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FPGA Architecture
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FPGA – PSoC Applications

Source: Logic Fruit Technology
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FPGA – SoPC Evolution
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What is an FPGA ? 
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FPGA ~ Lego Bricks
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AMD 7-Series Architecture – Common Elements

▪ Common elements enable easy IP reuse for quick 
design portability across all 7-series families

o Design scalability from low-cost to high-performance 

o Quickest time to market
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Logic Resources - CLB

Each CLB contains two slices:

▪ Primary resource for design
o Combinatorial functions 

o Flip-flops

▪ Connected to switch matrix for 
routing to other FPGA resources

o Carry chain runs vertically in a column 
from one slice to the one above
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AMD-FPGA SLICE
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7-Series FPGA - Inputs/Outputs

▪ Wide range of voltages
o 1.2V to 3.3V operation

▪ Many different I/O standards
o Single ended and differential
o Referenced inputs
o 3-state support

▪ Very high performance
o Up to 1600 Mbps LVDS
o Up to 1866 Mbps single-ended for DDR3

▪ Easy interfacing to standard 
memories

o Hardware support for QDRII+ and DDR3

▪ Digitally controlled impedance

▪ Low power



Standard VCCO Vref Application

LVTTL 3.3 na Single ended

General PurposeLVCMOS25, -18, -15 2.5, 1.8, 1.5 na

LVDS33, 25, 18 3.3, 2.5, 1.8 na Low Voltage Differential

PCI 33/66 MHz, 3.3V 3.3 na PCI Bus

GTL / GTL+ na 0.80 Back-Plane

HSTL-I, HSTL-III 1.5 0.75 SRAM

SSTL3-I, -II, SSTL2-I 3.3 0.90, 1.5 SDRAM
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Most Common I/Os Standards Available
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7-Series Block RAM and FIFO
▪ All members of the 7-series families have 

the same Block RAM/FIFO

▪ Fully synchronous operation
o  All operations are synchronous; all outputs are 

latched

▪ Optional internal pipeline register for higher 
frequency operation

▪ Two independent ports access common data
o  Individual address, clock, write enable, clock enable

o  Independent data widths for each port

▪ Multiple configuration options
oTrue dual-port, simple dual-port, single-port

▪ Integrated control for fast and efficient FIFOs
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7- Series DSP48E1 Slice
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XADC and Analog Mixed Signals (AMS)

▪ XADC is a high quality and flexible analog interface new to the 7-series
o Dual 12-bit 1Msps ADCs, on-chip sensors, 17 flexible analog inputs, and track & holds 

with programmable signal conditioning
o 1V input range (unipolar, bipolar and differential)
o 12-bit resolution conversion
o Built in digital gain and offset calibration
o On-chip thermal and Voltage sensors
o Sample rate of 1 MSPS

▪ Analog Mixed Signal (AMS)
o Using the FPGA programmable logic to customize the XADC and replace other 

external analog functions; for example, linearization, calibration, filtering, and DC 
balancing to improve data conversion resolution

https://henryomd.blogspot.com/2015/06/bare-metal-code-to-read-adc-on-zynq.html

https://henryomd.blogspot.com/2015/06/bare-metal-code-to-read-adc-on-zynq.html
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7-Series FPGA Families



Zynq-PSoC Architecture
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Zynq PSoC Block Diagram
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▪ Complete ARM®-based processing system
o Application Processor Unit (APU)

o Dual ARM Cortex -A9 processors

o Caches and support blocks

o Fully integrated memory controllers

o I/O peripherals
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Zynq-7000 Main Features
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▪ Tightly integrated programmable logic
o Used to extend the processing system

o Scalable density and performance

▪ Flexible array of I/O
o Wide range of external multi-standard I/O 
o High-performance integrated serial transceivers
o Analog-to-digital converter inputs



▪ Application processing unit (APU)

▪ I/O peripherals (IOP)
oMultiplexed I/O (MIO), extended multiplexed I/O (EMIO)

▪ Memory interfaces

▪ PS interconnect

▪ DMA

▪ Timers 
o Public and private

▪ General interrupt controller (GIC)

▪ On-chip memory (OCM): RAM

▪ Debug controller: CoreSight
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PS Main Components
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▪ Configurable logic blocks (CLB)
o 6-input look-up tables (LUTs)
o Memory capability within the LUT
o Register and shift register functionality

