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Introduction

» The Global Positioning System (GPS) requires augmentation
In order to meet the strict requirements necessary to support

the guidance of aircraft
> This is also true for the other core constellations

» The main challenges for GNSS are:
> Integrity — is it safe to use?
> Continuity — will there be interruptions?
> Availability — can you count on it when you need it?

» Augmentation systems fill in the gaps that GPS and the other
constellations cannot meet by themselves

“GNSS. A worldwide position and time determination system that includes one or more satellite
constellations, aircraft receivers and system integrity monitoring, augmented as necessary to support

the required navigation performance for the intended operation.” [ICAO Annex 10, Volume I] Stanford Univer Sity
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Parameters Used to Evaluate Aviation Performance

» Accuracy: characterize typical behavior of the system in the
presence of nominal errors

» Integrity: limit risk from abnormal behavior affecting the system
> Integrity risk
> Maximum tolerable error
> Time to alert (TTA)

» Continuity: limit risk of losing the service unexpectedly

» Availability: fraction of time that one has the accuracy, integrity,
and continuity required to perform the desired operation

Stanford University



200" Decision Height (DH) Requirements

» Accuracy: <4 m 95% horizontal & vertical positioning error

> Integrity:

> Less than 107 probability of true error larger than 40 m horizontally or 35 m
vertically

> 6 second time-to-alert

» Continuity: < 10> chance of aborting a procedure once it is
initiated

» Availability: > 99% of time
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Ground Based Augmentation System (GBAS)

GPS Satellites :
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GBAS lonospheric Effects

lonosphere with
Large Gradients
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« Air-ground ionosphere error, Al, is large
» Spatial & temporal gradients induce errors in
single frequency carrier-smoothed code filters
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Satellite Based Augmentation System (SBAS)
o v R

mefereﬂﬁ Station§. 5€C ationary Satellites -
“Master Stations™ “e.Geo-Uplink Stations
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SBAS Models lonospheric Delay on a Continental Scale

Estimated

lonosphere
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Current SBAS Implementations

iy _ Wide-area Reference Station (WRS) @ International WRS’s

GEO Sateliite B Wide-srea Master Station (WMs) G T 1 - Cou rtesy: Navi ped ia
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lonospheric Related Threats to Augmentation Systems

» Poor quality and/or erroneous measurements lead to inaccurate
ionospheric corrections

> Measurement uncertainty must be accurately described and accounted for
» Faulty measurements must be contained

» lonospheric delay at the user location is different than the
ionospheric delay measured by ground systems

» Spatial variation of the ionosphere must be fully modelled

» lonospheric delay changes from when the correction was generated
> Temporal variation of the ionosphere must be well characterized

» Nominal vs. Disturbed
> lonosphere is often well behaved and accurately modelled locally

» Disturbances can lead to very different phenomena that are very difficult to
accurately model

Stanford University 4



lonospheric Delay
IRI Modeled lonospheric Delay
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Presentation Notes
Notes: 
Areas of large delays follows geomagnetic equator
Large delays occur near local sunset
Areas of strong gradients +/-20deg from geomagnetic equator are difficult for GNSS Augmentation Systems to operate with single frequency iono estimation
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11 Year Solar Cycle
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* DST=Disturbance Storm Time is a measure of the suppression of

Earth’s magnetic field

* K, isanjindex of planetary magnetic activity (0-10)
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Major lonospheric Storms
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GBAS: Gradient Threat

Observed Data Analysis Model
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SBAS: Under-sampled Threat
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Nominal Day Spatial Gradients Between WAAS Stations
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Presentation Notes
 Nominal iono day
 Discretized
 Smallest distance 255 km
 clean sigma bound looks possible
 storm day


Spatial Gradlents Durlng a Dlsturbed Day
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Presentation Notes
 Highest gradient 19 m slant at 255 km (74 mm/km) 
No clean curve > 255 km
 No sampling at < 255 km
 Another way?


Characteristics of Plasma Bubble

» Multiple plasma bubbles often occur with separation of about several hundred
kilometers [Saito et al., 2009].

» Drift eastward typically with a velocity of 50-150 m/s [Saito et al., 2009].

