Practical method for CBCT protocol optimization

Núria Jornet

Servei de Radiofísica i Radioprotecció Hospital de la Santa Creu i Sant Pau Barcelona

Radiotherapy process- use of kV imaging

Use of kV imaging-recap

Imaging for treatment planning

Volume delineation (CT, MRI, PET-CT)

Patient model for radiation transport and absorbed dose calculation (CT)

Imaging for treatment verification

Patient positioning (2D kV or MV; CBCT, surface imaging)

Monitor changes in body contour/internal structures/tumour (CBCT, US, MRI)

Patient model for re-planning (CBCT/CT)

Use of kV imaging-dose quantities and optimisation

Imaging for treatment planning

Volume delineation (CT, MRI, PET-CT)

Patient model for radiation transport and absorbed dose calculation (CT)

Imaging for treatment verification

Patient positioning (2D kV or MV; CBCT, surface imaging)

Monitor changes in body contour/internal structures/tumour (CBCT, US, MRI)

Patient model for re-planning (CBCT/CT)

CT (DLP and CTDI)

Dose reduction strategies DRL (diagnostic)

- Dose optimization seldomly done
- Lack on information of the dose delivered due to kV imaging

Use of kV imaging-dose quantities and optimisation

Imaging for treatment planning

Volume delineation (CT, MRI, PET-CT)

Patient model for radiation transport and absorbed dose calculation (CT)

Imaging for treatment verification

Patient positioning (2D kV or MV; CBCT, surface imaging)

Monitor changes in body contour/internal structures/tumour (CBCT, US, MRI)

Patient model for re-planning (CBCT/CT)

CT (DLP and CTDI)

Dose reduction strategies DRL (diagnostic)

CBCT (DLP, CTDI, K _{a,r} , P_{KA})

- Dose optimization seldomly done
- Lack on information of the dose delivered due to kV imaging

Justification and optimisation of IGRT

Justification:

Detection of potential set up errors Achieving the required geometric accuracy Clearly visualising the anatomical region for matching Aplying adaptive strategies

Optimisation:

The dose has to be kept as low as reasonably possible

IPEM audits of imaging dose to patients in RT across UK

CBCT scans

1. Median from each scanner was use to define scanner average CTDIvol, DLP, scan length.

2. Third quartile (national reference) and median (achievable) of the scanner median data were calculated

Collected data

- 1. Protocol data
- 2. Patient sample data (average dose index)
- 3. Dosimetry information (measures in PMMA phantoms)

From Tim Wood, IPEM working group on dose optimisation

13 centers using size based protocols.

9 centers using "obese" on an "as required" basis (most patients get the same exposure settings)

15 centers using a single mode (12 using Varian default settings)

From Tim Wood, IPEM working group on dose optimisation

First audits of imaging dose to patients in RT across UK showed large variability

Protocol comparisons - prostate

Surveys on dose optimisation in IGRT show that most departments use default CBCT settings

Only 39% centers have optimized exposure settings:

QUARTET

MODIFICACIÓN PROTOCOLOS ADQUISICIÓN IGRT EN LOS EQUIPOS

17 respuestas

- Utilizo los que ha configurado el fabricante (defecto)
- He modificado los protocolos para optimizar las exploraciones
- He añadido protocolos para optimizar las exploraciones (por ejemplo CBCT con limitación de ángulos, distintos pr...
- No, si se refire la pregunta a las parámetros técnicos de adquisición de imagen.

SPAIN 2023

Surveys on dose optimisation in IGRT show that most departments use default CBCT settings

Despite the widespread use, we still **lack clear guidance** for optimisation and widely accepted frameworks for evaluating the quality and suitability of CBCT imaging protocols.

To address this gap, the 2022 ESTRO physics workshop focused on image-quality and imaging-dose optimisation for IGRT using CBCT.

Keep in mind

- Optimising imaging protocols to minimise the dose while maintaining acceptable image quality for clinical use is considered to fall specifically under the responsibility of medical physicists
- We stress here the importance of including RTTs and radiation oncologists in the IGRT imaging optimisation from the beginning
- Assessing the clinical and practical implications of image quality to avoid relying on quantitative indices, such as signal to noise ratio (SNR) or contrast to noise ratio (CNR), alone.

