
VHDL For Synthesis

Cristian Sisterna
S e n i o r  A s s o c i a t e ,   I C T P - M L A B     

U n i v e r s i d a d  N a c i o n a l  S a n  J u a n - A r g e n t i n a



VHDL for Synthesis - C. Sisterna ICTP- MLAB 2

Introduction

Very High Speed IC
 

Hardware

Description

Language

V H D L



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Hardware Description Language

➢High level of abstraction 

➢ Easy to debug

➢ Parameterized designs

➢Re-uso

➢ IP Cores (free) available

if(reset=‘1’) then

 count <= 0;

elsif(rising_edge(clk)) then 

 count <= count+1;

end if;  

3

3



VHDL for Synthesis - C. Sisterna ICTP- MLAB

HDL Synthesis Sub-Set

VHDL 

Synthesizable

VHDL

Used to write code 
to simulate the 
behavior of a design

Used to implement 
the design into 
hardware (for 
instance in FPGA)

4

4



✓ VHDL is used to DESCRIBE the behavior and/or structure of a 
Digital System

✓ Be careful ! -> you are describing Hardware

Concurrent Code -> Executed in Paralell

✓With HDL it is possible to describe from a simple 
combinational circuit to a whole i7 processor 

VHDL for Synthesis - C. Sisterna ICTP- MLAB

HDL Synthesis Sub-Set

5

5



VHDL for Synthesis - C. Sisterna ICTP- MLAB 6

VHDL Describing Digital System

❖ The operations in real systems are executed 
concurrently. 

❖ The VHDL language describes real systems as a set 
of components (statements) that operate 
concurrently. 

❖Each of these components is described with 
concurrent statements. 

❖ The complexity of each component may vary from a 
simple logic gate to a processor 



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Synthesis versus Simulation

Extremely important to understand that VHLD is both, a 
Synthesis language and a Simulation language.

⚫ Small subset of the language is ‘synthesizable’, meaning 
that it can be translated into logic gates, flip-flops, and  
other ‘hardware’ components

⚫ Every line of VHDL code must have a direct translation into 

hardware. 

⚫ Another subset of the language include many features 
for ‘simulation’ or ‘verification’, features that have NO 
meaning in hardware

7

7



VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL ‘Description’ Examples

x

y
z

sel

0

1

if(sel=‘1’) then 

 z <= y;

else

 z <= x;

end if; 

z <= y when sel=‘1’ else x;

8

8



Libraries and packages provides the 
incorporation of external functions, data 
types and components to the component to 
be described

VHDL for Synthesis - C. Sisterna ICTP- MLAB 9

VHDL - General Component Structure

entity

architecture

I/O

Functionality

Libraries & 
packages

Defines the I/O ports as well as the name 
of the component. Some times a constant(s) 
is defined (generic) to write 
parameterized VHDL code 

It’s where the hardware behavior and/or 
structure is described. It can have from 1 
to thousands lines of code… ALL 
CONCURRENTs ! 



VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – General Component Structure 

entity

architecture

I/O

Functionality

mux2x1.vhd

10

x

y
z

sel

0

1

10

Libraries & 
packages



VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – General Component Structure 

mux2x1.vhd

11

11

Library & 

Packages

Entity

Libraries & 
packages

entity
I/O

architecture

Functionality
Architecture



VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – General Component Structure 

12

12

Library & 

Packages

Entity

Architecture

library ieee;

use ieee.std_logic_1164.all;

entity mux2x1 is

port(

  x,y,sel: in  std_logic;

   z     : out std_logic);

end mux2x1;

entity 

port(

end       ;

architecture test of mux2x1 is

begin

 process(x,y,sel)

 begin

  if(sel=‘1’) then 

 z <= y;

  else

 z <= x;

  end if; 

 end process;

end test;



VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – General Component Structure 

13

13

Library & 

Packages

Entity

Architecture

library ieee;

use ieee.std_logic_1164.all;

entity mux2x1 is

port(

  x,y,sel: in  std_logic;

   z     : out std_logic);

end mux2x1;

entity 

port(

end       ;

architecture test of mux2x1 is

begin

end test;

architecture test of mux2x1 is

begin

 

 z <= y when sel=‘1’ else x;

end test;



VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Code – Is it really Works? 

Unit Under Test

(DUT)

Test Bench

Stimulus 
Signals

Outputs

14

14



VHDL for Synthesis - C. Sisterna ICTP- MLAB 15

Test Bench - Verification



VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL –   Simulation / Verification 

16

16



VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL - FPGA Design Flow

17

17



with tmp select

 j <= w when “1000”,

      x when “0100”,

      y when “0010”,

      z when “0001”,

     '0‘when others;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – FPGA: Synthesis + P&R 

Vivado/Quartus
Libero

EDA Tool

VHDL Code

FPGA Library of Components

Design Constraints

Design Attributes

Cyclone

Spartan 

NET CLOCK PERIOD = 50 ns;

NET LOAD LOC = P14

attribute syn_encoding of 

my_fsm: type is “one-hot”;

18

Synthesis 
+ 

P&R

Digital System 
implemented in 

the FPGA
18



VHDL Simple Example



Design a BCD up-down counter. The count should be displayed in 
a 7-segment display. 

The system has a high frequency clock and system reset as inputs. 

VHDL for Synthesis - C. Sisterna ICTP- MLAB 20

Simple Example – VHDL 

Option 01
Option 

2

library & 
packages

architecture

entity

1

3



VHDL for Synthesis - C. Sisterna ICTP- MLAB 21

Libraries & Packages

Must be present to use 
std_logic type. That 

is, for ALL 
synthesisable designs.

Must be present to add 
arithmetic functions 

for signed and 
unsigned types.

