JOINT ICTP-IAEA WORKSHOP ON RADIATION PROTECTION IN IMAGE-GUIDED RADIOTHERAPY (IGRT)

IGRT in Brachytherapy

Sebastien Gros, PhD, DABR, FAAPM Radiation Oncology Department Stritch School of Medicine ICRP TG-116 Member, Former Mentee

SESSION 18: EDUCATION, BRACHYTHERAPY, AND FUTURE PROSPECTS- ICRP TG-116, 9 OCTOBER 11, 2024

Outline

Introduction to IGRT in Brachytherapy Imaging Modalities: Ionizing vs. Non-Ionizing Brachytherapy Workflow: Role of Imaging Clinical Applications of IGRT in Brachytherapy Radiation Protection and Dose Reduction Future Directions in IGRT for Brachytherapy

1. INTRODUCTION TO IGRT IN BRACHYTHERAPY

LOYOLA UNIVERSITY CHICAGO

IGRT IN BRACHYTHERAPY

What is Brachytherapy?

:Internal radiotherapy using radioactive sources placed inside or near the tumor.

•History:

- Early 1900s: Use of radium implants for treating tumors.
- Modern developments: HDR (high-dose-rate) and LDR (low-dose-rate) techniques.
- Integration of advanced imaging for better precision and outcomes.

•Types of Sources Used:

- LDR: Permanent radioactive seeds, commonly using isotopes like lodine-125 or Palladium-103.
- HDR: Temporary sources using isotopes like Iridium-192, often removed after treatment sessions.
- Other Sources: Cobalt-60 or Cesium-137 used in specific types of treatments.

Advantages:

- Delivers high dose locally with minimal exposure to healthy tissue.
- Effective for treating cancers like cervical, prostate, breast, and head/neck.

Key Feature: High precision and control compared to external beam radiotherapy.

Image Guidance in Brachytherapy

Relevance:

- Essential for accurate applicator placement and verification.
- Improves tumor targeting while sparing nearby organs at risk (OARs).

Integration:

 Imaging is used at key stages: during applicator insertion, treatment planning, and dose verification.

Precision and Adaptation:

• Imaging allows for treatment adaptation, ensuring high-dose radiation is delivered to the tumor with minimal exposure to healthy tissues.

Typical patient pathway

Imaging under protocol

Clinical Evaluation

Therapeutic decision making

Anatomy assessment

Applicator / implant placement

Imaging for contouring and planning treatment

Treatment planning

Plan selection

Treatment

Monitoring during treatment

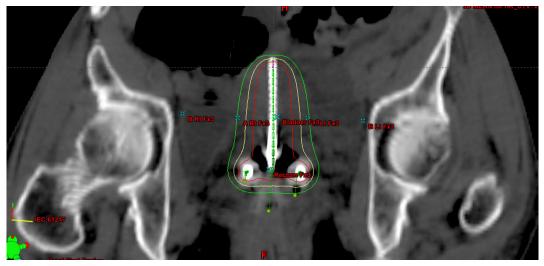
Adaptation of plan

Patient follow-up

- Patient assessment (tumour, staging)
- Treatment intent
- Choice of treatment modality and options
- Selection of applicator type
- Defining safe applicator / implant placement
- · Contouring target(s) and organs at risk
- Optimising treatment plan
- Final dose prescription
- Treatment set-up and pre-delivery quality control
- Imaging depending on practice
- May include further imaging but not for guidance

2. IMAGING MODALITIES IN BRACHYTHERAPY

Imaging Modalities in Brachytherapy


- 1- lonizing Imaging: CT, radiographs, fluoroscopy.
- Benefits: Accurate visualization of applicators and treatment area
- **Drawbacks:** Radiation exposure to the patient.

2- Non-lonizing Imaging: MRI and ultrasound.