▪ 36 Kb BRAM

▪ DSP48E1 Slice

▪ Clock management

▪ Configurable I/Os

▪ High Speed Serial Transceivers

▪ Integrated interface for PCI Express
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PL Main Components

Zynq FPGA Based Fabric

7z010, 7z015, 7z020 Artix

7z030, 7z035, 7z045, 7z100 Kintex
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▪ AXI high-performance slave ports (HP0-HP3)
o Configurable 32-bit or 64-bit data width

o Access to OCM and DDR only

o Conversion to processing system clock domain

o AXI FIFO Interface (AFI) are FIFOs (1KB) to smooth large data transfers

▪ AXI general-purpose ports (GP0-GP1)
o Two masters from PS to PL

o Two slaves from PL to PS

o 32-bit data width

o Conversion and sync to processing system clock domain
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PS-PL Interface
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▪ One 64-bit accelerator coherence port (ACP) AXI slave interface to CPU 
memory

▪ DMA, interrupts, events signals
o Processor event bus for signaling event information to the CPU
o PL peripheral IP interrupts to the PS general interrupt controller (GIC)
o Four DMA channel RDY/ACK signals

▪ Extended multiplexed I/O (EMIO) allows PS peripheral ports access to PL 
logic and device I/O pins

▪ Clock and resets
o Four PS clock outputs to the PL with enable control
o Four PS reset outputs to the PL

▪ Configuration and miscellaneous
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PS-PL Interface
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Zynq Architecture
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Interface Name Interface Description Master Slave

M_AXI_GP0
General Purpose (AXI_GP)

PS PL

M_AXI_GP1 PS PL

S_AXI_GPO
General Purpose (AXI_GP)

PL PS

S_AXI_GP1 PL PS

S_AXI_ACP Accelerator Coherence Port PL PS

S_AXI_HP0
High Performance Ports (AXI_HP)with read/write 
FIFOs and two dedicated memory ports on DDR 
controller and a path to the OCM

PL PS

S_AXI_HP1 PL PS

S_AXI_HP2 PL PS

S_AXI_HP3 PL PS
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PS-PL AXI Interfaces
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Method Benefits Drawbacks Usage Performance

PL AXI-HP DMA • Highest throughput
• Multiple interfaces
• Command/Data FIFO

• OC/DDR access only
• Complex PL Master 

design

• HP DMA for large 
datasets

1.200 MB/s 
(per interface)

PL AXI-ACP DMA • - Highest throughput
- Lowest latency
- Optional cache 

coherency

• Large burst might cause 
cache trashing

• Shares CPU 
interconnect bandwidth

• Complex PL Master 
design

• HP DMA for smaller 
coherent datasets

• Medium granularity 
CPU offload

1.200 MB/s

PL AXI-GP DMA • Medium throughput • More complex PL 
Master design

• PL to PS control 
functions

• PS I/O Peripheral 
access

600 MB/s

CPU 
Programmed I/O

• Simple Sw
• Least PL resources
• Simple PL Slave

• Lowest throughput • Control functions < 25 MB/s
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PS-PL Interface Performance
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PS Peripherals and 
Connections
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PS Peripheral Description

SPI (x2) Serial Peripheral Interface, either master or slave mode.

I2C (x2) I2C bus. Supports master and slave modes. 

CAN (x2) Controller Area Network. CAN 2.0A and CAN 2.0B.

UART (x2)
Universal Asynchronous Receiver Transmitter. One UART 
is used for terminal connections to a host PC.

GPIO
General purpose Input/Output. There are four GPIO 
banks, each of 32 bits. 

SD (x2) SD card memory controller

USB (x2) Universal Serial Bus. Host or OTG (in-the-go) modes.

