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Why is there a talk on GNSS multipath at a space 
weather workshop?
• GNSS provides an important tool for 

observing the ionosphere
(and tells you where you are and what time it is!)

• Multipath (short for “multiple signal 
paths”) is often the dominant GNSS 
measurement error source
• Important to know how to: 
• Minimize multipath errors when siting 

a GNSS antenna (but sometimes you 
can’t avoid it)
• Process GNSS code and carrier 

measurements to mitigate errors
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Overview

Part 1: GNSS Multipath 
Characterization & Modeling
• GNSS multipath introduction & 

definitions
• Different propagation environments

• Specular vs. diffuse multipath
• Multipath relative amplitude
• Fading frequency

• Signal modeling
• Multipath effects on GNSS measurements

• SNR
• Pseudoranges (code)
• Carrier Phase

Part 2: Multipath Mitigation & 
Measurement Processing
• Multipath mitigation techniques

• Code type
• Antenna design & siting
• Receiver signal processing
• Measurement processing

• GNSS measurement combinations 
• Wide and narrow-lane carrier phase
• Ionospheric free
• Ionospheric estimation
• Divergence free

• Carrier smoothed code processing
• Processing overview
• Smoothing filter gain
• Divergence-free smoothing 

3
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Part 1: GNSS Multipath 
Characterization & 

Modeling
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Multipath vs. Non-LOS Reception 

5

• Multipath = Multiple signal propagation paths, including direct signal

• Non-LOS reception = Direct signal is blocked, but strong reflected signals are present
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Specular vs. Diffuse Multipath 
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• For specular reflection 𝜓! = 𝜓"
• Amplitude of multipath dependent on surface composition

• Reflecting objects need to be larger than the Fresnel zone to create specular multipath
• GNSS signals are right-hand circularly-polarized (RHCP) signals; multipath usually dominated by 

left-hand circularly-polarized (LHCP) signals  

Direct

Specular Multipath

Fresnel Zone 
Radius: Rf = 𝑟𝜆!
Semi-major axis: 𝑎 = 𝑅"/sin(𝜓#)

𝑟

$!
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Surface Roughness

Direct

Diffuse Multipath

Surface 
Roughness
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%"

 >> 1

“Glistening radius” depends on surface roughness

Reflected 
Angle  𝜓𝑟Incidence

Angle  𝜓𝑖

𝜆!	= Signal Wavelength

Fresnel Zone

𝑎
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Multipath Error Characteristics
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• Diffuse multipath appears like bandlimited 
noise

• Specular multipath has sinusoidal 
measurement error characteristics

• Often both types are present

Change in SV signal arrival 
path over time

Diffuse

Diffuse
Specular
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Specular Multipath Characterization 

8

Illustration with two multipath signals 
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Multipath Delay & Phase
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• Delay increases with antenna height / 
distance

• Elevation angle greatly influences multipath 
characteristics

Ground Reflected Signal Delay

	 Δ" = 𝑒 − 𝑔 = 2ℎ sin θ   (m)

Building Reflected Signal Delay

	 Δ" = 𝑎 − 𝑏 = 2𝑑 cos θ   (m)

Phase Shift

	 𝜙"=
#$%!
&"

+ 𝜙'" MOD2𝜋  (rad)

𝜙'"  = Phase shift at reflection = 𝜋	rad when incidence 
angle is less than the Brewster angle

𝜆( = wavelength (m)

𝛿" = ⁄𝛥" 𝜆) = ⁄𝛥" 𝑐𝑇)

Multipath delay in code chips

λ)  = PRN code chip length (m)

𝑇)  = PRN code period (s)
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Multipath Fading Frequencies - Ground Reflection Relative 
Doppler

10

• Frequencies dependent on relative 
satellite and antenna motion
• LEO satellite orbital angular rate ~10X 

faster than GNSS

Ground Reflected Signal 

𝛿𝑓@ =
2
𝜆A
sin 𝜃

𝜕ℎ
𝜕𝑡
−

2ℎ
𝜆A
cos 𝜃

𝜕𝜃
𝜕𝑡

Example:
ℎ = 1 m (fixed)

GNSS satellite angular rate:  

