GNSS Multipath: Characterization, Modeling & Mitigation

African Capacity Building Workshop on Space Weather and Ionospheric Research Trieste, Italy

October 22-31, 2024

Dr. Gary A. McGraw, PNT Consultant Genova Technologies Phone: +1-319-210-9707 Email: mcgraw.pnt@gmail.com

Why is there a talk on GNSS multipath at a space weather workshop?

- GNSS provides an important tool for observing the ionosphere (and tells you where you are and what time it is!)
- Multipath (short for "multiple signal paths") is often the dominant GNSS measurement error source
- Important to know how to:
	- Minimize multipath errors when siting a GNSS antenna (but sometimes you can't avoid it)
	- Process GNSS code and carrier measurements to mitigate errors

Overview

Part 1: GNSS Multipath Characterization & Modeling

- GNSS multipath introduction & definitions
- Different propagation environments
	- Specular vs. diffuse multipath
	- Multipath relative amplitude
	- Fading frequency
- Signal modeling
- Multipath effects on GNSS measurements
	- SNR
	- Pseudoranges (code)
	- Carrier Phase

Part 2: Multipath Mitigation & Measurement Processing

- Multipath mitigation techniques
	- Code type
	- Antenna design & siting
	- Receiver signal processing
	- Measurement processing
- GNSS measurement combinations
	- Wide and narrow-lane carrier phase
	- Ionospheric free
	- Ionospheric estimation
	- Divergence free
- Carrier smoothed code processing
	- Processing overview
	- Smoothing filter gain
	- Divergence-free smoothing

Part 1: GNSS Multipath Characterization & Modeling

Multipath vs. Non-LOS Reception

- Multipath = Multiple signal propagation paths, including direct signal
- Non-LOS reception = Direct signal is blocked, but strong reflected signals are present

- For specular reflection $\psi_r = \psi_i$
- Amplitude of multipath dependent on surface composition
- Reflecting objects need to be larger than the Fresnel zone to create specular multipath
- GNSS signals are right-hand circularly-polarized (RHCP) signals; multipath usually dominated by left-hand circularly-polarized (LHCP) signals

Multipath Error Characteristics

- Diffuse multipath appears like bandlimited noise
- Specular multipath has sinusoidal measurement error characteristics
- Often both types are present

© 2024 Gary McGraw, All Rights Reserved

Specular Multipath Characterization

Multipath Delay & Phase

Ground Reflected Signal Delay

 $\Delta_i = e - g = 2h \sin(\theta)$ (m)

Building Reflected Signal Delay

$$
\Delta_i = a - b = 2d \cos(\theta) \, \text{(m)}
$$

Phase Shift

$$
\phi_i = \left(\frac{2\pi\Delta_i}{\lambda_L} + \phi_{Ri}\right) \text{MOD2}\pi \text{ (rad)}
$$

 ϕ_{Ri} = Phase shift at reflection = π rad when incidence angle is less than the Brewster angle

 λ_L = wavelength (m)

Multipath delay in code chips

 $\delta_i = \Delta_i / \lambda_c = \Delta_i / cT_c$

 λ_c = PRN code chip length (m)

 T_c = PRN code period (s)

- Delay increases with antenna height / distance
- Elevation angle greatly influences multipath characteristics

Multipath Fading Frequencies - Ground Reflection Relative Doppler

Ground Reflected Signal

$$
\delta f_i = \left(\frac{2}{\lambda_L} \sin \theta\right) \frac{\partial h}{\partial t} - \left(\frac{2h}{\lambda_L} \cos \theta\right) \frac{\partial \theta}{\partial t}
$$

Example:

 $h = 1$ m (fixed)

GNSS satellite angular rate:

```
\partial \theta\partial t\approx 180 deg/ 6 hrs \approx 0.15 mrad/s
```
L1 wavelength: λ_L =19 cm

$$
>> \begin{cases} \delta f_i \approx 1.6 \text{ mHz near the horizon} \\ \delta f_i \approx 0 \text{ near zenith} \end{cases}
$$