Oncologists

Physicists

CBCT Optimisation: An Approach

Phase I: Protocol Optimisation

Step 1: Assess current practices

- Observation of current practice: image quality and dose implications
- Reviews should be organised by clinical indications
- Evaluate image quality applying robust standards agreed by all the team
 - Subjective: Grading image noise or quality of relevant clinical structures
 - Objective: Region of interest based measures of CT numbers and noise
- Dose review should assess dose indices such as CTDIs and DLPs for each protocol and how doses accumulate over the fractions. Compare with national DRLs

Phase I: Protocol Optimisation Step 2: Review local IGRT needs

Evaluate the image quality needs for each clinical situation

If all patients achieve equal image quality irrespective of their size.

The dose for thinner patients could be reduced

Phase I: Protocol Optimisation

Step 3: Optimise Protocols

- Identify relevant literature
- Assess relevant literature: Look at the methodologies for image optimization

Author / Year	Aim	Method	Dose assessment	System
Roxby et al. 2008	Dose reduction of CBCT for pelvis, addition of a Cu filter and mAs reduction	Image quality and noise assessed using CATPHAN Image quality evaluation on a series of 6 patients by RO (adequacy for outlining bladder, rectum, and prostate).	CTDIw using CTDI Perspex phantom 32 cm) with a calibrated Farmer type ionisation chamber	Varian trilogy
Ding et al. 2013	Comparison of imaging doses from MV images, kV radiographs, kV-CBCT		Monte Carlo techniques and treatment planning system for calculating doses to patient anatomy. kV and MV phase-space files calibrated for the specific imaging procedure. Plastic Water (LR)+Exradin A14 cylindrical ionisation chamber	Varian (OBI, TrueBeam)
Liao et al. 2015	Measurements of dose for different Elekta CBCT parameters (voltage, current, exposure time per frame, collimator and gantry rotation range)	No image quality analysis	CTDIair, CTDIw, and DLP using CT pencil ion chamber in air, head (16 cm) and body (32 cm) acrylic CTDI phantom	Elekta synergy with XVI 3.5 CBCT
Wood et al. 2015	To develop size-based radiotherapy kV CBCT protocols for pelvis	Image noise measured in an elliptical phantom of varying size for a range of exposure factors	PCXMC software	Varian
Elstrom et al. 2016	Evaluate the image quality in a standard QA phantom with both clinical and non-clinical acquisition modes and reconstruction methods	CATPHAN and relevant quantified metrics		Varian
Santoso et al. 2016	To investigate the effect of gantry speed on 4DCBCT image quality and dose	CATPHAN	CIRS Thorax phantom nd IBA CC13ion chamber	Varian

Author / Year	Aim	Method	Dose assessment	System
Mao et al. 2018 [19]	Optimised CBCT parameters for intracranial stereotactic	Quantitative image quality evaluation:	Using Cone-beam dose index	Varian Edge
	radiosurgery	CATDHAN EQ4 phantom according	CTDI Hoad Dhantom Doneil	
		CAIPHAN 504 phantom assessing	cibi Head Phantom. Penci	
		image quality metrics.	ionisation champer	
			Measurement of WCBDI	
		Steev phantom CNR	(conebeam dose index)	
		Patient images (1 patient)		
Ding et al. 2018 [29]	General guidelines on dose management for different	-	-	-
	imaging types			
Yang et al. 2018 [34]	Examine the impact of body size, radiation exposure and	Electron density phantom (model 062,	CTDIw as displayed by the	Varian TrueBeam STX
	tissue type on the target detectability of CBCT imaging	VIRS), 18 cm diameter, with various	MDCT and CBCT	
	for the preset body scan protocols (Thorax, Pelvis, and	bolus layers.		
	Pelvis Obese)			
		CNR on the target ROI and background		
		region.		
Liang et al. 2019 [24]	4D CBCT optimisation of intraftaction preset for	CIRS Dynamic phantom to assess the	No dose evaluation	Elekta XVI 5.0
	stereotactic body radiotherapy lung patients (nominal	accuracy of target motion using the		
	Acquisition Interval) to have a good description of tumor	various intrafraction presets.		
	motion and to reduce noise and the artifacts caused by			
	MV scattered photons	Qualitative image quality evaluation		
		(blurring).		
	4D CBCT acquired with the MV beam on.			
Xu et al. 2019 [20]	Study of the dosimetric effect of reducing kV imaging	No image quality evaluation	Dose reduction in % depending	-
	frequency for prone breast treatments. Frequency		on the number of fractions	
	optimisation using CT patient anatomy and shifts from		with kV imaging	
	first 3 days.			
Chan et al. 2020 [26]	Optimisation of kV planar image exposure settings based	Qualitative analysis by radiation	-	Varian Trilogy iX
	on patient size (waist circumference)	therapists via questionnaire		