GigE (x2)
Gigabit Ethernet MAC peripheral, supports 10Mbps, 
100MBps and 1Gbps. 
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PS Available Peripherals
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Multiplexed I/O – Internal / External
❖Multiplexed input/output (MIO)

❖Multiplexed output of peripheral and static memories

❖Two I/O banks; each selectable: 1.8V, 2.5V, or 3.3V

❖Configured using configuration 

❖Dedicated pins are used

❖User constraints (LOC) should not be present

▪ The BitGen process will throw errors if LOC constraints are present
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PL

❖Extended MIO

❖Enables use of the SelectIO  interface with PS peripherals

❖User constraints must be present for the signals brought out 

to the SelectIO pins

❖The BitGen process will throw errors if LOC constraints 

are not present
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Extended Multiplexed I/O (EMIO)

Extended interface to PL I/O peripheral ports

❖ EMIO: Peripheral port to PL 

❖ Alternative to using MIO

❖ Mandatory for some peripheral ports

❖ Facilitates

❖ Connection to peripheral in programmable logic

❖ Use of general I/O pins to supplement MIO pin usage

❖ Allows additional signals for many of the peripherals

❖ Alleviates competition for MIO pin usage
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Multiplexed I/O  (MIO)

31



PSoC Architecture & Design Methodology ICTP-MLAB

MIO Port Configuration
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GP0/1 Ports Configuration for PS-PL Interface

o Click on the menu or 

green GP Blocks to 

configure
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GP 0/1 Ports

o By default, GP Slave and Master ports are disabled

o Enable GP Master and/or Slave ports depending on 

whether a slave or a master peripheral is going to 

be added in PL

34
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Zynq – Internal Device View
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Zynq – Package View



PSoC Design Methodology
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PSoC Design Flow
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Embedded System Design – Vivado Flow

Spec

HDL

Elaborate

Behavioral 
Verification
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Place & Route

Timing 
Verification

Create Project

(Block Design)
Constraints
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Bitstream 

Generation / 

Hardware Export
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Optional Optional

Constraints

Constraints

Optional

VIVADO 

VIVADO 
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Embedded System Design – Vivado-Vitis Design Flow



✓ Written specifications for the design to be done

✓ Spec can specify:

✓ Functionality

✓ Timing

✓ Interfaces

✓ Power
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Design Specification 

Spec



✓ Divide and conquer strategy

✓ Complex design is progressively partitioned into smaller and            
simpler functional units. This is known as

✓       Top-Down Design or Hierarchical Design 

PSoC Architecture & Design Methodology ICTP-MLAB 42

Design Partition 

HDL

IP Cores

✓ Behavioral model for each functional unit are 
written

✓It has its own synthesis results 

✓It has it own functional test bench

✓Some cases it has its own place and route and timing 
constraints



▪ Behavioral modeling describes the functionality of a component
(design), that is, what the component will do

o A behavioral prototype of a component can be quicly created

o Its functionlatiy verified

o Synthezised, optimized and mapped, to a specific technology

▪ Structural Modeling connect components to create a specific
functionality.

o Architectural partitioning forms a structural model, but the functional components are 
modeled behaviorally 
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HDL Design 

HDL



▪ In general, a design should be partitioned along functional 
lines into smaller functional units, each having a common 
clock domain, and each of which is to be verified 
separately. 
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Functional Verification – Block Level

✓ The verification process is threefold:

✓ Development of a test plan

✓ Development of test-benches

✓ Execution of the simulations

Behavioral 
Verification



✓  Development of a test plan: Specify what functional features are to be tested 
and how they are to be tested

✓For example, the test plan might specify that an exhaustive simulation of its behavior 
will verify the instruction set of an ALU. 

✓Test plans for sequential machines must be more elaborate to ensure a high level of 
confidence in the design.

✓A test plan identifies the stimulus generators, response monitors, and the "gold" 
response against which the model will be tested. 

✓Your grade, and your company's future, will depend on the care that you take in 
developing and executing your test plan. 
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Functional Verification – Block/System Level (1)



✓ Test bench development

✓  A Test Bench is a VHDL module in which the Unit Under Test (UUT) has to bee 
instantiated together with pattern generators that are to be applied to the inputs of 
the component during simulation.

✓Note: If a design is formed as an architecture of multiple modules, each must be verified 
separately, beginning with the lowest level of the design hierarchy, then the integrated 
design must be tested to verify that the modules interact correctly

✓  Test Bench execution

✓  The test bench is exercised according to the test plan, and the response is verified 
against the original specification for the design
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Functional Verification – Block/System Level (2)



✓ After each of the functional sub components has been verified to have 
correct functionality, the architecture must be integrated and verified to 
have the correct overall functionality

✓  A separate test plan for the system is developed at the beginning of this step. 

