

Commissioning and Radiation Safety Aspect of Image Guided Radiation Therapy System for Proton Beam Therapy

Rohidas Punde

Medical Physicist Proton Therapy Centre Advanced Centre for Treatment, Research And Education in Cancer, Tata Memorial Centre, Mumbai, INDIA

Joint ICTP-IAEA Workshop on Radiation Protection in Image-Guided Radiotherapy(IGRT) Trieste, Italy, 7-11 Oct 2024.

Contents

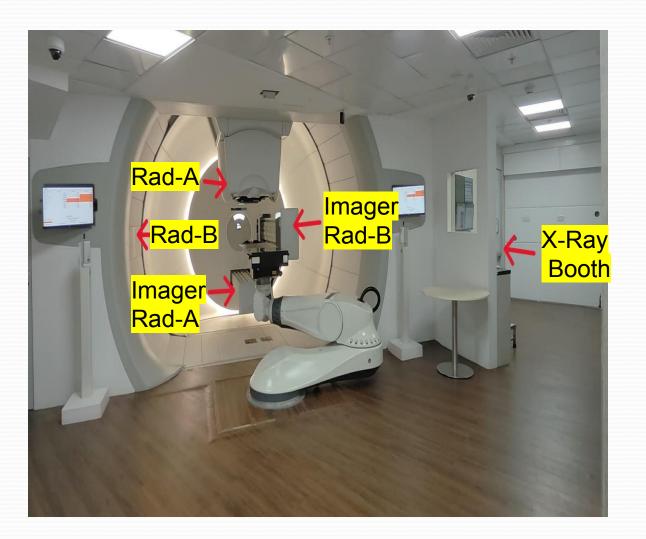
Background and Objective

Methods and Materials

Results

Background

 Image-Guided Radiation Therapy (IGRT) is a crucial component in the delivery of precise and effective Radiotherapy.


 Proton therapy, a type of radiation treatment that uses protons rather than X-rays to treat cancer, benefits significantly from IGRT due to the need for high precision in targeting tumors while minimizing damage to surrounding healthy tissues.

Objective

 To address the commissioning process of the IGRT system in proton therapy

To evaluate the radiation safety aspects

Methods and Materials

- Proteus Plus proton therapy Unit (IBA Belgium)
- Two X-Ray Tube- Rad A and Rad B
- Two Imager Pannel corresponding to each tube
- X-Ray Booth inside the treatment room

Methods and Materials

X-ray Tube and Imager details for GTR3

	Rad A	Rad B	
Make	Varian Medical Systems	Varian Medical Systems	
Model	A277	GS2075	
Anode Type	Rotating Anode	Rotating Anode	
Anode Material	Rhenium-Tungsten Molybdenum	Tungsten-Rhenium Molybdenum	
X-Ray Tube Location	Gantry Nozzle (0°)	Gantry Mounted (at 270°)	
Maximum Tube Potential (kV)	150	150	
Maximum Tube Current (mA)	1000	1000	
Focal spot size (mm)	0.6 - 1.0	0.7 x 1.2, 1.2x1.5 (Large Focal Spot used for Imaging)	
Imager Type			
Imager Serial Number	44502-1402	172041	
Source to Imager Distance (mm)	ce 1208 2627		
FOV	40cm x 30cm	43cm x 43cm	