- Frequencies dependent on relative satellite and antenna motion
- LEO satellite orbital angular rate ~10X faster than GNSS

Multipath Fading Frequencies – Building Reflected Relative Doppler

Building Reflected Signal

$$
\delta f_i = \left(\frac{2}{\lambda_L} \cos \theta\right) \frac{\partial d}{\partial t} - \left(\frac{2d}{\lambda_L} \sin \theta\right) \frac{\partial \theta}{\partial t}
$$

Example:

Antenna horizontal speed: $\frac{\partial d}{\partial t}$ ∂t $= 1$ m/s

Satellite elevation angle: $\theta = 30^\circ$

L1 wavelength: λ_L =19 cm

 $\delta f_i \approx 5.3$ Hz

- At higher speeds, fading frequency would exceed carrier tracking loop bandwidth and would appear as noise
- Effects due to satellite motion similar to ground bounce case

Received Signal Model

$$
r(t) = \sqrt{2P} \sum_{i=0}^{n} \left\{ \alpha_i C(t - t_0 - \Delta_i/c) D(t - t_0 - \Delta_i/c) - \frac{\Delta_i/c}{2\pi (f_L + f_D + \delta f_i)(t - t_0 - \Delta_i/c) + \phi_i} \right\} + w(t)
$$

P = direct signal power

 $n =$ number of reflected signals ($i=0$ is the direct signal)

 α_i = relative amplitude of reflected signals (α_0 = 1)

 $C(·)$ = pseudorandom noise (PRN) spreading code $D(·)$ = downlink data

 t_0 = propagation delay for the direct signal (sec)

 c = speed of light (m/s)

 f_L = carrier frequency (Hz)

 f_D = Doppler shift (Hz)

 δf_i = relative multipath Doppler (Hz)

 Δ_i = relative multipath delay (m)

 ϕ_i = phase shift relative to direct (rad)

w(⋅) = bandlimited white Gaussian noise (WGN)

Relative Multipath Amplitude

 $0^{11}0^{10}$ $=\int \frac{U_i \Lambda_i}{\gamma}$ *i* $G_i R_i k$ G_0R_0k α

- G_o = antenna gain for direct signal
- G_i = antenna gain for the i^{th} multipath component
- R_i and R_0 = reflection coefficients (R_0 = 1 in our case)
- k_i and k_0 = signal attenuation coefficients (due to foliage, etc.)
- Antenna gain for direct signal typically ranges from -6 dB to +3 dB
- Multipath antenna gain typically smaller than direct – but not true for mobile devices!
- Reflection coefficients depend on the properties of the reflecting surface
	- Calm water, metal, glass can have reflection coefficients as large as 0.5-0.9
	- Other surfaces will have lower reflection coefficients
- Attenuation coefficients ~1, unless foliage or scattering is present

Receiver Signal Processing Block Diagram

Correlator Output Signals

$$
IE = \sqrt{2(c/n_0)T_{PD}} \sum_{i=0}^{n} \left[\alpha_i R(\tau - \delta_i T_c + dT_c) \operatorname{sinc}(\pi(\delta f + \delta f_i) T_{PDI}) \cos(\delta \varphi + \varphi_i) \right] + w_{IE} \frac{d}{d} = \text{Core}
$$
\n
$$
IP = \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^{n} \left[\alpha_i R(\tau - \delta_i T_c) \operatorname{sinc}(\pi(\delta f + \delta f_i) T_{PDI}) \cos(\delta \varphi + \varphi_i) \right] + w_{IP}
$$
\n
$$
IL = \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^{n} \left[\alpha_i R(\tau - \delta_i T_c - dT_c) \operatorname{sinc}(\pi(\delta f + \delta f_i) T_{PDI}) \cos(\delta \varphi + \varphi_i) \right] + w_{IL}
$$
\n
$$
QE = \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^{n} \left[\alpha_i R(\tau - \delta_i T_c + dT_c) \operatorname{sinc}(\pi(\delta f + \delta f_i) T_{PDI}) \sin(\delta \varphi + \varphi_i) \right] + w_{QE}
$$
\n
$$
QP = \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^{n} \left[\alpha_i R(\tau - \delta_i T_c) \operatorname{sinc}(\pi(\delta f + \delta f_i) T_{PDI}) \sin(\delta \varphi + \varphi_i) \right] + w_{QP}
$$
\n
$$
QL = \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^{n} \left[\alpha_i R(\tau - \delta_i T_c - dT_c) \operatorname{sinc}(\pi(\delta f + \delta f_i) T_{PDI}) \sin(\delta \varphi + \varphi_i) \right] + w_{QL}
$$
\n
$$
QL = \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^{n} \left[\alpha_i R(\tau - \delta_i T_c - dT_c) \operatorname{sinc}(\pi(\delta f + \delta f_i) T_c) \sin(\delta \varphi + \varphi_i) \right] + w_{QL}
$$
\n
$$
QL = \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^{n} \left[\alpha_i R(\tau - \delta_i T_c - dT_c) \operatorname{sinc}(\pi(\delta f + \delta f_i) T_{PD
$$