✓  This requires development of a separate testbench whose stimulus generators 
exercise the input/output functionality of the top-level module, monitor port and 
bus activity across module boundaries, and observe state activity in any embedded 
state machines. 

✓  This step in the design flow is crucial and must be executed thoroughly to ensure 
that the design that is being signed off for synthesis is correct.
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Design Integration – System Level Verification



✓  A synthesis tool is used to translate from ‘software (VHDL)’ to 
‘hardware’: logic gates, flip-flops, memory, etc.

✓  A synthesis tool removes redundant logic and seeks to satisfy the 
requirements regarding the area of the logic needed to implement the 
functionality and the performance (speed) specifications

✓ Post-Synthesis simulation is, in general, optional, but it is advisable in 
case of using specific synthesis attributes. 
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Synthesis – Constraints – Post-Synthesis Simulation 

ConstraintsSynthesis



✓ The logic generated by the synthesis tool is a netlist, commonly known as 
EDIF netlist, that is take by the Place and Route tool to scatter the logic in 
the FPGA’s resources. 

✓ P&R tool has different effort levels, which can be used in case the final 
result does not meet the needed requirements.

✓ In complex design:

✓ P&R could take several hours to accomplish its task.

✓ Some floorplanning may be needed (constraints).
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Place & Route 

Place & Route Constraints



✓ The simulation test (test bench) not only test the logical/behavioural 
functionality but also the timing of the whole system:

✓  Routing and logic delay are taking into consideration when executing this simulation

✓  Each delay is well know after the P&R

✓  Hold-time and Set-up time violations can be find out in this simulation as well as any 
glitch
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Post Place & Route Simulation 

Timing 
Verification

Optional
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Vitis Flow Design
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Vitis Design Flow

31 5

2 4 6
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▪ Vitis provides a development environment identical for stand-alone (‘C’ 
bare metal) and Linux based developments. 

▪ The Vivado hardware is exported to Vitis: 
o Detail the different hardware components. 

o Specify the memory locations assigned to the different components of the system.

o Links to peripheral datasheets.

▪ Vitis generates Board Support Package (BSP): provides specific support 
code for a given system

o Describes what libraries are used, how stdin/stdout are mapped, etc. 

o Provides device drivers for the generated hardware

o Abstract Hardware from Software. 

oMore than one BSP can exist per hardware system generated in Vivado. 
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Vitis Design Flow 



✓ First of all, configure the PL part of the Zynq, using the .bit file 

✓ Download the .elf file to the PS (processor) part of the Zynq.

✓ Execute the C/Linux application 

✓ Check the result into either: 
✓ Terminal

✓ Console

✓ 3rd party terminal emulator
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Vitis - Running the App. - .elf .bit Download
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Vitis Design Flow - .elf .bit Download
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.bit

Software Stack 
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Custom 
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Basics of TCL in Vivado
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TCL , is an interpreted programming language with variables, 

procedures , and control structures, to interface to a variety of design 

tools and to design data.
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Tool Command Language

PSoC Architecture & Design Methodology

It has been an industry standard language since early 90s’

AMD-Xilinx adopted TCL for the Vivado Design Suite



TCL in Vivado enables the designer to: 
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Tool Command Language (cont)

PSoC Architecture & Design Methodology

▪ Create a project

▪ Target a SoPC device/board

▪ Create a block design

▪ Include IP Cores

▪ Configure PS, IP Cores, etc. 

▪ Run synthesis

▪ Run implementation

▪ Modify P&R options

▪ Customize reports

▪ Program SoPC



The Vivado tools write a journal file called vivado.jou into the directory 

from which Vivado was launched. The journal is a record of the Tcl 

commands run during the session.

Thus,  they can be used as a starting  point to create a new Tcl script.
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Tool Command Language (cont)

PSoC Architecture & Design Methodology
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Tool Command Language (cont)

PSoC Architecture & Design Methodology



ICTP-MLAB 61

How to run a provided .tcl script

PSoC Architecture & Design Methodology

❑ Methot 1: Through Vivado TCL console

❑ Method 2: Through Command Line 
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Method 1: Run .tcl in Vivado TCL Console

PSoC Architecture & Design Methodology

1. Start Vivado Design Suite. You can see a tcl console on the left bottom of 
Vivado Design Suite

2. Click on the title 'type a tcl command here‘ (button left of the screen)

3. Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

4. Once the directory has been changed, you can use the ‘ls’ command to list 
the files in the current directory. Check that the .tcl is in there. 

