

Optimization of Imaging Protocol for IG (RT)

Dr. A. Saravana Kumar

Associate Professor & Head Medical Physics PSG IMSR & HOSPITALS

Imaging phase in RT

- □ IGRT may involve a variety of 2D, 3D and 4D imaging techniques to position your body and aim the radiation so that your treatment is carefully focused on the target.
- □ This helps to minimize harm to healthy cells and organs nearby.
- During IGRT , imaging tests are done before, and sometimes during, each treatment session.

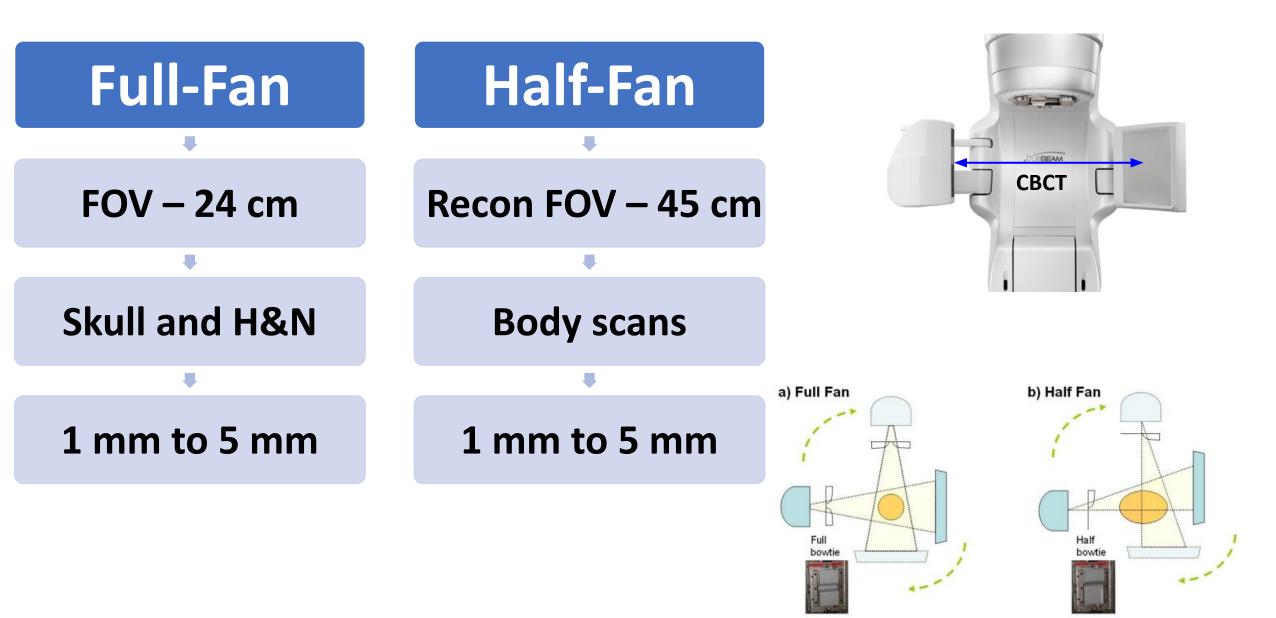
Motion management

- Intra-fraction motion

 during the fraction
- ✓ Heartbeat
- ✓ Swallowing
- ✓ Coughing
- ✓ Eye movement

- Inter-fraction motion

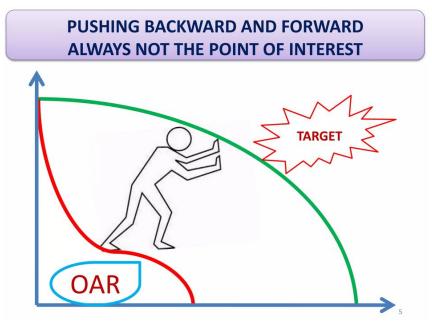
 in between the fractions
- ✓ Tumor change
- ✓ Weight gain/loss
- ✓ Positioning deviation