elator spacing (chips) arrier-power-to-noise-density ratio (ratio-Hz), RN code autocorrelation function t_0 = code tracking error (s) rier frequency tracking error (Hz) rier phase tracking error (Hz) sinc(θ) = $\{$ $\sin \theta / \theta$, $\theta \neq 0$

 $1, \theta = 0$

I and *Q* denote in-phase and quadra-phase, *E*, *P* and *L* denote early, prompt and late

 W_{IE} , W_{IP} , W_{IL} , W_{QE} , W_{QP} , W_{QL} = I/Q WGN (zero mean and unit variance)

Ideal autocorrelation function for BPSK signals:

\n
$$
R(\tau) = E\{C(t)C(t-\tau)\} = \begin{cases} 1 - |\tau/T_C|, & |\tau| < T_C \\ 0, & |\tau| \geq T_C \end{cases}
$$

Composite Signal with Single Multipath

Ideal Code Correlation Functions for Single Multipath

- Binary Phase-Shift Key (BPSK) signal
- Infinite bandwidth
- Multipath distorts the shape of the correlation function

EML Code Tracking Error Discriminator

Early-Minus-Late (EML) Delay Lock Detector (DLD) function:

$$
D_{EML}(\tau) = [R(\tau + dT_c) - R(\tau - dT_c)]/2
$$

Ideal Code Tracking Error Envelopes

Dot-product code tracking error detector:

$$
\varepsilon_D = \frac{ID_{EML} \cdot IP - QD_{EML} \cdot QP}{IP^2 + QP^2},
$$

$$
ID_{EML} = (IE - IL)/2, \quad QD_{EML} = (QE - QL)/2
$$

- Ideal PRN code and infinite receiver bandwidth assumed
- Bounds represent perfect in-phase or out-of-phase multipath cases ($\theta = 0, \pi$)
- Other multipath phases will lie in between these two bounds
- MP bias represents average over full phase cycle at a given MP delay – MP is not zero mean
- Multipath with delay bigger than 1+d chip has little or no effect on PR measurements

Multipath Code Tracking Error Envelopes for Different Code Types

Infinite bandwidth Band-limited with 10 MHz low-pass filter

Multipath Phase Tracking Error Envelopes for Different Code Types

Infinite bandwidth Band-limited with 10 MHz low-pass filter

GNSS Multipath Mitigation Techniques

- Code type
- Antenna design & siting
- Measurement processing
	- Code & carrier combinations
	- Carrier smoothing
- Receiver design
	- Adaptive antenna array processing
	- Polarization processing
	- Correlator signal processing
	- Multipath estimation

Discussed in Part 2

Not discussed here

Part 2: GNSS Multipath Mitigation, Measurement Processing & Carrier Smoothing

Part 2 Overview – GNSS Multipath Mitigation

- Effects of different code types
- Antenna design & siting
- GNSS measurement models
- Dual frequency code & carrier measurement combinations
	- Ionospheric-free
	- Wide-Lane (WL) / Narrow-Lane (NL)
	- Geometry-free
	- Divergence-free
- Carrier smoothing of code measurements
	- Single frequency
	- Dual frequency & divergence free