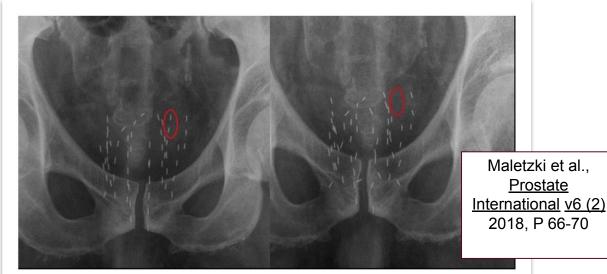
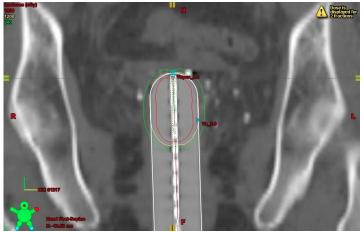
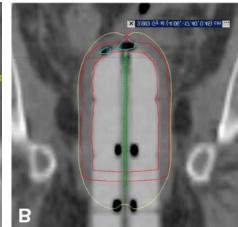
- Benefits: No radiation, better soft tissue contrast (MRI especially).
- **Drawbacks:** Resource limitations, MRI compatibility, and operator dependency (ultrasound).

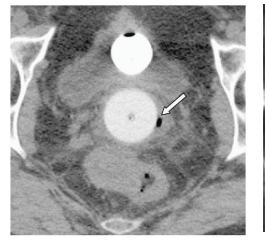
Key Considerations: Tumor site, technique complexity, and *availability of imaging resources.*

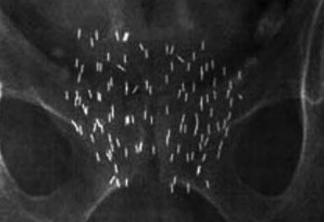
Imaging Modalities in Brachytherapy: CT, Radiographs, Fluoro

Tandem and Ovoids

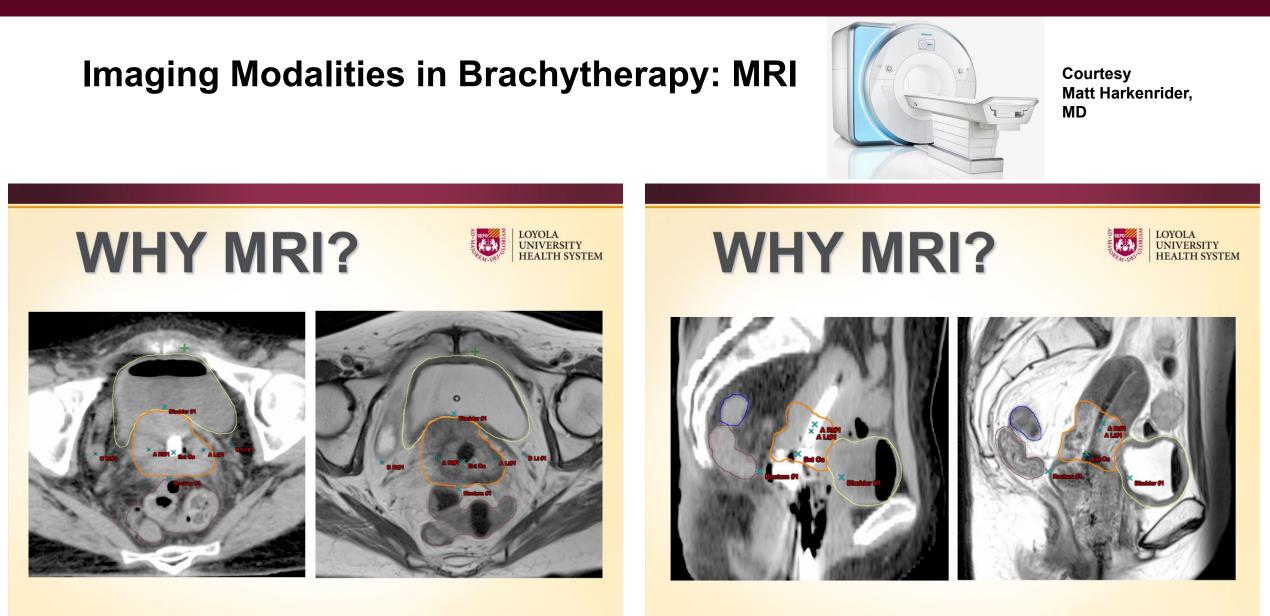
Courtesy Matt Harkenrider,


Fig 1. Seed loss. Pelvic X-ray shows loss of two seeds (red circle) in follow-up on 1st day after seed implantation.

