

1

Data Analysis and Filter Optimization for Online Pulse-Amplitude Measurement

A Case Study on High-Resolution X-ray Spectroscopy

Andres Cicuttin

ICTP - Multidisciplinary Laboratory

Trieste, Italy

United Nations Educational, Scientific and Cultural Organization

IAEA International Atomic Energy Agency

Main Areas of Expertise

- •Read-out electronics and high performance **Digital Signal Processing**.
- •Advanced FPGA Design and Programmable Systems-on-Chip.
- •Reconfigurable virtual instrumentation for **Particle Detectors**.
- •Novel architectures for **Supercomputing Based on FPGA**.
- •Instruments and methods for X-Ray Imaging and Analytical Techniques.

Outline

- Introduction
- Pulsed signals: Description levels
- Processing chain: Detector/Sensor, Preamplification, Pulse shaping, Data acquisition, transmission, . . .
- Digital Pulse Processor (DPP): Main functional blocks, Features extraction, Dead times, Pattern recognition, . . .
- DPP Optimization
 - Data analysis
 - Pulse modeling
 - Digital Penalized Least Mean Squares (DPLMS) method for filtering optimization
- Discussion and Conclusions

More technical details in

Pulsed signals: Description levels

Processing chain

Detector, CSA, Pulse Shaper

Pulse Processing Chain

Digital Pulse Processor (DPP)

Main functional blocks, Features extraction, Dead times, Pattern recognition, . . .

Digital Pulse Processing Strategy for High-Resolution and High-Performance Amplitude Measurement

 $y_j = \sum_{i=0}^{n-1} c_i x_{j-i}$

A typical experimental pulse

Pulse amplitude measurement

A simple trapezoidal shaper

After some algebra . . .

$$D = \sum_{i=0}^{t_R-1} -6\left(\frac{1+t_R-2i}{t_R^3-t_R}\right) \left(\frac{1}{2}t_R + t_{FT} + \frac{1}{2}t_F\right) x_i$$

$$A = \left(\frac{1}{t_F} \sum_{i=t_R+t_{FT}}^{t_R+t_{FT}+t_F-1} x_i\right) - \frac{1}{t_R} \sum_{i=0}^{t_R-1} x_i\right) - \frac{1}{t_R} \sum_{i=0}^{t_R-1} -6\left(\frac{1+t_R-2i}{t_R^3-t_R}\right) \left(\frac{1}{2}t_R + t_{FT} + \frac{1}{2}t_F\right) x_i$$

$$A = \sum_{i=t_R+t_{FT}}^{t_R+t_{FT}+t_F-1} \frac{1}{t_F} x_i + \sum_{i=0}^{t_R-1} \left[-\frac{1}{t_R} + 6\left(\frac{1+t_R-2i}{t_R^3-t_R}\right) \left(\frac{1}{2}t_R + t_{FT} + \frac{1}{2}t_F\right) \right] x_i$$

$$Linear combination$$

$$c_i = \begin{cases} \frac{1}{t_F}, & 0 \le i < t_F; \\ 0, & t_F \le i < t_F + t_{FT}; \\ -\frac{1}{t_R} + 6\left(\frac{1+t_R-2i}{t_R^3-t_R}\right) \left(\frac{1}{2}t_R + t_{FT} + \frac{1}{2}t_F\right), \quad t_F + t_{FT} \le i < t_F + t_{FT} + t_R; \end{cases}$$
Errata corrige: t_R t_R

Geometrically Derived FIR Filter

$$c_{i} = \begin{cases} \frac{1}{t_{F}}, & 0 \leq i < t_{F}; \\ 0, & t_{F} \leq i < t_{F} + t_{FT}; \\ -\frac{1}{t_{R}} + 6\left(\frac{1+t_{R}-2i}{t_{R}^{3}-t_{R}}\right)\left(\frac{1}{2}t_{R} + t_{FT} + \frac{1}{2}t_{F}\right), & t_{F} + t_{FT} \leq i < t_{F} + t_{FT} + t_{R}; \end{cases}$$