Code Type

Higher code chipping rates have improved multipath error characteristics

Antenna Design & Siting

Minimize gain to the undesired signal

Siting

- Move antenna away from strong reflectors
- Raise antenna above reflecting objects in the vicinity

Try to increase Direct/Undesired (D/U) signal ratio

Measurement Model @ f_L

 $\rho_L = r + \delta_T + \delta_R + I_L + T + \delta \rho_{ML} + \varepsilon_{oL}$ $\varphi_L = r + \delta_T + \delta_R - I_L + T + \delta \varphi_{ML} + \varepsilon_{\varphi L} + N_L \lambda_L$

 ρ_L = Code pseudorange measurement (in meters)

 φ_L = Carrier phase measurement (in meters)

 r = Geometric Line-of-Sight (LOS) range

 δ_T = Satellite clock and ephemeris errors projected along LOS

 δ_R = Receiver clock bias

 I_L = K_I/f_L^2 = lonospheric refraction at f_L

 $T =$ Tropospheric delay

 $\delta \rho_{ML}$, $\delta \varphi_{ML}$ = Code and carrier multipath at f_L

 $\varepsilon_{\rho L}$, $\varepsilon_{\varphi L}$ = Code and carrier receiver noise and other errors

 $N_L \lambda_L$ = Carrier phase ambiguity for the carrier with wavelength λ_L , where N_L is an integer.

Simplified Measurement Model @ f_L

 $\rho_L = r + I_L + \varepsilon_{\rho L}$ $\varphi_L = r - l_L + \varepsilon_{\varphi L} + N_L \lambda_L$

 ρ_L = Code pseudorange measurement (in meters)

 φ_L = Carrier phase measurement (in meters)

 r = Geometric Line-of-Sight (LOS) range (including SV & rcvr clocks and tropo)

 I_L = K_I/f_L^2 = Ionospheric refraction at f_L

 $\varepsilon_{\rho L}$, $\varepsilon_{\varphi L}$ = Code and carrier receiver noise, multipath and other errors

 $N_L \lambda_L$ Carrier phase ambiguity for the carrier with wavelength λ_L , where N_L is an integer.

Code - Carrier Combinations

Iono*−***Free:**

$$
\rho_{IF} = \frac{f_1^2}{f_1^2 - f_2^2} \rho_1 - \frac{f_2^2}{f_1^2 - f_2^2} \rho_2,
$$

$$
\varphi_{IF} = \frac{f_1^2}{f_1^2 - f_2^2} \varphi_1 - \frac{f_2^2}{f_1^2 - f_2^2} \varphi_2
$$

Wide*−***Lane Carrier Phase/Narrow***−***Lane Code:**

$$
\rho_{NL} = \frac{f_1}{f_1 + f_2} \rho_1 + \frac{f_2}{f_1 + f_2} \rho_2,
$$

$$
\varphi_{WL} = \frac{f_1}{f_1 - f_2} \varphi_1 - \frac{f_2}{f_1 - f_2} \varphi_2
$$

Narrow−Lane Carrier Phase/Wide−Lane Code:

$$
\rho_{WL} = \frac{f_1}{f_1 - f_2} \rho_1 - \frac{f_2}{f_1 - f_2} \rho_2,
$$

$$
\varphi_{NL} = \frac{f_1}{f_1 + f_2} \varphi_1 + \frac{f_2}{f_1 + f_2} \varphi_2
$$

Divergence Free Carrier Combinations:

$$
f_1: \ \rho = \rho_1, \quad \varphi = \frac{f_1^2 + f_2^2}{f_1^2 - f_2^2} \varphi_1 - \frac{2f_2^2}{f_1^2 - f_2^2} \varphi_2
$$
\n
$$
f_2: \ \rho = \rho_2, \quad \varphi = \frac{2f_1^2}{f_1^2 - f_2^2} \varphi_1 - \frac{f_1^2 + f_2^2}{f_1^2 - f_2^2} \varphi_2
$$