Plasma
bubble 12:30:30 UT on 7 April 2002
> ~1000 km = I 9.6
i —————— 35°N 4 =
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East ~100 km West

Plasma
'y bubble

Migr;gtf/‘:ﬁ 000 km 30°N
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delay (m)

(Saito et al., 2009)
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Worst Track
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Prediciton Error (m)
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Disturbance in Polar Region
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Small-scale lrregularity

10/31/2003, 05:00:00UT, CORS 400 Stations

Vertical lonospheric Delay in m
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lonospheric Delay Threats Summary

» Spatial gradients nominally below 4 mm/km
> Extreme values up to ~400 mm/km in disturbed mid-latitude conditions

> Extreme values greater than 500 mm/km observed in equatorial
regions

» Temporal gradients nominally below 1 mm/sec

> Temporal gradients up to 175 mm/sec in disturbed mid-latitude
conditions

» Localized variations observed after storm events
> ~10 m vertical delay difference over ~ 200 km
> Otherwise surrounded by smooth ionosphere

®
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Thin Shell Model

Fixed Shell Vertical

/ Height TEC

SBAS Shell Height = 350 km
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Estimation of lonospheric Gradients

Station Pair Mixed Pair

Method Method
® % o*
IPP
* Long baselines * Long and short
- Free from satellite baselines
IFB calibration * IFB calibration
error error on both SV
and RR

Time Step
Method

oi® o*

T T,

» Short baselines

* Free from IFB
calibration error

* Corrupted by iono.
temporal gradients

Slide
Courtesy
Jiyun Lee
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Spatial Decorrelation Estimation

>

YV YV V

Every IPP |Is Compared to All Others
The Great Circle Distance Between the IPPs Is Calculated
The Difference in Vertical lonosphere Is Calculated

A Two-dimensional Histogram Is Formed: Each Bin

Corresponds to a Distance Range and a Vertical Difference
Range

Histogram Contains the Counts for Each Time an IPP Pair
Fell in a Particular Bin
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Spatial Correlation Estlmatlon Process

Top - Down View

® IPP under evaluation
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lonospheric Decorrelation (0" Order)
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lonospheric Decorrelation Function (0" Order)

Vertical lonosphere Containment ¢, 0t Order Correlation (CONUS,2nd July 2000)
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lonospheric Decorrelation About a Planar Fit (1st Order)

Vertical lonosphere Cotrelation, 18t Order (CONUS, 2M July 2000, Rmax = 1500km)
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lonospheric Decorrelation Function (1st Order)

Vertical lonosphere Containment &, 15t Order Correlation (CONUS, 2nd July 2000
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Disturbed lonosphere

Vertical lonosphere Correlation, 15t Order (CONUS, 15t July 2000, Rax = 1500km)
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Disturbed lonosphere
Vertical lonosphere Containment &, 15t Order Correlation, (CONUS 15th July 2000
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SBAS lonospheric Grid (WAAS)

» < Active Grid Point

_ ¢ Inactive Grid Point
+ lonospheric Pierce Point




Nom5i5naI lonosphere - IPP
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Nominal lonosphere — Grid Comparison to IPPs
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Nom5i5nal Ionospher — Confidence Value55
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Limits of the Thin Shell Model Disturbed Day

10/28/2003, 20:35:00UT 10/29/2003, 20:31:00UT
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Under-sampled lonospheric Threat Condition

10/30/2003, 05:50:00UT
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WAAS Measurements

10/30/2003, 05:50:00UT
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January 11, 2000

01/11/00, 21:11:52 UT
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July 16, 2000

07/16/00, 03:33:32 UT, Relative Centroid = 0.075, Fit Radius = 1300, sigus =1.4129
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April 6, 2000

07/16/00, 04:45:12 UT, Relative Centroid = 0.025, Fit Radius = 1250, sigus = 0.9876
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April 6, 2000

04/06/00, 23:15:12 UT, Relative Centroid = 0.175, Fit Radius = 2100, sigus =2.2128
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March 31, 2001

03/31/01, 05:51:27 UT, Relative Centroid = 0, Fit Radius = 850, sigus = 0.8304
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October 24-25, 2011

Geographic Latitude [deg N]

IDA4D 3" grid Vertically Integrated Ne, 24 Oct 2011, 2000 UT
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October 24-25, 2011

Geographic Latitude [deg N]

IDA4D 3" grid Vertically Integrated Ne, 24 Oct 2011, 2200 UT

80 15
60 |
40 E
{10~
20 © lono Model
> .
© Courtesy:
g Gary Bust &
0
= Seebany
2 Datta-Barua
o
-20 =

-60
-180 -160 -140 -120 -100 -80 -60 -40 . )
Geographic Longitude [deg E] Stanford University

51



October 24-25, 2011

Geographic Latitude [deg N]

IDA4D 3" grid Vertically Integrated Ne, 24 Oct 2011, 0000 UT
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October 24-25, 2011

IDA4D 3" grid Vertically Integrated Ne, 24 Oct 2011, 0200 UT
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October 24-25, 2011
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October 24-25, 2011