Author / Year	Aim	Method	Dose assessment	System
Agnew et al. 2020 [27]	Optimise patient dose and image quality of	Quantitative image quality evaluation: Elliptical	From literature	Varian TrueBeam
	pelvis, thorax and head and heck images	Perspex phantom of various dimensions with		
	based on patient size	spaces for a circular polystyrene insert and		
		CATPHAN 505 image quality phantom.		
		Patient images scored by RTTs (grading quality on		
		a scale from 1-5) and evaluated time needed to perform the match.		
Ordonez-Sanz C et al.	A simple method for optimising CBCT dose	Stratification of patients into four groups based on	CTDIw using a 32 cm PMMA	Varian TrueBeams and
2021 [17]	and image quality for pelvis treatment, based	CTDIvol of the planning CT.	body phantom and a pencil	Clinac iX
	on patient-specific attenuation		chamber	
		Quantitative image quality evaluation using 4		
		phantoms (various sizes) CATPHAN+barts solid		
		water and Vaseline bolus. CTDI matching those of		
		the 4 patient groups.		
		Patient evaluation (noise level in ROI in the		
		bladder) + RTT and RO image quality scoring.		
Khan et al. 2022 [16]	Implementation of optimised CBCT protocols	Qualitative analysis off and online using patient	CTDI in air using RaySafe X2-CT	Varian TrueBeams
	for most tumour sites in adult patients	images using a scoring system and in comparison	sensor and To CTDI phantom	
		to Varian default protocols	(CTDIw) (16 and 32 cm)	
		Image quality and clinical usability (accuracy of 3D		
		registration)		
Martin and Abuhaimed	Study of the impact of using standard	No image quality evaluation	Monte Carlo simulations to	Varian TrueBeam
(2022) [70]	protocols for imaging anatomical phantoms of		calculate organ and tissue	
	varying size from a library of 193 adult		doses. Results combined based	
	phantoms.		on size-specific effective dose.	
	Shows the need for patient-size-specific			
	protocols for dose optimization.			

Author / Year	Aim	Method	Dose assessment	System
Agnew et al. 2020 [27]	Optimise patient dose and image quality or pelvis, thorax and head and heck images based on patient size	Quantitative image quality evaluation: Elliptical Perspex phantom of various dimensions with spaces for a circular polystyrene insert and CATPHAN 505 image quality phantom. Patient images scored by RTTs (grading quality on a scale from 1-5) and evaluated time needed to perform the match.	From literature	Varian TrueBeam
Ordonez-Sanz C et a	A simple method for optimising CBCT dose and image quality for pelvis treatment, based on patient-specific attenuation	CTDIvol of the planning CT. Quantitative image quality evaluation using 4 phantoms (various sizes) CATPHAN+barts solid water and Vaseline bolus. CTDI matching those of the 4 patient groups. Patient evaluation (noise level in ROI in the bladder) + RTT and RO image quality scoring.	CTDIW USING a 32 CM PIVIIVIA body phantom and a pencil chamber	varian Trueвeams and Clinac iX
Khan et al. 2022 [16]	Implementation of optimised CBCT protocols for most tumour sites in adult patients	Qualitative analysis off and online using patient images using a scoring system and in comparison to Varian default protocols Image quality and clinical usability (accuracy of 3D registration)	CTDI in air using RaySafe X2-CT sensor and To CTDI phantom (CTDIw) (16 and 32 cm)	Varian TrueBeams
Martin and Abuhaime (2022) [70]	d Study of the impact of using standard protocols for imaging anatomical phantoms of varying size from a library of 193 adult phantoms. Shows the need for patient-size-specific protocols for dose optimization.	I No image quality evaluation	Monte Carlo simulations to calculate organ and tissue doses. Results combined based on size-specific effective dose.	Varian TrueBeam