Geometry-Free (f_1) lono-Estimation):

$$
\rho = \frac{f_2^2}{f_1^2 - f_2^2} (\rho_2 - \rho_1), \ \varphi = \frac{f_2^2}{f_1^2 - f_2^2} (\varphi_2 - \varphi_1)
$$

Iono-Free

- Iono canceled
- PR and CP noise amplified
- Short effective CP wavelength

Wide−Lane Carrier Phase/Narrow−Lane Code

PR noise & multiplication
\n
$$
\rho_{NL} = \frac{f_1}{f_1 + f_2} \rho_1 + \frac{f_2}{f_1 + f_2} \rho_2 = r + \frac{k_I}{f_1 f_2} \left(\frac{f_1}{f_1 + f_2} \epsilon_{\rho 1} + \frac{f_2}{f_1 + f_2} \epsilon_{\rho 2} \right)
$$
\n
$$
\varphi_{WL} = \frac{f_1}{f_1 - f_2} \varphi_1 - \frac{f_2}{f_1 - f_2} \varphi_2 = r + \frac{k_I}{f_1 f_2} + \frac{f_1}{f_1 - f_2} \epsilon_{\phi 1} - \frac{f_2}{f_1 - f_2} \epsilon_{\phi 2} + N_{WL} \lambda_{WL}
$$

- PR noise & multipath attenuated
- CP noise amplified
- Long effective CP wavelength aids ambiguity resolution
- PR & CP iono have same sign

Narrow−Lane Carrier Phase/ Wide−Lane Code

PR noise amplification
\n
$$
\rho_{WL} = \frac{f_1}{f_1 - f_2} \rho_1 - \frac{f_2}{f_1 - f_2} \rho_2 = r + \frac{k_I}{f_1 f_2} + \frac{f_1}{f_1 - f_2} \epsilon_{\rho 1} - \frac{f_2}{f_1 - f_2} \epsilon_{\rho 2}
$$
\n
$$
\varphi_{NL} = \frac{f_1}{f_1 + f_2} \varphi_1 + \frac{f_2}{f_1 + f_2} \varphi_2 = r + \frac{k_I}{f_1 f_2} + \frac{f_1}{f_1 - f_2} \epsilon_{\phi 1} - \frac{f_2}{f_1 - f_2} \epsilon_{\phi 2} + N_{WL} \lambda_{WL}
$$

- PR & CP iono have same sign
- PR and CP noise amplified
- Reduced effective CP wavelength

Geometry-Free (f_1) Iono Estimation)

- Iono delay measured
- PR and CP noise amplified
- Small effective CP wavelength

Divergence-Free Carrier Combinations for Single Frequency Code PR Measurements

$$
f_1: \ \rho = \rho_1, \quad \varphi = \frac{f_1^2 + f_2^2}{f_1^2 - f_2^2} \varphi_1 - \frac{2f_2^2}{f_1^2 - f_2^2} \varphi_2 = r + I_1 + \frac{f_1^2 + f_2^2}{f_1^2 - f_2^2} \epsilon_{\varphi 1} - \frac{2f_2^2}{f_1^2 - f_2^2} \epsilon_{\varphi 2} + N_{D1} \lambda_{D1}
$$
\n
$$
f_2: \ \rho = \rho_2, \quad \varphi = \frac{2f_1^2}{f_1^2 - f_2^2} \varphi_1 - \frac{f_1^2 + f_2^2}{f_1^2 - f_2^2} \varphi_2 = r + I_2 - \frac{f_1^2 + f_2^2}{f_1^2 - f_2^2} \epsilon_{\varphi 2} + \frac{2f_2^2}{f_1^2 - f_2^2} \epsilon_{\varphi 1} + N_{D2} \lambda_{D2}
$$

- PR & CP iono have same sign
- Tiny CP ambiguity wavelength

Code Carrier Smoothing

- Code PR have large noise+multipath errors (meter-level) but are unbiased
- Carrier phase measurements have small noise+multipath errors (cmlevel) but have an integer cycle ambiguity
- Main idea: combine code and carrier measurements to yield a lowernoise, unbiased PR measurement
	- Low pass filter code and high pass filter carrier phase