DPP Optimization

Pulse modeling

$$V(t) = \begin{cases} 0, & t \leq t_0; \\ A(1 - e^{\frac{-(t-t_0)}{\tau}}), & t > t_0; \end{cases}$$

$$V(t) = \begin{cases} B_0 + B_1 t + n(t), & t \leq t_0; \\ A(1 - e^{\frac{-(t-t_0)}{\tau}}) + B_0 + B_1 t + n(t), & t > t_0; \end{cases}$$

$$x_{i} = \begin{cases} B_{0} + B_{1}i + n_{i}, & i \leq t_{0}; \\ A(1 - e^{\frac{-(i-t_{0})}{\tau}}) + B_{0} + B_{1}i + n_{i}, & i > t_{0}; \end{cases}$$

DPP Optimization

Digital Pulse Processing: Detecting Arrival Time

A short FIR can compute different discrete derivatives

FIR Design and Optimization

Input signal analysis

FIR Design and Optimization

The ideal case corresponding to a single photon detection is represented by the step function S_i

$$S_i = \begin{cases} 0, & i \le t_0 \\ A, & i > t_0 \end{cases}$$

The finite frequency response of the CSA determines a limited rise time that could be modeled (1st aprox) as an exponential growth

$$S_{i} = \begin{cases} 0, & i \leq t_{0} \\ A(1 - e^{-(i - t_{0})/\tau}), & i > t_{0} \end{cases}$$

A constant detector leakage current determines a baseline with a steady slope and a variable offset on top of which the signal segment must be processed

$$S_{i} = \begin{cases} B_{0} + iB_{1}, & i \leq t_{0} \\ A\left(1 - e^{-(i - t_{0})/\tau}\right) + B_{0} + iB_{1}, & i > t_{0} \end{cases}$$

Several sources of noise will contribute with an additive spurious signal n_i that degrades the voltage step measurement

$$S_{i} = \begin{cases} B_{0} + iB_{1} + n_{i}, & i \leq t_{0} \\ A\left(1 - e^{-(i - t_{0})/\tau}\right) + B_{0} + iB_{1} + n_{i}, & i > t_{0} \end{cases}$$

FIR Design and Optimization Input noise characterization

Some statistic results from the extracted parameters after fitting 1447 segments with the special bi-exponential function.

The proposed signal model has five (quite independent) parameters

FIR Design and Optimization Input noise characterization

Pulse models comparison

	Exponential Model	Bi-Exponential Model
Mean quadratic residuals	6201	5914
Mean peak-to-peak residuals	13.7	6.6
Mean Akaike information criterion	1720	1397

Autocorrelation model

In this case the average normalized ACF can be approximated with $a_0=0.965$ and $a_1=-0.2$

. . . scattered plots and

0.10

Counts

Histograms of fitting

parameters corresponding

They looks nice but . . .

to the bi-exponential model.

0.11 0.12 0.13 0.14 0.15

(d) Slope (*B*₁)

0.16

200 200 Counts Counts 5.05.5(a) Amplitude (A) (b) Arrival time (t_0)

(e) Offset (*B*₀)

(c) Exponential time (τ)

6.5

7.0

6.0

Non linearity: Amplification gain depends on offset (!)

Detection arrival time depends on pulse amplitude (!)

 $y_j = \sum_{i=0}^{k-1} c_i x_{j-i}$

$$\sigma_y^2 = \left\langle (y - \langle y \rangle)^2 \right\rangle = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} c_i c_j \underbrace{\left\langle x_i - \langle x_i \rangle \right\rangle \left\langle x_j - \langle x_j \rangle \right\rangle}_{\text{Covariance Matrix } V_{i,j}}$$

$$\sigma_y^2 = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} c_i c_j ACF(|i-j|)$$

$$ACF(j) = \frac{\sum_{i=1}^{N-j} x_i x_{i+j}}{\sum_{i=1}^{N-j} x_i^2}$$

Normalized average ACF

Ideal requirements

$$y_j = \sum_{i=0}^{k-1} c_i x_{j-i} = A, \quad j \in [t_R, t_R + t_{FT} - 1]$$

Output flat top

$$\Psi(c_{0}, c_{1}, \dots, c_{k-1}) = \alpha_{1} \left(\sum_{i=0}^{k-1} c_{i} \right)^{2} + \alpha_{2} \left(\sum_{i=0}^{k-1} c_{i} i \right)^{2} + \alpha_{3} \sum_{j=t_{R}}^{t_{R}+t_{FT}-1} \left(\sum_{i=0}^{k-1} c_{i} x_{k+j-i} - A \right)^{2} + \alpha_{4} \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} c_{i} c_{j} A C F_{|i-j|}$$