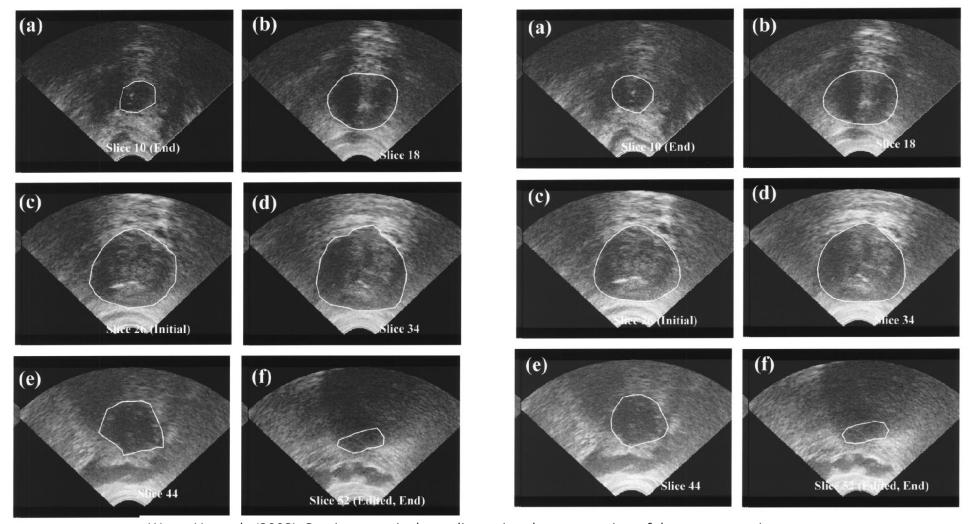


LOYOLA UNIVERSITY CHICAGO



Vaginal Cylinder

Prostate Post implant radiograph

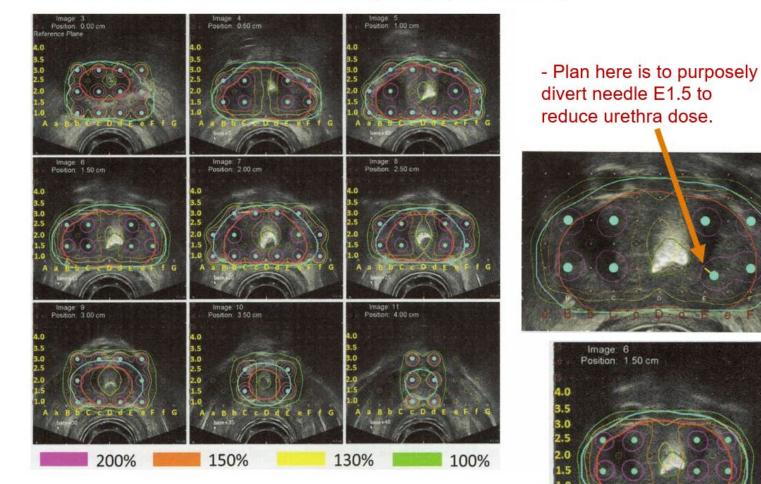

A MEMBER OF 🍪 TRINITY HEALTH

A MEMBER OF 🍪 TRINITY HEALTH

LOYOLA UNIVERSITY CHICAGO

IGRT IN BRACHYTHERAPY

Imaging Modalities in Brachytherapy: US



LOYOLA UNIVERSITY CHICAGO

Wang, Y., et al., (2003), Semiautomatic three-dimensional segmentation of the prostate using two-dimensional ultrasound images. Med. Phys., 30: 887-897. <u>https://doi.org/10.1118/1.1568975</u>