Carrier Smoothing – Equivalent Formulations

Complementary Filter Formulation

Hatch Filter Formulation

Initialize:
$$
\overline{\chi}(t_0^-) = 0
$$

\nFor: t_n , $n = 1, 2, \ldots$

\nInput: $\chi(t_n) = \rho(t_n) - \varphi(t_n)$

\nUpdate: $\overline{\chi}(t_n) = \overline{\chi}(t_n^-) + K_n\left(\chi(t_n) - \overline{\chi}(t_n^-\right)$

\nOutput: $\overline{\rho}(t_n) = \overline{\chi}(t_n) + \varphi(t_n)$

\nExtapolate: $\overline{\chi}(t_{n+1}^-) = \overline{\chi}(t_n)$

Initialize:
$$
\overline{\rho}(t_0^-) = 0
$$

\nFor: t_n , $n = 1, 2, \ldots$

\nInput: $\rho(t_n)$

\nUpdate/Output:

\n
$$
\overline{\rho}(t_n) = \overline{\rho}(t_n^-) + K_n \left(\rho(t_n) - \overline{\rho}(t_n^-) \right)
$$
\nExtrapolate: $\Delta \varphi(t_n) = \varphi(t_n) - \varphi(t_{n-1})$

\n
$$
\overline{\rho}(t_n^-) = \overline{\rho}(t_{n-1}) + \Delta \varphi(t_n)
$$

For time
$$
t_n
$$
, $n = 1$, ..., the gain is: $K_n = \begin{cases} 1/n, & n = 1, ..., N_{max} \\ 1/N_{max}, & n \ge N_{max} \end{cases}$

© 2024 Gary McGraw, All Rights Reserved

Qualitative Error Analysis

Complementary filter operation: $\bar{\rho} = F(\rho - \varphi) + \varphi = F\rho + (1 - F)\varphi$

For the steady-state gain, $K = 1/N_{max}$, and the complementary filter iterative equations for F can be written as:

$$
\bar{\chi}(t_n) = (1 - K)\bar{\chi}(t_{n-1}) + K\chi(t_n)
$$

This discrete time equation can be written in terms of a Z-transform as:

$$
F(z) = \frac{K}{1 - (1 - K)z^{-1}} = \frac{Kz}{z - (1 - K)}
$$
 This is a low-pass filter => 1-F is high-pass

A model for the smoothed single-frequency PR is:

$$
\bar{\rho}_L = (r + \delta_T + \delta_R + T) + (2F - 1)I_L + F(\delta \rho_{ML} + \varepsilon_{\rho L}) + (1 - F)(\delta \varphi_{ML} + \varepsilon_{\varphi L} + N_L \lambda_L)
$$

LOS range terms
are unaffected
the true
inaffected
low-pass filtered
low-pass filtered
high-pass filtered

Smoothing Filter Steady State Gain Calculation

The value for N_{max} can be determined by relating the CMC filter F to a firstorder, continuous-time, low-pass filter:

$$
F(s) = \frac{1}{T_0 s + 1}, T_0 = \text{time constant (s)}
$$

Discrete-time equivalent: $F(z) =$ $1-e^{-\Delta T/T_0}$)z z – $e^{-\Delta T/T}$ 0 $=\frac{Kz}{\sqrt{1-\frac{1}{2}}}$ $z - (1 - K)$

$$
K = \frac{1}{N_{max}} = 1 - e^{-\Delta T/T_0} \approx \Delta T/T_0, \ \Delta T \ll T_0
$$

$$
\Rightarrow N_{max} \approx T_0/\Delta T
$$

For white noise, smoothed standard deviation given by:

$$
\sigma_s = \sigma_\rho \sqrt{\frac{K}{2-K}} = \sigma_\rho \sqrt{\frac{1 - e^{-\Delta T/T_0}}{1 + e^{-\Delta T/T_0}}} \approx \sigma_\rho \sqrt{\frac{\Delta T/T_0}{2 - \Delta T/T_0}} = \frac{\sigma_\rho}{\sqrt{2N_{max} - 1}}
$$