𝜕θ
𝜕𝑡 ≈ 180 deg/ 6	hrs ≈ 0.15	mrad/s

L1 wavelength: λ!=19 cm

=> 𝛿𝑓" ≈ 1.6 mHz near the horizon

𝛿𝑓" ≈ 0  near zenith



© 2024 Gary McGraw, All Rights Reserved

Multipath Fading Frequencies – Building Reflected Relative 
Doppler

11

• At higher speeds, fading frequency would exceed carrier 
tracking loop bandwidth and would appear as noise
• Effects due to satellite motion similar to ground bounce 

case

Building Reflected Signal

𝛿𝑓@ =
2
𝜆A
cos 𝜃

𝜕𝑑
𝜕𝑡
−

2𝑑
𝜆A
sin 𝜃

𝜕𝜃
𝜕𝑡

Example:
Antenna horizontal speed:  #$

#%
= 1 m/s 

Satellite elevation angle: θ = 30∘

L1 wavelength: λ!=19 cm

𝛿𝑓" ≈ 5.3 Hz 
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Received Signal Model

12
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P = direct signal power 
n = number of reflected signals (i=0 is the direct 

signal)
ai = relative amplitude of reflected signals (a0  = 1)
C(∙) = pseudorandom noise (PRN) spreading code 
D(∙) = downlink data 
t0 = propagation delay for the direct signal (sec)

c = speed of light (m/s)
fL = carrier frequency (Hz)
fD = Doppler shift (Hz)
dfi = relative multipath Doppler (Hz)
Di = relative multipath delay (m)
fi = phase shift relative to direct (rad)
w(∙) = bandlimited white Gaussian noise (WGN) 
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Relative Multipath Amplitude 
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0 0 0

= i i i
i

G R k
G R k

a

G0 = antenna gain for direct signal 
Gi = antenna gain for the ith multipath 

component
Ri and R0 = reflection coefficients (R0 = 1 in 

our case)
ki and k0 = signal attenuation coefficients 

(due to foliage, etc.)

• Antenna gain for direct signal typically 
ranges from -6 dB to +3 dB
• Multipath antenna gain typically smaller 

than direct – but not true for mobile 
devices!
• Reflection coefficients depend on the 

properties of the reflecting surface
• Calm water, metal, glass can have reflection 

coefficients as large as 0.5-0.9
• Other surfaces will have lower reflection 

coefficients

• Attenuation coefficients ~1, unless 
foliage or scattering is present 
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Receiver Signal Processing Block Diagram

14
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Correlator Output Signals
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I and Q denote in-phase and quadra-phase, E, P and L denote early, prompt and late

𝑤/0, 𝑤/1, 𝑤/2, 𝑤30, 𝑤31, 𝑤32 = I/Q WGN (zero mean and unit variance)

𝑑 = Correlator spacing (chips)
𝑐/𝑛4 = carrier-power-to-noise-density ratio 
(ratio-Hz),

𝑅(⋅) =  PRN code autocorrelation function
𝜏 = �̂�4 − 𝑡4 = code tracking error (s) 
𝛿𝑓 = carrier frequency tracking error (Hz)
 𝛿𝜑 = carrier phase tracking error (Hz)

Ideal autocorrelation function for BPSK signals:    𝑅(𝜏) = 𝐸{𝐶(𝑡)𝐶(𝑡 − 𝜏)} = 71 − 𝜏/𝑇5 , 𝜏 < 𝑇5
0, 𝜏 ≥ 𝑇5

)sinc( 𝜃 = B
⁄sin 𝜃 𝜃 , 𝜃 ≠ 0
1, 𝜃 = 0
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Composite Signal with Single Multipath

16

( )R tDirect Signal 
Phasor

Multipath Signal 
Phasor

1 1( )-Ra t d

1f

Composite 
Signal Phasor

1dj

𝜙"=
#$%!
&"

+ 𝜙'" MOD2𝜋  (rad)

• Composite signal amplitude fluctuates 
as a function of multipath phase angle

• Deep fading can cause loss of lock
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Ideal Code Correlation Functions for Single Multipath