Imaging Modalities in Brachytherapy: US

URETHRA: Identified with aerated gel during volume study

Applicator Placement

Internal "dummy" wire

Courtesy Matt Harkenrider, MD

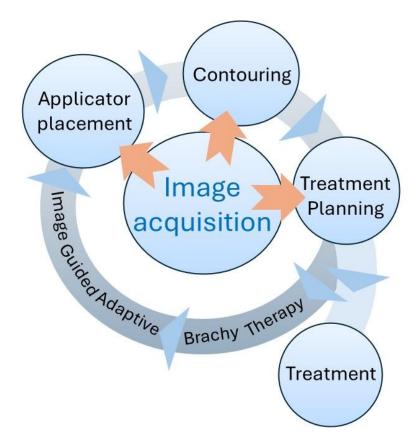
Color Keys

' Standard or in widespread clinical use

O Optional available modality

E Experimental or research-oriented modality

- not applicable


Treatment site	Applicator insertion /guidance					Implant/Image verification						Treatment Planning						
	СТ	Flu oro sco py / rad iog rap hs	M R I	Ult ras ou nd	Vi s u al	E n d o sc o p y	C T	Flu oro sco py / rad iog rap hs	M R I	UI tr a s o u n d	Vi s u al	En do sc op y	C T	FI uo ro sc op y / ra di og ra ph s	MR I	UI tr a s o u n d	Vi s u al	En do sc op y
Cervix (limited stage)	0	•	0	0	-	-	,	•	0	0	-	-	•	•	0	е	-	-
Cervix (advanced stages)	Ο		0		-	е	,	÷	0		-	е	,	,	0	е	-	-
Endometrium (post op.)	-		-	-		-	0		0	-	-	-	•	,	0	-		-
Endometrium (definitive)	-		-	0	-	-	•		0	-	-	-	•		ο	-	-	-
Vagina	0	,	0	,	0	-	,	,	0	,	0	-		•	0	е	-	-
Vulva	_		_	_	•	_	_		_			_	0	,	_			

3. INTEGRATION OF IGRT INTO THE BRACHYTHERAPY WORKFLOW

Integration of IGRT into the Brachytherapy Workflow

•Key Workflow Stages:

- **Applicator Insertion**: Real-time imaging (ultrasound, fluoroscopy) for precise placement.
- **Treatment Planning**: 3D imaging (CT, MRI) to create personalized plans.
- **Verification**: Imaging confirms accurate dose delivery and applicator position.

Integration of IGRT into the Brachytherapy Workflow

Levels of Complexity	IMAGING MODALITY				
Level 1	No imaging or simple planar imaging.				
Level 2	2D imaging with anatomical landmarks (planar radiographs).				
Level 3	3D imaging (CT, MRI) for precise treatment planning.				
Level 4	Image-guided adaptive brachytherapy (IGABT) with complex applicators.				

4. CLINICAL APPLICATIONS OF IGRT IN BRACHYTHERAPY

Cervical Cancer: MRI-Guided Brachytherapy and the EMBRACE Trial

MRI-Guided Brachytherapy:

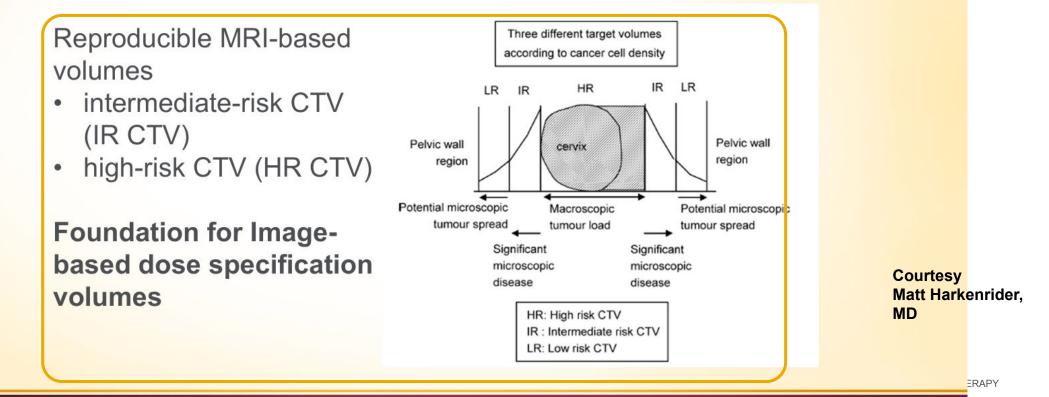
- Provides superior soft tissue contrast, allowing for better tumor delineation.
- Enables dose escalation to the tumor while sparing organs at risk (OARs).