Phase I: Protocol Optimisation

Step 3: Optimise Protocols

- Identify relevant literature
- Assess relevant literature: Look at the methodologies for image optimization
- Identify proposed protocols:
 - Select relevant protocols : Are they appropriate for clinical practice (patient population, treatment techniques, tumor sites)
 - **Develop imaging protocols locally:** This may involve phantom imaging. These phantoms should be representative of patient population.

Phase I: Protocol Optimisation_HSCSP

Step 3: Optimize protocols

Implementation of a comprehensive set of optimised CBCT protocols and validation through imaging quality and dose audit

¹MARINA KHAN, BSc, ²NAVNEET SANDHU, ²MARIUM NAEEM, ²REBECCA EALDEN, ²MICHAEL PEARSON, ¹ABDIRZAK ALI, ²IAN HONEY, ³AMANDA WEBSTER, ^{2,4}DAVID EATON and ^{2,4,5}GEORGIOS NTENTAS, DPhil

CBCT Protocols	kV	mA	ms	f/s	Gantry speed (°/S)	Trajectory	Number of projections	mAs	CTDI in Air (mGy)	CTDI _w (mGy) ^a	Change in CTDI _{air} (%)
Varian_Abdo/ Pelvis	125	38	20	15	6	Full	900	684	42.8	11.5	n/a
Abdo/Pelvis_S	125	25	10	15	6	Full	900	225	15.7	4.2	-63% ^d
Abdo/Pelvis_M	125	38	20	15	6	Full	900	684	42.8	11.5	0% ^d
Abdo/Pelvis_L	125	60	20	15	6	Full	900	1080	66.3	17.9	55% ^d
Abdo/Pelvis_HD	125	38	20	15	3	Full	1800	1368	85.6	22.8	100% ^d

Phase I: Protocol Optimisation_HSCSP

Step 3: Optimize protocols

Optimisation of Varian TrueBeam head, thorax and pelvis CBCT based on patient size

Christina E. Agnew¹⁽ⁱ⁾, Candice McCallum¹, Gail Johnston², Adam Workman² and Denise M. Irvine¹

	Pelvi	s (mAs)	Pelvis obese (mAs)	
Phase	Small	Medium	Large	
Default	125 kV,	1080 mAs	140 kV, 1680 mAs	
1	855	1080	1080 1080	
2	630	855	1080	
3	427.5	684 ₆₃₀	1080	
4 225	225	-	1080	
Optimised mAs (% reduction from default)	225 (-80%)	855 (-20%)	1080 (-35%)	
Estimated dose reduction (cGy/image) determined from published data ⁶	-0.8/1 -16.0/20	-0·2/1 -4·0/20	N/A	

Khan values

Phase I: Protocol Optimisation_HSCSP

Step 3: Optimize protocols – patient stratification

CBCT protocol	Mean diameter
Pelvis_S	≤26 cm
Pelvis_M	26-36 cm
Pelvis_L	≥36 cm

Phase I: Protocol Optimisation

Step 3: Optimise Protocols

- Identify relevant literature
- Assess relevant literature: Look at the methodologies for image optimization
- Identify proposed protocols:
 - Select relevant protocols : Are they appropriate for clinical practice (patient population, treatment techniques, tumor sites)
 - **Develop imaging protocols locally:** This may involve phantom imaging. These phantoms should be representative of patient population.