5. Run the .tcl script by using the following command: 
 source <filename>.tcl

6. The processes defined in the .tcl file will be executed. It could take 
sometimes to execute a .tcl file (depending on the defined processes)
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Vivado TCL Console

PSoC Architecture & Design Methodology
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Vivado TCL Option in the GUI

PSoC Architecture & Design Methodology
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Method 2: Run .tcl through Command Line W10/11

PSoC Architecture & Design Methodology

1. In W10 you can start the Vivado TCL Shell by doing:
       Start-> All apps->Vivado 20xx.x Tcl Shell

2. A small command line window should come up

3. Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

4. Once the directory has been changed, you can use the ‘dir’ command to list 
the files in the current directory. Check that the .tcl is in there. 

5. Run the .tcl script by using the following command:

  source <filename>.tcl

6. The processes defined in the .tcl file will be executed. It could take some 
times to execute a .tcl file (depending on the defined processes)
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Run .tcl in Linux

PSoC Architecture & Design Methodology

1. Make sure TCL interpreter is installed: 
   $whereis tclsh

  tclsh: /usr/bin/tclsh /usr/bin/tclsh8.4 /usr/share/man/man1/tclsh.1.gz

2. In case you don’t have the tcl interpreter installed, do the following:
    $ sudo apt-get install tcl8.4

                Note: if you have already installed Vivado, the Tcl interpreter should be installed

3. Execute TCL script:
    $ tclsh helloworld.tcl

( or )
    $ chmod u+x helloworld.tcl

    $ ./helloworld.tcl
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Is there any Need to Learn TCL ?

PSoC Architecture & Design Methodology

It is purely based on your objectives.

If you want to automate some basic processes in creating design , it is the 

best choice as we can export a tcl script to another computer and create 

an exact replica of the project with same configurations, ip integrations in 

just a single execution.



Vivado Design Suite TCL Command Reference Guide

Vivado Design Suite User Guide - Using TCL Scripting

TCL Tutorial (up to Chapter 14 for Vivado appl)
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Xilinx TCL Docs

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug894-vivado-tcl-scripting.pdf
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html


Apendix



PS I/O Peripherals
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▪ I²C bus specification version 2

▪ Programmable to use normal (7-bit) or extended (10-bit) addressing

▪ Programmable rates: fast mode (400 kbit/s) , standard (10 0kbits/s), and low (10 kbits/s)
o Rates higher than 400 kbits/sec are not supported

▪ Programmable as either a master or slave interface

▪ Capable of clock synchronization and bus arbitration

▪ Fully programmable slave response address

▪ Reversible FIFO operation supported

▪ 16-byte buffer size

▪ Slave monitor mode when set up as master

▪ I²C bus hold for slow host service

▪ Slave timeout detection with programmable period

▪ Transfer status interrupts and flags
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I2C
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▪ Up to 24-MHz CAN_REF clock as system clock

▪ 64 message-deep receiver and transmitter buffer

▪ Full CAN 2.0B compliant; conforms to ISO 11898-1

▪ Maximum baud rate of 1 Mb/s

▪ Four message filters required for buffer mode

▪ Listen-only mode for test and debug

▪ External PHY I/O

▪ “Wake-on-message”

▪ Time-stamping for receive messages

▪ TX and RX FIFO watermarking

▪ Exception: no power-down mode

PSoC Architecture & Design Methodology ICTP-MLAB

CAN
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▪ Support for version 2.0 of SD Specification

▪ Full-speed (4 MB/s) and low-speed (2 MB/s) support
o Low-speed clock (400 KHz) used until bandwidth negotiated

▪ 1-bit and 4-bit data interface support

▪ Host mode support only

▪ Built-in DMA controller

▪ Full-speed clock (0-50 MHz) with maximum throughput at 25 MB/s

▪ 1 KB data FIFO interface

▪ Support for MMC 3.31 card at 52 MHz

▪ Support for memory, I/O, and combo cards

▪ Support for power control modes and interrupts

PSoC Architecture & Design Methodology ICTP-MLAB

SD-SDIO 
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▪ Master or slave SPI mode