Workflow Challenges:

- Timing of imaging in the workflow.
- Requirement for MRI-compatible applicators.

•The EMBRACE Trial:

• **Objective**: A multicenter prospective study evaluating MRI-guided adaptive brachytherapy in cervical cancer.

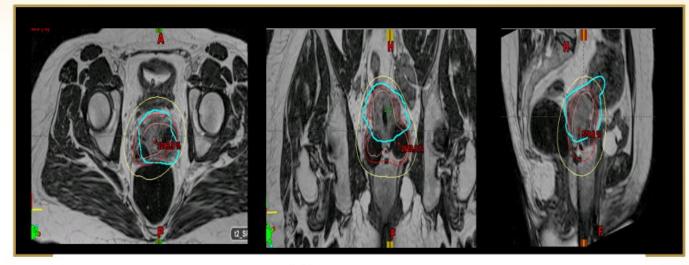

• Key Findings:

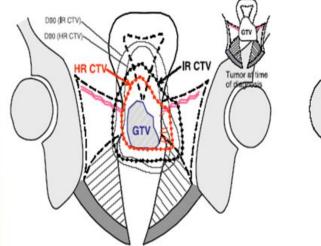
- Improved local control rates.
- Significant reduction in severe side effects.
- Enhanced tumor targeting, leading to better overall survival and quality of life.
- Impact: The trial has set a new standard for MRI-based brachytherapy, supporting its integration into clinical practice.

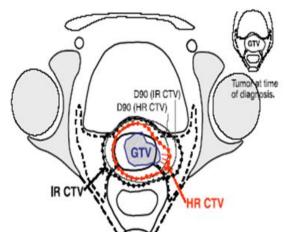
Cervical Cancer: MRI-Guided Brachytherapy and the EMBRACE / II Trials

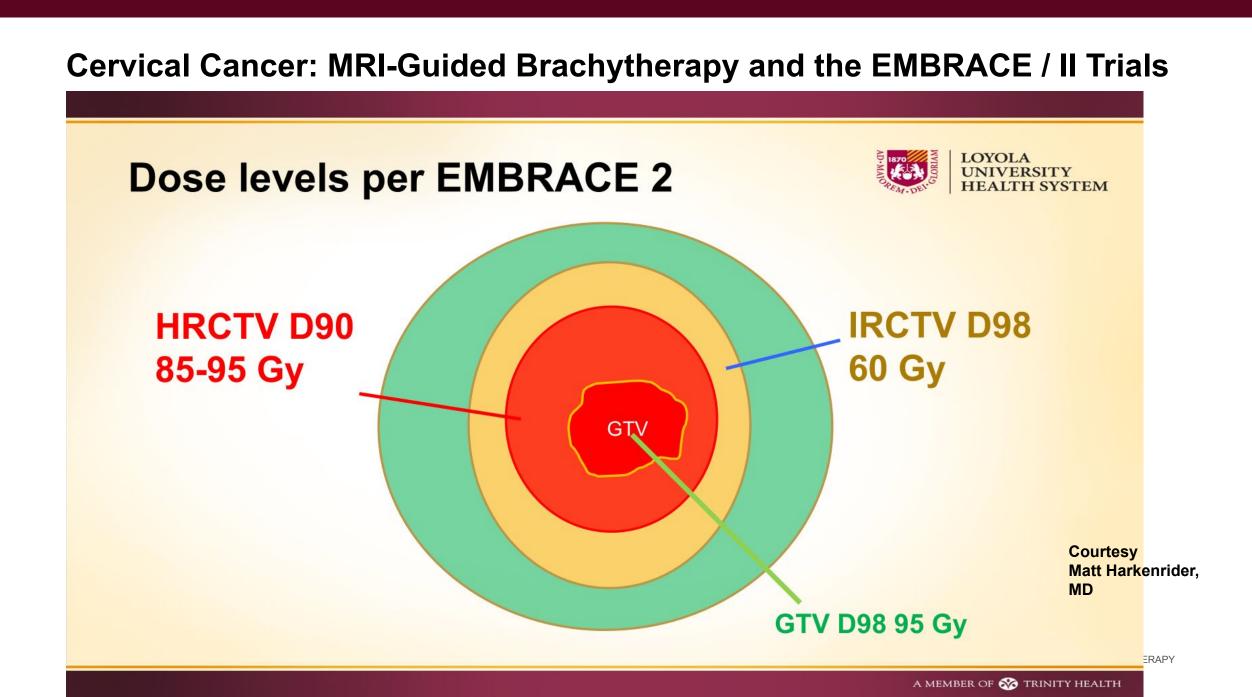
Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group[★] (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV

YOLA VIVERSITY SALTH SYSTEM

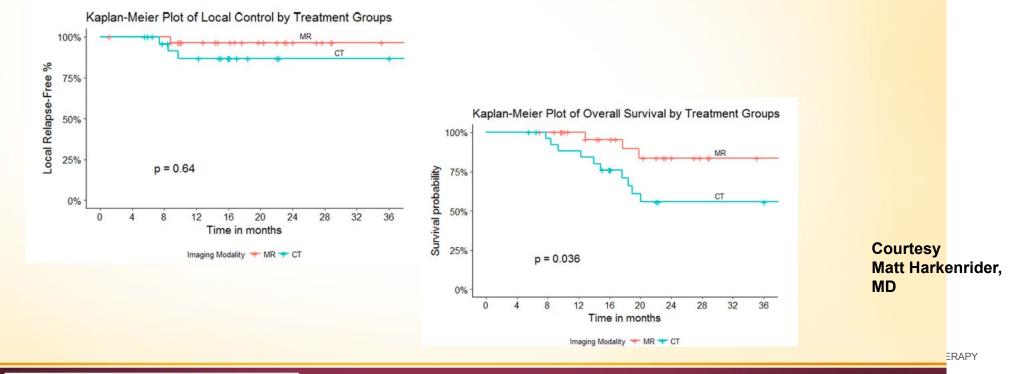



C. Haie-Meder et al. / Radiotherapy and Oncology 74 (2005) 235-245


MRI for Image Guided Brachytherapy


LOYOLA UNIVERSITY HEALTH SYSTEM

Courtesy Matt Harkenrider, MD



Cervical Cancer: MRI-Guided Brachytherapy – MR vs CT

Comparison of outcomes for MR-guided versus CT-guided high-dose-rate interstitial brachytherapy in women with locally advanced carcinoma of the cervix

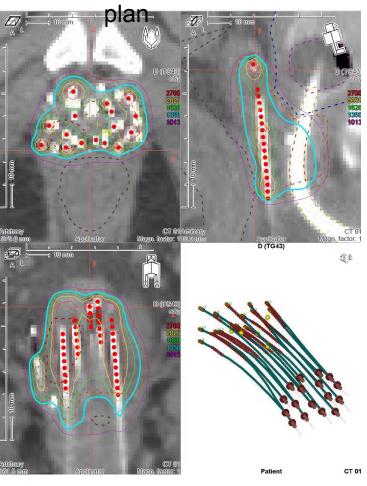
LA ERSITY TH SYSTEM

Sophia C. Kamran^{a,*}, Matthias M. Manuel^{b,c,e}, Linda P. Cho^{b,c,f}, Antonio L. Damato^{b,c,g}, Ehud J. Schmidt^d, Clare Tempany^d, Robert A. Cormack^{b,c}, Akila N. Viswanathan^{b,c,h,**}

Prostate Cancer: LDR and HDR Brachytherapy

LDR Brachytherapy (Low-Dose-Rate):

- Permanent seed implants, typically used for early-stage prostate cancer.
- **Imaging**: **Ultrasound or CT** used for real-time seed placement during treatment.


