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Introduction

* |GRT methods not employing ionizing radiation

— Surface-Guided Radiation Therapy (Discussed in next talk)

* Most prevalent, low cost, used primarily for breast and cranial
treatments

— Ultrasound-Guided Radiation Therapy

 Older method, limited use primarily for prostate and breast
treatments, no longer marketed



Introduction

* MR-Guided radiation therapy (MRgRT or MRIgRT)
— Relatively new
— High upfront and ongoing cost
— Slower treatment times

— Useful for treatments needing soft tissue contrast and
adaptive planning
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MRI guided

Pretreatment image-guidance quality

Routinely available.
Superior soft tissue
imaging: Exquisite
visualization of tumor
and normal tissue.

Routinely available.
Limited in spatio-temporal
acquisition.

Growing availability.

Functional imaging
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X-ray guided

Routinely available.
Generally poorer tumor and
normal tissue visualization
than MRI.

Emerging.

General reliance on
implanted markers as a
surrogate for the tumor
position.

Not available.
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Challenges Associated with combining MRI and Linac

* From the MRI perspective, a Linac is a magnetic source that
degrades magnetic field uniformity and is a source of
radiofrequency interference which could cause image artefacts

* From the Linac perspective, it must operate within the static

magnetic fringe field (the peripheral magnetic filed outside the
magnet core) which affects the trajectory of electrons during
acceleration

Keall et al., Nat Rev Rad Onc 19, 458-470 (2022)




Challenges Associated with combining MRI and Linac

» To overcome these issues, each system has employed
magnetic shielding (active or passive) and/or magnet redesign

* Thus the MR-Linac systems tend to have lower performance
that stand-alone MRIs and Linacs, including longer scan times
and ability to deliver the beams only in co-planar geometry

Keall et al., Nat Rev Rad Onc 19, 458-470 (2022)
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Fig. 2| Types of MRIlinac systems. Enabling the simultaneous and integrated operation of two sensitive pieces of
equipment, an MRI system and a linear accelerator (linac) system, is an engineering feat. Two main types of MRI-guided
linear accelerator (MRI-inac) systems exist depending on whethertheyhave a perpendicular orin-line configuration of
the magnetic field and radiation beam. The design differences and implications are shown.
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ViewRay, MR-Cobalt & MR-Linac (MRIdian), 6 MV FFF beam mounted on a 0.35 T split
superconducting magnets with a 28 cm gap between the two halves, SAD: 90 cm, field size of 27.4 x
24.1 cm
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Elekta Unity: 7 MV FFF linear accelerator mounted in a ring around a 1.5 T closed
superconducting magnet, SAD: 145 cm, field size of 55 x 29 cm
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\\ Aurora RT

http://mp.med.ualberta.ca/linac-mr/photo_gallery.html

MagnetTx Aurora-RT, 6 MV FFF linear accelerator mounted inline witha 0.5 T
biplanar superconducting magnet, SAD: 120 cm
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Paganelli et al. 2018 Https://image-x.sydney.edu.au/mri-linac/

Australian MR Linac, 4/6 MV FFF linear accelerator mounted inline or
perpendicular on a 1.0 T magnet, 180 cm SAD (fixed beam, rotating patient)
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Implementation of MRgRT

* Out of the over 13,000 radiotherapy machines globally (2013
data), ~1% are MRgRT systems

High-income  Upper- Lower- Low-Income
countries middle- middle- countries
Income Income
countries countries
Radiotherapy departments 5075 1972 590 40
Total megavoltage machines 8911 3115 1014 62
Linear accelerators 8300 2371 523 25
%“Co units 611 744 491 37
Modelled capacity (fractions peryear) 75879000 32995000 10660000 650000
Data are n, unless otherwise specified. The number of fractions that can be delivered with this equipment eachyearwas
modelled according to the nominal activity-based model.