▪ Four wire bus: MOSI, MISO, SCK, nSS

▪ Supports up to three slave select lines

▪ Supports multi-master environment

▪ Identifies an error condition if more than one master detected

▪ Software can poll for status or function as interrupt-driven device

▪ Programmable interrupt generation

▪ 50-MHz maximum external SPI clock rate

▪ Selectable master clock reference

▪ Integrated 128-byte deep read and write FIFOs

▪ Full-duplex operation offers simultaneous receive and transmit
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SPI
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▪ Two UARTs

▪ Programmable baud rate generator

▪ 64-byte receive and transmit FIFOs

▪ 6, 7, or 8 data bits and 1, 1.5, or 2 stop bits

▪ Odd, even, space, mark, or no parity with parity, framing, and overrun error 
detection

▪ "Line break" generation and detection

▪ Normal, automatic echo, local loopback, and remote loopback channel modes

▪ Interrupts generation

▪ Support 8 Mb/s maximum baud rate with additional reference clock or up to 1.5 
Mb/s with a 100-MHz peripheral bus clock

▪ Modem control signals: CTS, RTS, DSR, DTR, RI, and DCD (through EMIO)

▪ Simple UART: only two pins (TX and RX through MIO)
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▪ Two USB 2.0 hardened IP peripherals per Zynq device
o Each independently controlled and configured

▪ Supported interfaces
o High-speed USB 2.0: 480 Mbit/s
o Full-speed USB 1.1: 12 Mbit/s
o Low-speed USB 1.0: 1.5 Mbit/s
o Communication starts at USB 2.0 speed and drops until sync is achieved

▪ Each block can be configured as host, device, or on-the-go (OTG)

▪ 8-bit ULPI interface

▪ All four transfer types supported: isochronous, interrupt, bulk, and control 

▪ Supports up to 12 endpoints per USB block in the Zynq device
o Running in host mode

▪ Source-code drivers
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▪ Control and configuration registers for each USB block

▪ Software-ready with standalone and OS linux source-code delivered 
drivers

▪ EHCI compliant host registers

▪ USB host controller registers and data structures compliant to Intel 
EHCI specifications

▪ Internal DMA

▪ Must use the MIO pins
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▪ Tri-mode Ethernet MAC (10/100/1G) with native 
GMII interface

▪ IEEE1588 rev 2.0
o Time stamp support
o 1 us resolution

▪ IEEE802.3

▪ RGMII v2.0 (HSTL) interface to MIO pins
o Need MIO set at 1.8V to support RGMII speed
o Need to use large bank of MIO pins for two Ethernets

▪ MII/GMII/SGMII/RGMII ver1.3 (LVCMOS) and ver2.0 (HSTL) interface available 
through EMIO (programmable logic I/O)

▪ TX/RX checksum offload for TCP and UDP

▪ Internal DMA and wake on LAN
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Application Processor 
Unit (APU)
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▪ ARM Cortex-A9 processor implements the ARMv7-A architecture
o ARMv7 is the ARM Instruction Set Architecture (ISA)
o Thumb instructions: 16 bits; Thumb-2 instructions: 32 bits
o NEON: ARM’s Single Instruction Multiple Data (SIMD) instructions

o ARMv7-A: Application set that includes support for a Memory Management Unit (MMU)
o ARMv7-R: Real-time set that includes support for a Memory Protection Unit (MPU)
o ARMv7-M: Microcontroller set that is the smallest set

▪ ARM Advanced Microcontroller Bus Architecture (AMBA®) protocol
o AXI3: Third-generation ARM interface
o AXI4: Adding to the existing AXI definition (extended bursts, subsets)

▪ Cortex is the new family of processors
o ARM family is older generation; Cortex is current; MMUs in Cortex processors and MPUs 

in ARM
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▪ Dual ARM® Cortex -A9 MPCore  
with NEON extensions

o Up to 800-MHz operation

o 2.5 DMIPS/MHz per core

o Separate 32KB instruction and data 
caches 

▪ Snoop Control Unit (SCU)
o L1 cache snoop control

o Accelerator coherency port 

▪ Level 2 cache and controller
o Shared 512 KB cache with parity
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▪ General interrupt controller (GIC)