Image quality evaluation in a phantom

CATPHAN (Pelvis_S)

Solution: design phantoms mimicking different thickness in which CADPHAN can be inserted

Material	HU
PLA 90% (1)	-44,72
PLA 93% (1)	-36,80
PLA 93% (2)	-106,62
PLA 97% (2)	-48,97

Dimension Lab HSCSP

- medium: w=36 cm ; h=24 cm
- large: w=50 cm ; h=33 cm

Phase I: Protocol Optimisation

Step 3: Optimise Protocols

- Quantify local dosimetry: Measure radiation dose indices for each proposed protocol
- Quantify image Quality:
 - Via phantom imaging tests.
 - On patient images (same patient different protocols)
- Generate proposal:
 - Provide an estimate of the potential dose reductions

Image quality evaluation in a phantom

Parameter		Measurement	Baseline	Difference	Status	Tolerances
۲	Geometric distortion (mm)	0,18	0,00	-0,18	✓ Passed	0,18
	Spatial resolution (lp/mm)	0,33	0,31	- <mark>0,0</mark> 2	✓ Passed	0,17 0,22 0,33 0,4 0,45
•	Uniformity (HU)	-2,63	0,00	2,63	✓ Passed	-30 -2,63 30
۲	Contrast (units)	0,89	0,88	-0,01	✓ Passed	0,53
۲	Noise (units)	5,43	5,97	0,54	✓ Passed	5,43 7,16

Image quality evaluation in a phantom

۲	Air (HU))	-999,68	-1.000,00	-0,32	✓ Passed	-1.050	-999,68	-950
	Teflon 'R' (HU)		976,27	964,00	-12,27	✓ Passed	914	976,27	1.004
	Delrin 'R' (HU)		363,88	350,00	-13,88	✓ Passed	300	363,88	400
	Acrylic (HU))	134,16	120,00	-14,16	✓ Passed	70	134,16	170
	Polystyrene (HU)	Jul	-29,60	-35,00	-5,40	✓ Passed	-85	-29,6	15
	Low density polyethylene (LDPE) (HU)		-85,92	-100,00	-14,08	✓ Passed	-150	-85,92	-50
۲	Polymethylpentene (PMP) (HU)		-180,73	-200,00	-19,27	✓ Passed	-250	-180,73	-150

Image quality evaluation patients

Image quality evaluation patients

NHC			2026316	
Data				
* must provide value				Q
2024-10-08		J		
Diàmetre mitjà (cm)				Θ
* must provide value	_			(\mathcal{P})
30.42	View equation			
Protocol CBCT				Η
* must provide value				P
Pelvis_M				
Puntuació imatge * must provide value				H P
3: Sense canvis a la	qualitat d'imatge i al regi 💲			
Repetició del CBCT?		θ	⊖ Yes	
* must provide value		>	O No	reset
Motiu de la repeticio	ó	H P	 Mala preparació Mal posicionament Mala qualitat d'imatge Altres 	
Form Status				
Complete?		H	Complete	
			Save & Exit Form Save & 🝷	
			– Cancel –	

5: Millora de la qualitat d'imatge i del registre
4: Millora de la qualitat d'imatge, sense canvis al registre
3: Sense canvis a la qualitat d'imatge i al registre
2: Empitjorament lleu de la qualitat d'imatge, sense canvis al registre
1: Empitjorament de la qualitat d'imatge i afectació al registre

Dose calculation on CBCT Perfraction [™]

Phase II: Clinical implementation Step 4: Testing

- Test new protocols for a small number of patients on one of the linacs
 - 5 patients for each new protocol (include patients of various sizes for one-size fits all protocols
 - Select patients in the middle of treatment course so that new protocols can be compared with the previous protocols
 - Clinical team should be involved to evaluate image quality (on line and off line)

Phase II: Clinical implementation Step 5: Familiarisation

- Communicate to all RTTs in the team.
 - Names of new protocols
 - Objectives and intended use of each of the protocols
 - Robust methods for selecting the appropriate protocol

Phase II: Clinical implementation Step 5: Familiarisation

- Communicate to all RTTs in the team.
 - Names of new protocols
 - Objectives and intended use of each of the protocols
 - Robust methods for selecting the appropriate protocol

Conclusions

Conclusions

Optimisation should be a continuous process taking into account the patient cohort advances in technology and the purpose of imaging

Optimisation is a multidisciplinary effort

Image quality has to be assessed taking into account registration accuracy, visualisation of volumes of interest and accuracy of dose calculation (if used for dose assessment)