HDR Brachytherapy (High-Dose-Rate):

- Temporary placement of radioactive sources for high-dose precision.
- **Imaging**: **MRI, ultrasound, or CT** for applicator guidance and detailed treatment planning.

Role of Imaging:

• Ensures accurate placement of seeds or applicators, reducing complications and improving treatment outcomes.

HDR prostate

Prostate Cancer: Key Clinical Trials in Brachytherapy

•ASCENDE-RT Trial:

- Combined HDR brachytherapy boost with EBRT.
- Imaging: MRI or CT used for precise treatment planning and dose delivery in HDR.
- **Outcome**: Improved progression-free survival in high-risk patients with imaging-guided HDR boost.

•RTOG 0232 Trial:

- Compared LDR brachytherapy alone with LDR + EBRT.
- Imaging: Ultrasound and CT guided accurate seed placement in LDR brachytherapy.
- **Outcome**: Effective outcomes with brachytherapy alone in intermediate-risk patients.

•FLAME Trial:

- Focal boost HDR brachytherapy for high-risk prostate cancer.
- Imaging: MRI-guided boost allowed precise targeting of high-risk areas.
- **Outcome**: Improved local control with no added toxicity from MRI-guided focal boosts.

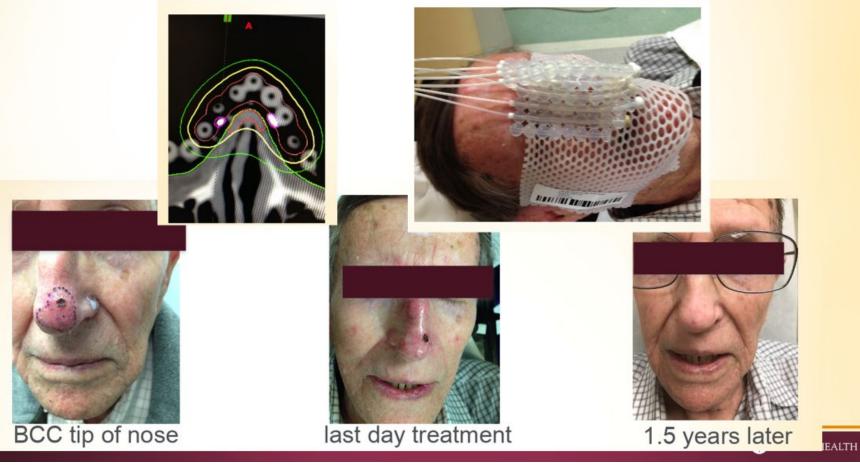
Clinical Applications of IGRT in Brachytherapy

Head and Neck Cancers:

• Complex anatomy requires advanced imaging for precise applicator placement and dose distribution.

Breast Cancer:

• Partial breast irradiation using brachytherapy, often guided by ultrasound for applicator placement.


Skin Cancer:

• Surface brachytherapy is commonly used, with minimal imaging required, though ultrasound may be used for depth assessment.

Benefits of brachytherapy

Skin cancer

 Excellent local control with organ preservation for nonmelanomatous skin cancer

Courtesy Matt Harkenrider, MD

5. RADIATION PROTECTION AND DOSE REDUCTION

LOYOLA UNIVERSITY CHICAGO

IGRT IN BRACHYTHERAPY

Radiation Protection and Dose Reduction in IGRT

Justification of Imaging:

 Imaging should be used only when clinically necessary to avoid unnecessary radiation exposure.

