
		Dose (mGy)		Dose (mGy)	
	Ovaries	6,1		7,0	
	Colon	4,9		5,4	
	Kidneys	3,8		0,4	
	Prostate	7,6		13,2	
	Small intestine	4,4		3,5	
	Testicle	10,1		18,6	
	Uterus	8,0		7,2	
	Urinary bladder	5,8		11,6	
	Average dose in total body	2,8		4,2	

What's next?

ImpactMC software (CT Imaging, Erlangen, Germany)

- The software handles asymmetric beams and bow-tie filters.
- Allows to generate a full 3D dose distribution.
- Allows to extract average doses in ROI.

Final considerations

Is the gain superior to the loss in terms of extra dose to the patient?

Challenges

- Managing cumulative radiation dose from frequent imaging (IGRT more than ART)
- Managing increased complexity
- Balancing image quality with radiation dose
- Study timing, frequency, patient selection...

With the recent trend toward hypofractionated treatment regimens, imaging doses are expected to be less of a concern.

Future advances

Technological Advances

Integration of AI and machine learning to optimize imaging and ART strategies

• Research and Development

Refinement of radiological protection strategies (optimization)

• Best Practices

Protocols and guidelines from leading institutions

Training and Expertise: Importance of having well-trained users who understand both ART and radiological protection standards

Vendors should prioritize the development of tools that more easily account for the dose contribution from image-guided radiotherapy (IGRT), ensuring that it is accurately considered in treatment planning.

Thank you for your attention

Acknowledgements:

Stefania Pallotta, Adriana Taddeucci, Chiara Arilli, Claudia Poggiali, Margherita Zani, Carlotta Mozzi, Filippo Susini, Davide Cusumano, Icro Meattini

The Medical Physics Group of Careggi University Hospital