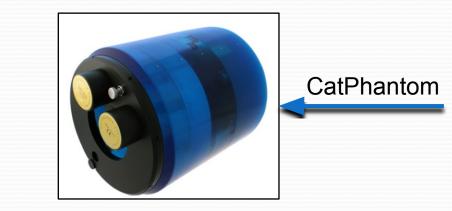
Rad A & Rad B : kV Planer imaging

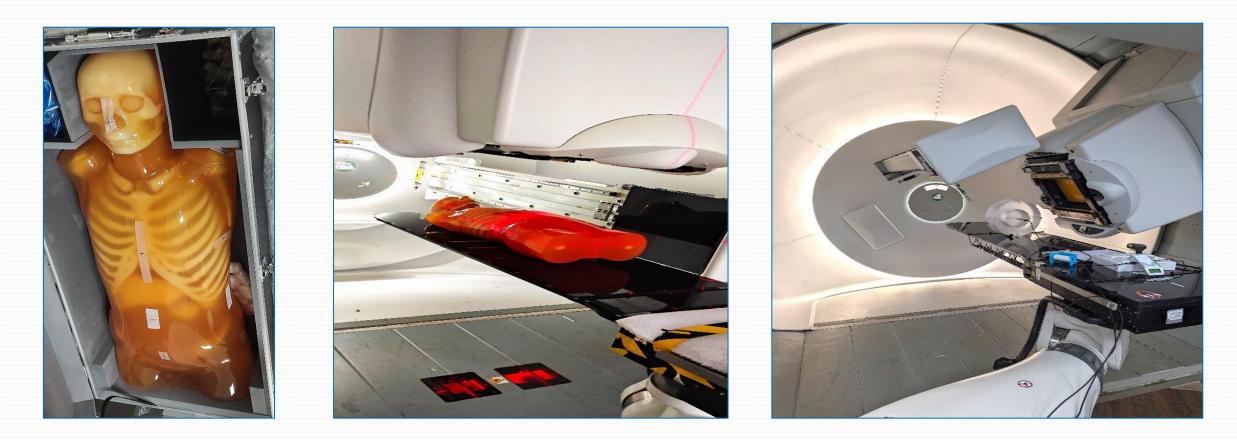
Rad B : Volumetric kV imaging (CBCT)

Portal X-ray QA Test

Sr No	Parameters	Observation	Tolerance Limit
1	Accuracy of kVp	Rad A = 2.4 kVp Rad B = 4.8 kVp	± 5 kVp
2	Reproducibility of kVp	Rad A = 0.44 % Rad B = 0.87 %	≤ 5%
3	Reproducibility of the Exposure time	Rad A = 2.36 % Rad B = 0.69 %	≤ 5%
4	Linearity of Exposure timeRad A = 1.0Rad B = 1.0		Between 0.95 and 1.05
5	High Contrast Spatial Resolution (Planer Imaging)	Rad A = 2.8 lp/mm , Rad B = 3.1 lp/mm	> 2.5 lp/mm at 70 kV
6	Low Contrast Sensitivity (Planer Imaging)	Rad A = 0.9 % Rad B = 0.9 %	< 2.8% (typical <2%)
7	Stereo X-ray Correction Vectors Performance (point-based)	0.46 mm , 0.2°	≤ 1mm, Rotation ≤ 1°
8	Accuracy of focal spot size (f)	Rad A = 1.12 mm Rad B = 1.2 mm X 1.57 mm	+0.5f for f < 0.8mm, +0.4f for f between 0.8 to 1.5mm, +0.3f for f >1.5mm

Sr no	Parameters	Observation	Tolerance Limit
9	Accuracy of timer	Rad A = 3.8 % Rad B = 4.4 %	10%
10	Linearity of mA station	Rad A : CoL=0.015 Rad B: CoL=0.025	CoL≤0.1
11	Output Consistency	Rad A : CoV=0.007 Rad B: CoV=0.012	CoV≤0.05
12	Total filtration (mm of Al) of the x-ray tube	RAD A: 1.7 mm Al for kV≤ 70 kV, 4.4 mm Al for 70 < kV ≤100, 6.1 mm Al for kV >100, RAD B: 2.5 mm Al for kV≤ 70 kV, 3.8 mm Al for 70 < kV ≤100, 6.2 mm Al for kV >100	kV≤ 70 kV, 2.0 mm Al for 70 < kV ≤100, 2.5 mm Al for kV >100

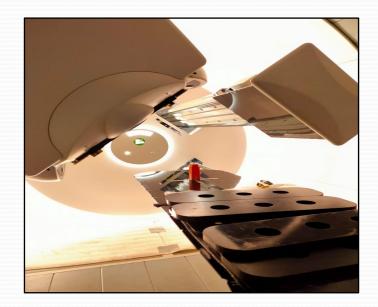

Raysafe Xi detectors


Sr no	Parameters	Observation	Tolerance Limit
1	Scale and Distance Accuracy (CBCT)	0.72%	1%
2	CT Number Accuracy (CBCT)	-35.5 HU	± 40 HU
3	High Contrast Spatial Resolution (CBCT)	7 lp/cm	≥7lp/cm
4	Uniformity	25.3 HU	± 40 HU
5	Low contrast sensitivity (CBCT)	9 mm	15 mm @ 1 %
6	CBCT Correction vectors performance (Intensity -based)	Trans.= 0.5 mm Rotation = 1°	Translation ≤1 mm, Rotation < 1°
7	Positional/re-positional accuracy of imager	0.41 mm	≤1 mm