17

• Binary Phase-Shift Key (BPSK) signal
• Infinite bandwidth
• Multipath distorts the shape of the 

correlation function
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EML Code Tracking Error Discriminator 

18

Early-Minus-Late (EML) Delay Lock Detector (DLD) 
function:

𝐷062 𝜏 = 𝑅 𝜏 + 𝑑𝑇5 − 𝑅 𝜏 − 𝑑𝑇5 /2
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Ideal Code Tracking Error Envelopes 

19

• Dot-product code tracking error detector:

𝜀7 =
𝐼𝐷062 ⋅ 𝐼𝑃 − 𝑄𝐷062 ⋅ 𝑄𝑃

𝐼𝑃8 + 𝑄𝑃8
,

𝐼𝐷062 = (𝐼𝐸 − 𝐼𝐿)/2, 𝑄𝐷062 = (𝑄𝐸 − 𝑄𝐿)/2

• Ideal PRN code and infinite receiver bandwidth 
assumed

• Bounds represent perfect in-phase or out-of-phase 
multipath cases (𝜃 = 0, π)

• Other multipath phases will lie in between these two 
bounds

• MP bias represents average over full phase cycle at a 
given MP delay – MP is not zero mean

• Multipath with delay bigger than 1+d chip has little or 
no effect on PR measurements 
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Multipath Code Tracking Error Envelopes for Different Code 
Types

20

Infinite bandwidth Band-limited with 10 MHz low-pass filter
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Multipath Phase Tracking Error Envelopes for Different Code 
Types

21

Infinite bandwidth Band-limited with 10 MHz low-pass filter
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GNSS Multipath Mitigation Techniques

• Code type
• Antenna design & siting
• Measurement processing
• Code & carrier combinations
• Carrier smoothing

• Receiver design
• Adaptive antenna array processing
• Polarization processing
• Correlator signal processing
• Multipath estimation 

22

Not discussed here 

Discussed in Part 2
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Part 2: GNSS Multipath 
Mitigation, Measurement 

Processing & Carrier 
Smoothing
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Part 2 Overview – GNSS Multipath Mitigation

• Effects of different code types
• Antenna design & siting
• GNSS measurement models
• Dual frequency code & carrier measurement combinations
• Ionospheric-free
• Wide-Lane (WL) / Narrow-Lane (NL)
• Geometry-free
• Divergence-free

• Carrier smoothing of code measurements
• Single frequency
• Dual frequency & divergence free

24
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Code Type

25

Higher code chipping rates have improved multipath error characteristics

BPSK(10) signals immune to 
multipath with delays >40 m
• GPS P(Y) code L1 & L2
• GPS L5
• Galileo E5a, E5b
• Beidou B2a

BPSK(1) signals immune to 
multipath with delays >300 m
• GPS C/A code
• L1 SBAS 

BOC(1,1) signals have reduced 
response to longer delay 
multipath
• GPS L1c
• Galileo E1 OS
• Beidou B1c

All code types have the same 
error for short multipath delays
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Antenna Design & Siting

26

Enhance gain to the direct signal

Minimize gain to the undesired signal

Try to increase Direct/Undesired (D/U) signal ratio

Siting
• Move antenna away from strong 

reflectors
• Raise antenna above reflecting 

objects in the vicinity
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Measurement Model @ fL

27

𝜌! = 𝑟 + 𝛿' + 𝛿( + 𝐼! + 𝑇 + 𝛿𝜌)! + 𝜀*!
𝜑! = 𝑟 + 𝛿' + 𝛿( − 𝐼! + 𝑇 + 𝛿𝜑)! + 𝜀+! + 𝑁!𝜆!