▪ On-chip memory (OCM): RAM and boot ROM

▪ Central DMA (eight channels)

▪ Device configuration (DEVCFG)

▪ Private watchdog timer and timer for each CPU

▪ System watchdog and triple timer counters shared between CPUs

▪ ARM CoreSight debug technology
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▪ All registers for both CPUs are grouped into two contiguous 4KB 
pages
o  Accessed through a dedicated internal bus

▪ Fixed at 0xF8F0_0000 with a register block size of 8 KB
o  Each CPU uses an offset into this base address
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APU Address Map

0x0000-0x00FC SCU registers

0x0100-0x01FF Interrupt controller interface

0x0200-0x02FF Global timer

0x0600-0x06FF Private timers and watchdog timers

0x1000-0x1FFF Interrupt distributor
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▪ NEON is the ARM codename for the vector processing unit
o Provides multimedia and signal processing support

▪ FPU is the floating-point unit extension to NEON
o Both NEON and FPU share a single set of registers

▪ NEON technology is a wide single instruction, multiple data (SIMD) 
parallel and co-processing architecture
o 32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide)
o Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, or 32-bit float
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▪ Separate instruction and data caches for each processor

▪ Caches are four-way, set associative and are write-back

▪ Non-lockable

▪ Eight words cache length

▪ On a cache miss, critical word first filling of the cache is performed 
followed by the next word in sequence
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▪ 512K bytes of RAM built into the SCU
o Latency of 25 CPU cycles

o Unified instruction and data cache

▪ Fixed, 256-bit (32 words) cache line size

▪ Support for per-master way lockdown between multiple CPUs

▪ Eight-way, set associative

▪ Two AXI interfaces
o One to DDR controller

o One to programmable logic master (to peripherals)

PSoC Architecture & Design Methodology ICTP-MLAB

L2 Cache Features

89



▪ The on-chip memory (OCM) module contains 256 KB of RAM and 128 
KB of ROM (BootROM).

▪  It supports two 64-bit AXI slave interface ports, one dedicated for 
CPU/ACP access via the APU snoop control unit (SCU), and the other 
shared by all other bus masters within the processing system (PS) and 
programmable logic (PL). 

▪ The BootROM memory is used exclusively by the boot process and is 
not visible to the user.
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On-Chip Memory (OCM)
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▪ Shares and arbitrates functions between the two processor cores
o Data cache coherency between the processors

o Initiates L2 AXI memory access

o Arbitrates between the processors requesting L2 accesses

o Manages ACP accesses

o A second master port with programmable address filtering between OCM and 
L2 memory support
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▪ High-performance, cache-to-cache transfers

▪ Snoop each CPU and cache each interface 
independently

▪ Coherency protocol is MESI
o M: Cache line has been modified

o E: Cache line is held exclusively

o S: Cache line is shared with another CPU

o I: Cache line is invalidated

▪ Uses Accelerator Coherence Port (ACP) to allow 
coherency to be extended to PL
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▪ A set of special registers in the APU used to configure the PS
o Power and clock management
o Reset control
o MIO/EMIO management

▪ Accessible through software
o Standalone BSP support

PSoC Architecture & Design Methodology ICTP-MLAB

System Level Control Register (SLCR)

SLCR Categories

System clock and reset control/status registers TrustZone control register

APU control registers SoC debug control registers

DMA initialization registers MIO/IOP control/status registers

DDR control registers Miscellaneous control registers

PL reset registers RAM and ROM control registers
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Zynq Clocks
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CPU Clock

CPU Clock 6:2:1 4:2:1 Clock Domain Modules

CPU_6x4x 800 MHz 
(6 times faster than CPU_1x)

600 MHz
 (4 times faster than CPU_1x)

CPU clock freq, SCU, OCM arbitrer, 
NEON and L2 Cache

CPU_3x2x 400 MHz 
(3 times faster than CPU_1x)

300 MHz
 (2 times faster than CPU_1x)

APU Timers

CPU_2x 266MHz 
(2 times faster than CPU_1x)

300 MHz
 (2 times faster than CPU_1x)

IOP, central interconnect, master 
interconeect, slave interconnect and 
OCM RAM

CPU_1x 133 MHz 150 MHz IOP, AHB and APB interface busses
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