Formation of IGRT QA Programme

- AAPM TG 224
- AAPM TG 179
- AAPM TG 142
- AAPM MPPG 2.b

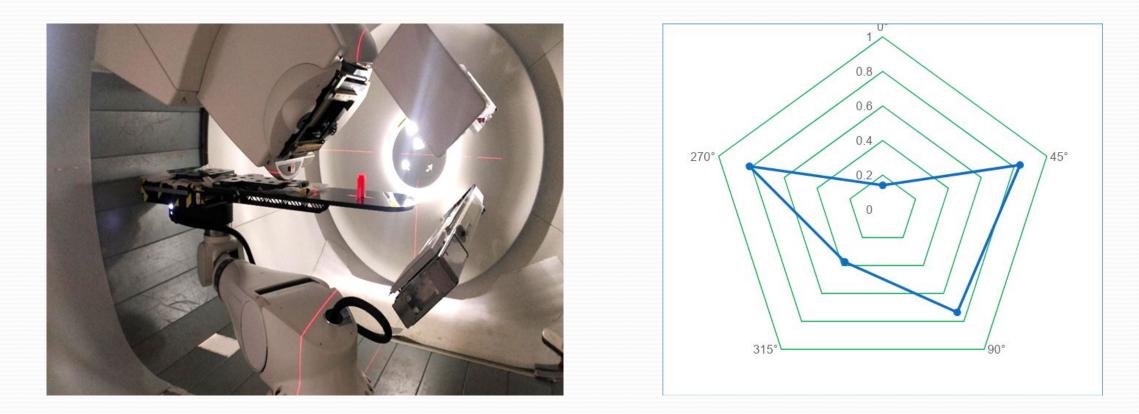
CBCT Preset Validation using Anthropomorphic Phantom

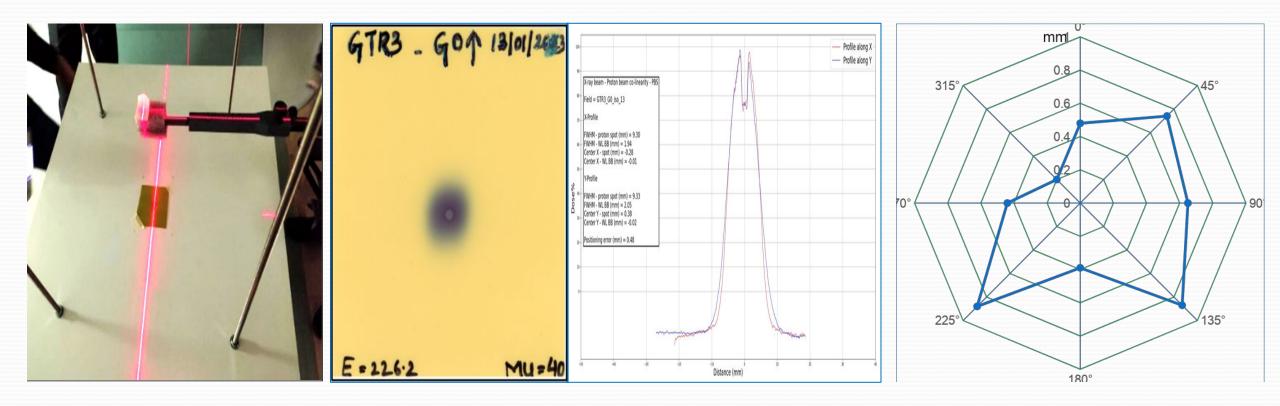

Total 12 CBCT presets were validated. Optimization must be done between image quality and radiation dose.