$$y_{j} = \sum_{i=0}^{k-1} c_{i} x_{j-i} = A \quad j \in [t_{R}, t_{R} + t_{FT} - 1]$$

$$\{c_{0}, c_{1}, \dots, c_{k-1}\} opt = \underset{\{c_{0}, c_{1}, \dots, c_{k-1}\}}{argmin} \Psi(c_{0}, c_{1}, \dots, c_{k-1})$$

 $\{c_0, c_1, \dots, c_{k-1}\}_{opt} = \underset{\{c_0, c_1, \dots, c_{k-1}\}}{argmin} \Psi(c_0, c_1, \dots, c_{k-1})$

Table 3. Comparison of energy resolutions with different methods to estimate the energy spectrum.

Method	FWHM <i>K</i> _α [eV]	FWHM K_{β} [eV]	Slope-Error Correction
GD FIR	286 ± 4	316 ± 16	yes
Fitting ⁺	267 ± 4	288 ± 17	yes
Trapezoidal FIR	207 ± 3	247 ± 17	no
DPLMS FIR	202 ± 2	233 ± 12	no

⁺ These results correspond to the histogram of the amplitudes obtained by fitting all available photon traces.

Conclusions

- High-resolution pulse amplitude measurement can be achieved by considering concrete experimental noise and accurate pulse modeling.
- DPP can be optimized through DPLMS method allowing satisfactory trade-off among competing requirements that cannot be all simultaneously satisfied.
- An appropriate data analysis provides the necessary information to apply the DPLMS method, and it may also provide information about the quality the frontend electronics and data acquisition system.

Tank you !

Data Analysis and Filter Optimization for Online Pulse-Amplitude Measurement

A Case Study on High-Resolution X-ray Spectroscopy

Andres Cicuttin

ICTP - Multidisciplinary Laboratory

Trieste, Italy

Backup slides: X-Ray Photon detection with Silicon Drift Detectors (SDD)

Backup slides: Pile up (1)

Pile up: Being a Poissonian process, two or more photons could be absorbed in the SDD within any arbitrary small time window. The superposition of two photons absorbed at times t_0 and t_1 and respectively with amplitudes A_0 and A_1 is then given by

$$\begin{pmatrix}
B_0 + iB_1 + n_i, & i \le t_0
\end{cases}$$

$$S_{i} = \begin{cases} A_{0} \left(1 - e^{-(i-t_{0})/\tau} \right) + B_{0} + iB_{1} + n_{i}, & t_{0} < i \le t_{1} \\ A_{0} \left(1 - e^{-(i-t_{0})/\tau} \right) + A_{1} \left(1 - e^{-(i-t_{1})/\tau} \right) + B_{0} + iB_{1} + n_{i}, & i > t_{1} \end{cases}$$

Backup slides: Pile up (2)

... and in general for *m+1* photons

$$\begin{pmatrix}
B_0 + iB_1 + n_i, & i \le t_0
\end{cases}$$

$$\begin{vmatrix} A_0 (1 - e^{-(i - t_0)/\tau}) + B_0 + iB_1 + n_i, & t_0 < i \le t_1 \\ A_0 (1 - e^{-(i - t_0)/\tau}) + A_1 (1 - e^{-(i - t_1)/\tau}) + B_0 + iB_1 + n_i, & t_1 < i \le t_2 \end{vmatrix}$$

$$S_{i} = \begin{cases} S_{i} = \begin{cases} \\ \sum_{j=0}^{m} A_{j} \left(1 - e^{-(i-t_{j})} / \tau \right) + B_{0} + iB_{1} + n_{i}, \end{cases} & i > t_{m} \end{cases}$$

Backup slides: Pileup rejection

Backup slides: Uncertainty relation between Energy and Time