Table4: Radiotherapy resources and modelled capacity, 2013

Expanding global access to radiotherapy

Rifat Atun, David A Jaffray, Michael B Barton, Freddie Bray, Michael Baumann, Bhadrasain Vikram, Timothy PHanna, FeliciaM Knaul,
Yolande Lievens, Tracey Y M Lui, Michael Milosevic, Brian 0’Sullivan, Danielle L Rodin, Eduardo Rosenblatt, Jacob Van Dyk, MeiLing Yap.
Eduardo Zubizarreta, Mary Gospodarowicz



Implementation of MRgRT

[0 Most radiation therapy departments have limited expertise in
safely introducing MRIs

[l Safety training should include various MR safety trainings and
professional bodies are beginning to address these

[0 Hence many departments recruit or involve staff with MRI
experience

Keall et al., Nat Rev Rad Onc 19, 458-470 (2022)




Implementation of MRgRT

* Two international guidelines have been introduced on the use
of MRI in radiation therapy

Task group 284 report: magnetic resonance imaging simulation in IPEM Topical Report: an international IPEM survey of MRI use for
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Implementation of MRgRT

» Considerations of cost-effectiveness of MRgRT:
— It is significantly more expensive than linac-based IGRT
— It involves longer treatment times
— It requires substantial structural and staffing costs
— There is lack of data on clinical effectiveness

* |In contrast:
— Conventional radiotherapy is highly cost effective

Keall et al., Nat Rev Rad Onc 19, 458-470 (2022)
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Clinical Advantages of MRgRT

[0 Superior anatomical definition translates into better target
definition for soft tissue tumors

0 Intrafraction cine-MR allows for gating and target tracking for
moving organs

[0 This is particularly relevant for hypofractionated treatments

[0 Ability for real-time adaptive radiotherapy

ICRU 97 A8



Limitations of MRgRT

[ No rotational movement of the couch to account for all six
degrees of freedom

[0 Necessity of evaluating image quality, specially for the
presence of motion artefacts

[0 Complexity of introducing on-line adaptive radiation therapy,
low patient throughput

ICRU 97 A8



Indications Treated by MRgRT

« Abdomen

— MRgRT enables delivery of higher radiation doses, particularly to
upper abdominal cancers

— Pancreatic cancer patients treated with MRgRT showed a
significant correlation between dose and survival

* Lung

— MRgRT might provide optimal solution for hard-to-treat lung
cancers

Keall et al., Nat Rev Rad Onc 19, 458-470 (2022)




Enhanced Soft

Inter-Fraction

. . ) Motion : Margin Facilitate Dose
Disease Site Tissue Adaptive : .
] - Management ] Reduction Escalation
Visualization Re-Planning
Prostate v v
Pancreas v v v v
Liver v v v v
Breast v v v
Lung v v
Oligometastases v v v v v
Cardiac Ablation v v

Ladbury et. al, Cancers 15, 2916 (2023)



Contraindications

Implantable medical devices (safety and image artefacts)

Ferromagnetic materials (implants ad prosthesis, clips,
staples, ...)

Patient size (limited FOV)

Patient diet prior to treatment




Contraindications

» Case report: Metal artefacts caused by iron-fortified breakfast
cereal consumed shortly before treatment

Susceptibility artefacts, image distortion due to magnetic field inhomogeneity from ferrous materials

Green et al., Cureus 10 (3): €2359 (2018)
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Safety

* All MRI safety issues are applicable to MR-Linacs
— MR safety zones
— MR personnel
— MR screening

e American College
of Radiology™

ACR Manual on
MR Safety

2024
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By, (MT)

distance Z (m)

Figure 1 (a) Fringe field strength of 0.35T and 1.5T magnetic resonance imaging along the B, direction as a function of the distance
from isocenter. (b) Picture of a magnetic resonance-guided radiation therapy vault with the 5 Gauss line clearly marked on the floor as
being a potential hazard.

Hu et al., Pract Radiat Oncol 10, 443-453 (2020)




Safety

il
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Figure 2 (a) Radiofrequency filter panel designed specifically for triaxial and coaxial cable used for dosimeters such as ion chambers.
(b) Waveguide conduit for cables that do not need radiofrequency filter.

Hu et al., Pract Radiat Oncol 10, 443-453 (2020)
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Summary and Conclusions

 MRgRT has clear advantages in treating certain indications
requiring soft tissue contrast

* |t also enables real-time adaptive radiation therapy

* |t eliminates the imaging dose burden of patients




Summary and Conclusions

However;
* |t has high upfront and ongoing costs
* |t requires significant safety measures and staff training

* |t is a slower treatment delivery option, especially if adaptive
planning is employed
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