CBCT Preset/Protocol & CTDI measurement

Sr No	Preset/Protocol Name	Tube Voltage (KVp)	Total mAs	Tube Current (mA)	FOV (cm)	Slice Width (mm)	Scan Speed	CTDIvol (mGy)
1	Head high contrast	100	2277.5	250	Small (26)	2.5	Low	6.1
2	Head Low Dose	80	472	100	Small (26cm)	2.5	High	1.1
3	Head & Neck	120	2277.5	250	Medium(35cm)	2.5	Low	13.1
4	Thorax Lung	110	2915.2	320	Medium(35cm)	2.5	Low	14.5
5	Thorax High Speed	110	1180	250	Medium(35cm)	2.5	High	5.6
6	Thorax Breast	120	2277.5	250	Large(50 cm)	2.5	Low	10.2
7	Abdomen High speed	125	1510.4	320	Medium(35cm)	2.5	High	9.6
8	Pelvis Large	125	2915.2	320	large(50cm)	2.5	Low	15.1
9	Pelvis Medium	125	2915.2	320	medium(35)	2.5	Low	18.8
10	Pediatric Medium	90	590	125	medium(35)	2.5	High	2.2
11	Pediatric small	90	590	125	small(26)	2.5	High	2.1
12	Body High Dose	125	2915.2	320	Medium(35cm)	2.5	Low	18.9

Coincidence of *I*socentre of treatment Gantry and kV Imaging system


Tolerance:	≤ 2.0 mm dia
Setup:	BB ball placed on PPS at isocentre and orthogonal image taken at each gantry angle
Shift =	$\sqrt{(\Delta x^2 + \Delta y^2 + \Delta z^2)}$
	Δx , Δy and Δz are the residual error vectors along X, Y and Z-axis


Maximum shift 0.20 mm at 225° Gantry angle

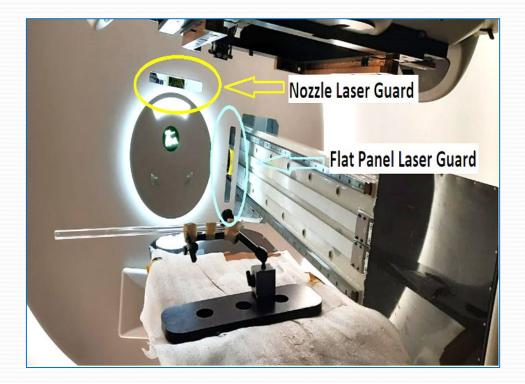
Coincidence of isocentre of treatment Couch and kV Imaging system

Maximum shift 0.84 mm at 45° couch angle

Coincidence of Isocenter between Proton Beam and KV imaging system

Maximum shift 0.88 mm at 225° Gantry angle

Radiation Safety Aspect:

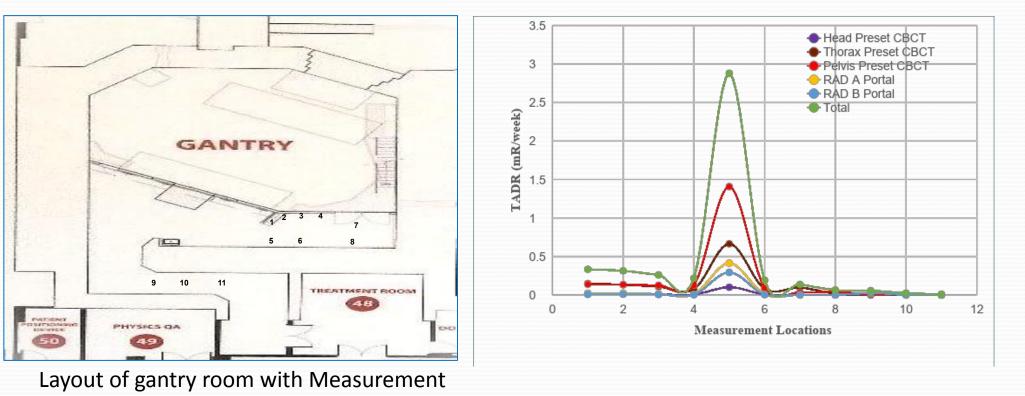

X-Ray ON Indicator Near treatment Door

X-Ray ON Indicator in Maze Wall

Maze Motion Detector

Radiation Safety Aspect:

Emergency Stop buttons at both control console


Collision Detection System

Radiation Protection Survey:

locations

Ion Chamber Survey Meter 451P series

The total maximum TADR was found to be 2.1 mR/Week during CBCT and 0.70 mR/Week during portal KV imaging.

Conclusions

The commissioning of the IGRT system in the proton therapy system was done successfully.

- While commissioning IGRT system optimization of imaging protocol must be done by minimizing the radiation dose while considering acceptable image quality.
- The extensive radiation protection survey shows the X-ray booth is safe to perform imaging inside the treatment room.

All safety measures were taken into account before giving IGRT system for patient imaging.

THANK YOU