Single Frequency Smoothing Example Results

- Single frequency code and carrier phase
- Smoothing reduces meter-level noise to sub-decimeter level
- Longer smoothing time constant induces large bias due to iono divergence

Dual Frequency Smoothing

- Code-carrier iono divergence limits length of single frequency smoothing
	- Iono delays code and advances carrier phase
- Certain PR and CP combinations have equal iono delays (same sign)
	- Divergence free (single frequency code, dual frequency CP)
	- Iono Free
	- WL/NL
- Divergence free combinations enable extended carrier smoothing time constants

Dual Frequency Smoothing Example Results

- Examples use L1/L2 P(Y) code
- No iono divergence effects

 $~\tilde{}$ 3X noise amplification due to iono-free combination is evident

Summary

- Multipath reception affects essentially all GNSS receiver applications
- For many applications it is the dominant error source
- Many techniques are available to mitigate multipath errors:
	- Antenna siting to avoid multipath
	- Antenna types that enhance direct signals and attenuate reflected signals, particularly for fixed sites
	- Adaptive antenna array processing
	- Correlation signal processing
	- Measurement processing techniques like carrier smoothing
	- Navigation processing to de-weight or exclude measurements impacted by multipath
	- Post-processing and modelling techniques that provide estimates to correct multipath errors
- Applicability of these techniques to different GNSS receiver types varies greatly, with mobile phones being especially constrained

Bibliography

- 1. Gary A. McGraw, Paul D. Groves and Benjamin W. Ashman, "Robust Positioning in the Presence of Multipath and NLOS GNSS Signals," Chapter 22 of *Position Navigation & Timing Technologies in the 21st Century*, Jade Morton, Frank van Diggelen, James Spilker, and Bradford Parkinson, Editors. Wiley, 2021.
- 2. M. Braasch, "Multipath", *Springer Handbook of Global Navigation Satellite Systems*, ed. P. Teunissen, and O. Montenbruck, Springer, pp. 445-470, 2017.
- 3. M. S. Braasch, "Multipath Effects," In Global Positioning System: Theory and Applications Volume I, B. W. Parkinson and J. J. Spilker, Jr., (eds.), Washington, DC: AIAA, 1996, pp. 547–568.
- 4. P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, 2nd Edition, Ganga-Jamuna Press, 2006.
- 5. A. J. Van Dierendonck, P. Fenton, and T. Ford, "Theory and Performance of a Narrow Correlator Spacing in a GPS Receiver," in NAVIGATION, Vol. 39, No. 3, pp. 265–283, 1992.
- 6. A. J. Van Dierendonck, "GPS Receivers*,"* in *Global Positioning System: Theory and Applications Volume I*, B. W. Parkinson and J. J. Spilker, Jr., (eds.), Washington, DC: AIAA, 1996, ch. 8, pp. 329–407.
- 7. P. W. Ward, J. W. Betz, and C. J. Hegarty, "Satellite Signal Acquisition, Tracking and Data Demodulation," In *Understanding GPS Principles and Applications*, 2nd ed., E. D. Kaplan and C. J. Hegarty, (eds.), Norwood, MA: Artech House, 2006, ch. 5, pp. 153–241.
- 8. P. Y. C. Hwang, G. A. McGraw, and J. R. Bader, "Enhanced Differential GPS Carrier-Smoothed Code Processing Using Dual Frequency Measurements," *NAVIGATION, Journal of The Institute of Navigation,* Vol. 46, No. 2, Summer 1999, pp.127-137.
- 9. R.G. Brown and P.Y.C. Hwang, Introduction to Random Signal Analysis and Applied Kalman Filtering, 3rd Ed., Wiley, 1997.
- 10. McGraw, G. A., "Generalized Divergence-Free Carrier Smoothing with Applications to Dual Frequency Differential GPS," *NAVIGATION: Journal of the Institute of Navigation*, Vol. 56, No. 2, Summer 2009, pp. 115-122.