- ✓ Bowel and rectal filling
- ✓ Bladder filling
- ✓ Muscle relaxation/tension

CBCT exposure

CBCT exposure settings


CBCT FOV	FAN TYPE	TRAJECTORY	kV	mAs	CTDI _{VOL}	DLP
Head	FULL	HALF	100	50 - 2825	1.06 – 59.69	22.6 - 1277.4
	FULL	FULL	100	90 - 5085	1.90 - 107.45	40.6 – 2299.3
IMAGE GENTLY	FULL	HALF	80	50 - 3150	0.47 – 29.70	10.1 - 635.7
	FULL	FULL	80	90 - 5670	0.85 - 53.47	18.1 - 1144.2
PELVIS	HALF	HALF	125	90 - 4050	1.33 - 60.07	28.5 – 1285.6
PELVIS LARGE	HALF	FULL	140	90 - 4050	1.96 – 78.45	42- 1679.5
THORAX	HALF	FULL	125	90-4050	1.33 – 60 .07	28.5 – 1285.6
SHORT THORAX	FULL	LIMITED	125	35 - 1575	0.57 - 25.89	12.3 - 554
SPOTLIGHT	FULL	HALF	125	50 - 2250	0.82 - 36.98	17.5 - 791.4
	FULL	FULL	125	90 - 4050	1.33 - 60.07	28.5- 1285.6

kV / kV

FOV	AREA	kV	mAs	
	SMALL	84 - 122	3.07 - 11.72	
Pelvis	MEDIUM	84-122	50.12 -19.53	
Peivis	LARGE	91 - 134	7.68 - 29.30	
	X-LARGE	98 - 140	8.7 - 33.20	
HEAD	HEAD MEDIUM		2.56 - 9.77	
THORAX ARM UP	SMALL	84 - 122	2.56 - 9.77	
	LARGE	98 - 140	2.56 – 9.77	
THORAX ARM DOWN	SMALL	98 - 140	5.12 – 19.53	
	LARGE	116 - 140	5.12 – 19.53	
ABDOMEN	SMALL	69 - 95	5.12 – 19.53	
ABDOWEN	LARGE	84 - 122	6.66 – 25.39	
EXTERMITES MEDIUM		56 - 76	1.79 - 6.84	

CBCT Pt data

Patient ID	P1	
Age / sex	10 / Male	
Dose per fraction	180 cGy	
Number of fractions	28	
Total dose	5040 cGy	
Number CBCT Acquired during over all treatment	10	
X-Ray tube Voltage	100 kV (Default Value)	
X- Ray tube current	15 mA (Default Value)	
Exposure	150 mAs (Default Value)	
Exposure Time	10 sec (Default Value)	
Source To Detector Distance	150 CM (Default Value)	
CTDI _{VOL}	3.17 mGy	
DLP	67.7 mGy.cm	
Reconstruction Slice Thickness	2 mm	

Paediatric Imaging Protocol

S. No	Treatment site	Imaging frequency	Remarks		
1	Brain tumor with IMRT or SRT	Daily CBCT	-		
2	Brain and other central nervous system (CNS)	Twice in a week CBCT Daily kV	Based on Institutional practice - Daily CBCT		
3	CSI	Daily CBCT mandatory	-		
3	Leukemia – TBI - kV imaging based on Institutional practice				
4	lymphomas	Alternate day CBCT Daily kV	Based on site		

IGRT

Image Acquisition. The IGRT system should be calibrated to ensure high imaging quality with attention to slice thickness uniformity, image contrast, spatial resolution, isocenter alignment between imaging and treatment planning and delivery systems, accuracy of software used for identification, and correction of couch misalignments. Relevant QA procedures should ensure reliability and reproducibility of the entire process.

<u>Treatment Verification</u>. Image review by radiation oncologist at the first fraction and then periodically is necessary to ensure treatment accuracy and reproducibility. Each department should determine its own threshold of couch positioning changes that would necessitate setup review or change before treatment delivery.

Quality Assurance and Documentation. A documentation of all the necessary QA procedures throughout the course of simulation, treatment, and periodic verification should be maintained. These would help determine departmental thresholds for action as well as serve as guides for modification of the processes involved following review of findings.