𝜌!= Code pseudorange measurement (in meters) 
𝜑!= Carrier phase measurement (in meters)
𝑟 = Geometric Line-of-Sight (LOS) range 
𝛿'= Satellite clock and ephemeris errors projected along LOS
𝛿(= Receiver clock bias
𝐼!= 𝐾,/𝑓!-	= Ionospheric refraction at 𝑓! 
𝑇 = Tropospheric delay
𝛿𝜌)!, 𝛿𝜑)!  = Code and carrier multipath at 𝑓!
𝜀*!, 𝜀+!  = Code and carrier receiver noise and other errors
𝑁!𝜆!= Carrier phase ambiguity for the carrier with wavelength 𝜆!,  where 𝑁! is an integer.
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Simplified Measurement Model @ fL

28

𝜌! = 𝑟 + 𝐼! + 𝜀*!
𝜑( = 𝑟 − 𝐼( + 𝜀*( + 𝑁(𝜆(

𝜌!= Code pseudorange measurement (in meters) 
𝜑!= Carrier phase measurement (in meters)
𝑟 = Geometric Line-of-Sight (LOS) range (including SV & rcvr clocks and tropo)
𝐼!= 𝐾,/𝑓!-	= Ionospheric refraction at 𝑓! 
𝜀*!, 𝜀+!  = Code and carrier receiver noise, multipath and other errors
𝑁!𝜆!= Carrier phase ambiguity for the carrier with wavelength 𝜆!,  where 𝑁! is an 

integer.
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Code - Carrier Combinations

29

Divergence Free Carrier Combinations:

𝑓+:	 𝜌 = 𝜌+, 𝜑 =
𝑓+# + 𝑓##

𝑓+# − 𝑓##
𝜑+ −

2𝑓##

𝑓+# − 𝑓##
𝜑#

𝑓#:	 𝜌 = 𝜌#, 𝜑 =
2𝑓+#

𝑓+# − 𝑓##
𝜑+ −

𝑓+# + 𝑓##

𝑓+# − 𝑓##
𝜑#

Iono−Free:

𝜌,- =
𝑓+#

𝑓+# − 𝑓##
𝜌+ −

𝑓##

𝑓+# − 𝑓##
𝜌#,

𝜑,- =
𝑓+#

𝑓+# − 𝑓##
𝜑+ −

𝑓##

𝑓+# − 𝑓##
𝜑#

Wide−Lane Carrier Phase/Narrow−Lane Code:

𝜌.( =
𝑓+

𝑓+ + 𝑓#
𝜌+ +

𝑓#
𝑓+ + 𝑓#

𝜌#,

𝜑/( =
𝑓+

𝑓+ − 𝑓#
𝜑+ −

𝑓#
𝑓+ − 𝑓#

𝜑#

Narrow−Lane Carrier Phase/Wide−Lane Code:

𝜌/( =
𝑓+

𝑓+ − 𝑓#
𝜌+ −

𝑓#
𝑓+ − 𝑓#

𝜌#,

𝜑.( =
𝑓+

𝑓+ + 𝑓#
𝜑+ +

𝑓#
𝑓+ + 𝑓#

𝜑#

Geometry-Free (f1 Iono-Estimation):

𝜌 = 0##

0$#10##
𝜌# − 𝜌+ ,  φ = 0##

0$#10##
𝜑# − 𝜑+
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Iono-Free

30

𝜑,- =
𝑓+#

𝑓+# − 𝑓##
𝜑+ −

𝑓##

𝑓+# − 𝑓##
𝜑# = 𝑟 +

𝑓+#

𝑓+# − 𝑓##
ϵ2+ −

𝑓##

𝑓+# − 𝑓##
ϵ2# + 𝑁,-λ,-

𝜌,- =
𝑓+#

𝑓+# − 𝑓##
𝜌+ −

𝑓##

𝑓+# − 𝑓##
𝜌# = 𝑟 +

𝑓+#

𝑓+# − 𝑓##
ϵ3+ −

𝑓##

𝑓+# − 𝑓##
ϵ3#

PR noise amplification

Frequencies PR Noise 
Amplification

λ,-  (cm)

L1, L2 2.98 0.31
L1, L5 2.59 0.28

• Iono canceled
• PR and CP noise amplified
• Short effective CP wavelength
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Wide−Lane Carrier Phase/Narrow−Lane Code