Geographic Latitude [deg N]

IDA4D 3" grid Vertically Integrated Ne, 24 Oct 2011, 0600 UT
80

60
40 E
{10~
© lono Model
= Courtesy:
Q Gary Bust &
o Seebany
2 Datta-Barua
@
>

-60
-180 -160 -140 -120 -100 -80 -60 -40 . .
Geographic Longitude [deg E] Stanford University

55



Grid lonospheric Vertical Error (GIVE) Elements

> Formal error term
> Measurement noise

> lonospheric modeling error
» Accounts for sampled ionosphere and disturbance state

> Antenna bias contribution
» Under-sampled threat term
» Spatial & temporal threats
» Floor term
» Storm detector
> Local at the IGP
> Moderate storm detector (MSD)
> Global extreme storm detector (ESD)

(5
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Linear estimator

> We choose a linear estimator:

]est — Z ﬂ'k]meas (‘xk )
k=1

o 9 o 4A// observations
O ® .
® O
north ®
O

v

east
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Unbiased estimator

» The measurements can be decomposed:

I (xk ) - aO + al'xeast,k + aZ'xnorth,k +r ('xk ) +n (xk )

meas

\- J
e ; ’\
\_ tren W,
~ Measurement
Vertical lonospheric Delay noise

» Assuming this form, an unbiased estimator is such that:

1 1 xeast,l xnorth,l
G'A=|x G=

X east n xnorth,n

Stanford University
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Confidence Computation

Formal error due to ionospheric Undersampled
IIGP —W - IIPP uncertainty threat term

V y

2 )
ot o o

T 2 T

Measure of  p2 _ noise & Formal error due to
ionospheric state  7"% measurement noise

2
Z lowerbound

Sparks, L., Blanch, J., Pandya, N., “Kriging as a Means of Improving WAAS Availability,” Proceedings of the
23rd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS
2010), Portland, OR, September 2010, pp. 2013-2020.
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March 16, 2015

Arctic Ocean

Greeniand Sea

Barents Sea

Availability

Percentage \i/

100.0%

96.4%

- -92.6%

88.8%

North
Atlantic
Gcean

orth
weifie
cean

85.0%

Saudi Ars
L I :
) sudan I ver
I WihOea Sea Shad { r &
B 4 Ao eatid
7y ﬂwm-m 3 fhupi=

A i
Colombia § %~ Surmsme:
i o e e

Courtesy:
FAATC

Stanford University g/

DR Conga "_"

g \ Tanzania

£

mhahe
S Guogle. INEG! | Tesns.of Lt



March 17, 2015
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GBAS Mitigation of Threats

>

Ground station (GS) receiver network monitors and correct errors
that originate on the satellites or in the atmosphere

» Single correction and bound for each satellite

> Monitoring accuracy limited by the effects multipath, noise, and GS
geometry and antenna biases

> Confidence bounds limited by ionosphere gradients and and orbital
errors— GS network may not be able to observe these errors

Airborne receiver may supplement GS monitoring by performing
checks for local ionospheric and/or tropospheric variations

» Limited by the effects of local multipath, noise, and user antenna bias

Current single frequency (L1) GBAS is capable of achieving time-
to-alert, accuracy, and integrity bounds with high availability for
mid-latitude areas

Dual frequency (L1/L5) GBAS is under development to enable
high-availability operation in low-latitude areas
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SBAS Mitigation of Threats

>

Ground receiver network monitors and corrects errors that

originate on the satellites and in the ionosphere

»  Satellite clock and ephemeris errors separately corrected

» A grid of ionospheric of corrections is provided

»  Confidence bounds sent for each satellite and each grid point

> Monitoring accuracy limited by the effects multipath, noise, and reference station antenna
bias

»  Confidence bounds mainly limited by ionospheric disturbances

Airborne receiver must limit the effects of local multipath, noise,

and user antenna bias

Capable of covering continental regions and simultaneously
thousands of aircraft approach procedures in mid-latitudes

High-availability extension to lower-latitudes will require dual-
frequency airborne receivers to obviate iono delay estimation
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Conclusions

>

Y VY

The Global Positioning System (GPS), and all other core
constellations, require augmentation in order to meet the strict
requirements for the guidance of aircraft

GPS L1 signals widely in use for aircraft navigation

The ionosphere is one of the most challenging error sources

» Disturbances are difficult to predict and dramatically increase the
magnitude of the ranging errors

> Require extensive data sets to examine full range of possible behavior
> Methods exist to achieve safe vertical guidance of aircraft

Dual-frequency multi-constellation receivers will improve GBAS
& SBAS performance & availability in the future
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