Key Factors for decision process on imaging use in brachytherapy:

- **Resources**: Availability and access to imaging modalities.
- Feasibility: Ability to visualize target and OARs accurately.
- **Operationality**: Integration of imaging into clinical workflow.
- Benefits vs. Risks: Balancing clinical benefits of imaging with radiation exposure risks.

Dose Optimization Techniques:

- Minimize radiation exposure by using non-ionizing modalities (MRI, ultrasound).
- Optimize imaging protocols to reduce frequency without compromising accuracy.

6. FUTURE DIRECTIONS IN IGRT FOR BRACHYTHERAPY

Future Directions in IGRT for Brachytherapy

Personalized Medicine:

- Adaptive treatments based on patient-specific anatomy and tumor response.
- Use of imaging data to continuously adjust the treatment plan.

Enhanced Imaging Modalities:

- Development of MRI-compatible applicators and advanced ultrasound technologies.
- Improved soft tissue visualization and dose accuracy.
- AI: development of synthetic MRI from CT for patients who cannot undergo MRI studies

Dose Calculation Models:

- **TG-43**: The standard for dose calculation assuming homogenous tissues and uniform geometry.
- Advanced Models: Incorporation of patient-specific anatomy using 3D imaging to account for tissue heterogeneity.
- **AAPM TG-186**: Introduction of heterogeneity corrections to improve dose accuracy in complex anatomical regions, considering different tissue densities.

Future Directions in IGRT for Brachytherapy

Enhanced Imaging Modalities:

- Development of MRI-compatible applicators and advanced ultrasound technologies.
- Improved soft tissue visualization and dose accuracy.

EMBRACE II Trial – Advancing MRI-Guided Brachytherapy for Cervical Cancer

Objective: The EMBRACE II trial builds on the success of the first EMBRACE trial, aiming to refine and optimize MRI-guided adaptive brachytherapy.

Key Focus:

- Standardizing MRI-based treatment protocols across centers.
- Improving local tumor control with optimized dose escalation \Box **ART element**.
- Reducing treatment-related toxicities by refining OAR sparing techniques.

Preliminary Findings:

- Continued improvements in local control.
- Significant progress in reducing severe side effects through optimized treatment planning.

STARPORT Trial – Exploring Stereotactic Adaptive Radiation for Prostate Cancer

Objective: The STARPORT trial is investigating the use of stereotactic adaptive radiation therapy (SABR) combined with brachytherapy for high-risk prostate cancer.

Key Focus:

- Combining stereotactic adaptive radiation with brachytherapy to improve tumor control.
- Use of advanced imaging techniques (e.g., MRI, CT) for real-time adaptation of treatment.
- Exploring the benefits of delivering higher radiation doses in a more targeted manner, with fewer treatments.

Preliminary Findings:

- Promising early data on tumor control and reduced toxicity.
- Enhanced precision with the integration of adaptive imaging techniques.

Challenge: combining doses from EBRT, BT, CT, Fluoro, etc...

7. CONCLUSION

Conclusion: Precision, Safety, and the Role of IGRT in Brachytherapy

IGRT Enhances Precision:

- Improves applicator placement and dose accuracy.
- Ensures treatment is adapted to patient anatomy and tumor response.

Balancing Imaging and Safety:

- Use imaging only when clinically necessary.
- Prioritize non-ionizing modalities where possible.

Key Takeaways and Future Directions in Brachytherapy

Brachytherapy's pivotal role in cancer treatment continues to evolve with advancements in imaging, dose calculation models, and clinical trials.

- Imaging advancements (e.g., MRI, CT, ultrasound) are key in ensuring accurate dose delivery and enhancing adaptive approaches in both external beam radiotherapy (EBRT) and brachytherapy.
- Future directions include refining dose models, as seen in the shift from TG-43 to heterogeneous tissue models (TG-186), and further exploring the impact of clinical trials like EMBRACE II and STARPORT on broader cancer treatment strategies.
- Clinical trials like **EMBRACE II** and **STARPORT** highlight the importance of personalized, image-guided treatments to optimize outcomes and reduce toxicity.

THANK YOU ③

sgros@luc.edu