31

𝜑/( =
𝑓+

𝑓+ − 𝑓#
𝜑+ −

𝑓#
𝑓+ − 𝑓#

𝜑# = 𝑟 +
𝑘𝐼
𝑓1𝑓2

+
𝑓+

𝑓+ − 𝑓#
ϵ2+ −

𝑓#
𝑓+ − 𝑓#

ϵ2# + 𝑁/(λ/(

𝜌.( =
𝑓+

𝑓+ + 𝑓#
𝜌+ +

𝑓#
𝑓+ + 𝑓#

𝜌# = 𝑟 +
𝑘𝐼
𝑓1𝑓2

+
𝑓+

𝑓+ + 𝑓#
ϵ3+ +

𝑓#
𝑓+ + 𝑓#

ϵ3#

PR noise & multipath attenuation

Frequencies PR Noise 
Amplification

λ/( (cm)

L1, L2 0.713 86.3
L1, L5 0.714 75.2

• PR noise & multipath attenuated
• CP noise amplified
• Long effective CP wavelength 

aids ambiguity resolution
• PR & CP iono have same sign
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Narrow−Lane Carrier Phase/ Wide−Lane Code

32

PR noise amplification

Frequencies PR Noise 
Amplification

λ/( (cm)

L1, L2 5.74 10.7
L1, L5 4.93 10.9

• PR & CP iono have same sign
• PR and CP noise amplified
• Reduced effective CP wavelength

𝜑.( =
𝑓+

𝑓+ + 𝑓#
𝜑+ +

𝑓#
𝑓+ + 𝑓#

𝜑# = 𝑟 +
𝑘𝐼
𝑓1𝑓2

+
𝑓+

𝑓+ − 𝑓#
ϵ2+ −

𝑓#
𝑓+ − 𝑓#

ϵ2# + 𝑁/(λ/(

𝜌/( =
𝑓+

𝑓+ − 𝑓#
𝜌+ −

𝑓#
𝑓+ − 𝑓#

𝜌# = 𝑟 +
𝑘𝐼
𝑓1𝑓2

+
𝑓+

𝑓+ − 𝑓#
ϵ3+ −

𝑓#
𝑓+ − 𝑓#

ϵ3#
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Geometry-Free (f1 Iono Estimation)

33

𝜑4- =
𝑓##

𝑓+# − 𝑓##
𝜑+ − 𝜑# = 𝐼1+

𝑓##

𝑓+# − 𝑓##
ϵ2+ − ϵ2# + 𝑁4-λ4-

𝜌4- =
𝑓##

𝑓+# − 𝑓##
𝜌# − 𝜌+ = 𝐼1+

𝑓##

𝑓+# − 𝑓##
ϵ3# − ϵ3#

PR noise amplification

Frequencies PR Noise 
Amplification

λ4-  (cm)

L1, L2 2.19 0.25
L1, L5 1.78 0.21

• Iono delay measured
• PR and CP noise amplified
• Small effective CP wavelength



© 2024 Gary McGraw, All Rights Reserved

Divergence-Free Carrier Combinations for Single Frequency 
Code PR Measurements

34

Frequencies PR Noise 
Amplification

λ5-  

L1, L2 1 <1 mm
L1, L5 1 <1 mm

• PR & CP iono have same sign
• Tiny CP ambiguity wavelength

𝑓+:	 𝜌 = 𝜌+, 𝜑 =
𝑓+# + 𝑓##

𝑓+# − 𝑓##
𝜑+ −

2𝑓##

𝑓+# − 𝑓##
𝜑# = 𝑟 + 𝐼1+

𝑓+# + 𝑓##

𝑓+# − 𝑓##
𝜖*+ −

2𝑓##

𝑓+# − 𝑓##
𝜖*# + 𝑁5+λ5+

𝑓#:	 𝜌 = 𝜌#, 𝜑 =
2𝑓+#

𝑓+# − 𝑓##
𝜑+ −

𝑓+# + 𝑓##

𝑓+# − 𝑓##
𝜑# = 𝑟 + 𝐼2−

𝑓+# + 𝑓##

𝑓+# − 𝑓##
𝜖*# +

2𝑓##

𝑓+# − 𝑓##
𝜖*+ + 𝑁5#λ5#
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Code Carrier Smoothing

• Code PR have large noise+multipath errors (meter-level) but are 
unbiased
• Carrier phase measurements have small noise+multipath errors (cm-

level) but have an integer cycle ambiguity
• Main idea: combine code and carrier measurements to yield a lower-

noise, unbiased PR measurement
• Low pass filter code and high pass filter carrier phase

35
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Carrier Smoothing – Equivalent Formulations

36

Complementary Filter Formulation

Hatch Filter Formulation

For time 𝑡6, 𝑛 = 1,…, the gain is: 𝐾6 = T1/𝑛, 𝑛 = 1,… , 𝑁789
1/𝑁789 , 𝑛	 ≥ 𝑁789
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Qualitative Error Analysis

37

Complementary filter operation: �̄� = 𝐹(𝜌 − 𝜑) + 𝜑 = 𝐹𝜌 + (1 − 𝐹)𝜑 

For the steady-state gain, 𝐾 = 1/𝑁./0, and the complementary filter iterative equations for 𝐹 
can be written as:

�̄�(𝑡1) = 	 (1 − 𝐾)�̄�(𝑡123) + 𝐾𝜒(𝑡1) 

This discrete time equation can be written in terms of a Z-transform as:

𝐹 𝑧 =
𝐾

1 − 1 − 𝐾 𝑧23
=

𝐾𝑧
𝑧 − 1 − 𝐾

This is a low-pass filter => 1-F is high-pass

A model for the smoothed single-frequency PR is:
�̄�( = 𝑟 + 𝛿: + 𝛿' + 𝑇 + 2𝐹 − 1 𝐼( + 𝐹 𝛿𝜌;( + 𝜀<( + 1 − 𝐹 𝛿𝜑;( + 𝜀*( + 𝑁(𝜆(

Phase errors are 
high-pass filtered

Code PR errors are 
low-pass filtered

LOS range terms 
are unaffected

Iono delay is 
filtered
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Smoothing Filter Steady State Gain Calculation
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The value for 𝑁./0 can be determined by relating the CMC filter 𝐹 to a first-
order, continuous-time, low-pass filter:

𝐹(𝑠) = 3
'<453

, 𝑇6	= time constant (s) 

Discrete-time equivalent: 𝐹(𝑧) = 327=>?/?< 8
827=>?/?<

 = 98
82 329

𝐾 = 3
:@AB

= 1 − 𝑒2;'/'< ≈ Δ𝑇/𝑇6, Δ𝑇<<𝑇6

⇒ 𝑁./0 ≈ 𝑇6/Δ𝑇

For white noise, smoothed standard deviation given by:

σ= = σ3
𝐾

2 − 𝐾 = σ3
1 − 𝑒1> ⁄: :%

1 + 𝑒1> ⁄: :%
≈ σ3

Δ ⁄𝑇 𝑇@
2 − Δ ⁄𝑇 𝑇@

=
σ3

2𝑁789 − 1
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Single Frequency Smoothing Example Results
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• Single frequency code and carrier phase
• Smoothing reduces meter-level noise to 

sub-decimeter level
• Longer smoothing time constant induces 

large bias due to iono divergence
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Dual Frequency Smoothing

• Code-carrier iono divergence limits length of single frequency 
smoothing
• Iono delays code and advances carrier phase

• Certain PR and CP combinations have equal iono delays (same sign)
• Divergence free (single frequency code, dual frequency CP)
• Iono Free
• WL/NL

• Divergence free combinations enable extended carrier smoothing 
time constants

40
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Dual Frequency Smoothing Example Results

41

• Examples use L1/L2 P(Y) code
• No iono divergence effects

• ~3X noise amplification due to iono-free 
combination is evident
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Summary

• Multipath reception affects essentially all GNSS receiver applications
• For many applications it is the dominant error source
• Many techniques are available to mitigate multipath errors: 

• Antenna siting to avoid multipath
• Antenna types that enhance direct signals and attenuate reflected signals, particularly for 

fixed sites
• Adaptive antenna array processing
• Correlation signal processing
• Measurement processing techniques like carrier smoothing
• Navigation processing to de-weight or exclude measurements impacted by multipath
• Post-processing and modelling techniques that provide estimates to correct multipath errors

• Applicability of these techniques to different GNSS receiver types varies greatly, 
with mobile phones being especially constrained

42
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