Note: do not do arithmetic operations 
with std_logic/std_logic_vector

DO NOT USE these 
packages. There do not 
belong to the VHDL 

IEEE standard. 



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal/Port Declarations in the Entity

22

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsply

22



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Architecture (top)

23

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsply

Freq. 
Divide

r

bcd_2_7segm

counter

??

23



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Counter entity/arch.

24

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsplycounter

24



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Counter Architecture

25

Declarative part

Descriptive part
(concurrent)

Sequential 
statements 
(inside a 
process)

Concurrent 
statement

25



VHDL for Synthesis - C. Sisterna ICTP- MLAB 26

Understanding Concurrency

concurrent

sequential

sequential

concurrent

concurrent

concurrent



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Architecture (top)

27

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsply

Freq. 
Divider

bcd_2_7segm

counter

??

27



VHDL for Synthesis - C. Sisterna ICTP- MLAB 28

VHDL Data Types

VHDL 
Types

std_logic_vector std_logic

Your Text 
Here

natural 
(0, +)

positive
(+)

signed / 
unsigned

boolean
(True, 
False)

integer 
(-, +)



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal Assignment – strongly typed

29

count     <= count + 1; 

carry_out <= (a and b) or (a and c) or (b and c);

Z         <= y;

Left Hand Side (LHS)

Target Signal 

Right Hand Side (RHS) 

Source Signal(s)

RHS Signal Data TypeLHS Signal Data Type

signal bandera: integer;

signal flag, enable : std_logic; 

. . . .

bandera <= flag; -- ? 

enable <= flag;    -- ?

29



VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Object

30

An object holds a value of some specified type and 
can be one of the three classes:           

signal, variable, constant

Class           Object            Type

signal       

variable             identifier  

constant   

std_logic/std_ulogic

unsigned
signed

boolean

std_(u)logic_vector

Declaration Syntax:

object_class <identifier> : type[ := initial_value];

integer

30



VHDL for Synthesis - C. Sisterna ICTP- MLAB 31

std_logic Type

PACKAGE std_logic_1164 IS

    ------------------------------------------------    

    -- logic state system  (unresolved)

    ------------------------------------------------    

    TYPE std_ulogic IS ( 'U',  -- Uninitialized

                         'X',  -- Forcing  Unknown

                         '0',  -- Forcing  0

                         '1',  -- Forcing  1

                         'Z',  -- High Impedance   

                         'W',  -- Weak     Unknown

                         'L',  -- Weak     0       

                         'H',  -- Weak     1       

                         '-'   -- Wild card

                       );

     SUBTYPE std_logic IS resolved std_ulogic;



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion - Casting

32

VHDL does allow restricted type of CASTING, that is 
converting values between related types

datatype <= type(data_object);

signal max_rem: unsigned (7 downto 0); 

signal more_t: std_logic_vector( 7 downto 0); 

max_rem <= more_t; 

max_rem <= unsigned(more_t);

unsigned and std_logic_vector are both vectors of the 
same element type, therefore it’s possible a direct 

conversion by casting. When there is not type 
relationship a conversion function is used.

32



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion - Functions

33

VHDL does have some built-in functions to convert some 
different data types (not all the types allow 

conversions) 

datatype <= to_type(data_object);

signal internal_counter: integer range 0 to 15; 

signal count: std_logic_vector( 3 downto 0); 

count <= internal_count; 

CoUnT <= std_logic_vector(to_unsigned(internal_count,4));

Function converts integer to unsigned  

Cast to slv unsigned

slv

33



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion – Cast / Function

34

34



VHDL for Synthesis - C. Sisterna ICTP- MLAB 35

VHDL Operators



VHDL for Synthesis - C. Sisterna ICTP- MLAB 36

VHDL Attributes

36

It’s way of extracting information from a type, from the 

values of a type or it might define new implicit signals 

from explicitly declared signals

It’s also a way to allow to assign additional 

information to objects in your design description (such 

as data related to synthesis)

User-defined/ Synthesis 
Attrbiutes

Pre-defined 
attributes

Simulation and 
Synthesis Only Simulation



VHDL for Synthesis - C. Sisterna ICTP- MLAB 37

Array Attributes

Array attributes are used to obtain information on the 

size, range and indexing of an array

It’s good practice to use attributes to refer to the size or 

range of an array. So, if the size of the array is change, 

the VHDL statement using attributes will automatically 

adjust to the change 

Array Attributes – Range Related

A’range Returns the range value of a constrained array

A’reverse_range Returns the reverse value of a constrained array



VHDL for Synthesis - C. Sisterna ICTP- MLAB 38

Array Attributes

variable w_bus: std_logic_vector(7 downto 0);

Use of the attributes range and reverse_range 

then:

 w_bus’range    -- will return:   7 downto 0

while:

 w_bus’reverse_range  -- will return:   0 to 7



2017 Intel Corporation - Confidential

User-defined/Synthesis Attributes

39

VHDL provides designers/vendors with a way of adding 
additional information to the system to be synthesized

Synthesis tools use this features to add timing, 
placement, pin assignment, hints for resource locations, 
type of encoding for state machines and several others 
physical design information

The bad side of synthesis attributes is that the VHDL 
code becomes synthesis tools/FPGA dependant, NO 
TRANSPORTABLE ….



2017 Intel Corporation - Confidential

User-defined/Synthesis Attributes

40

attribute syn_preserve: boolean;

attribute syn_preserve of ff_data: signal is true;

type my_fsm_state is (reset, load, count, hold);

attribute syn_encoding: string;

attribute syn_encoding of my_fsm_state: type is “gray”;

attribute attr_name: type;

attribute attr_name of data_object: ObjectType is AttributeValue;

Syntax

Example



2017 Intel Corporation - Confidential

User-defined/Synthesis Attributes

41

type ram_type is array (63 downto 0) of 

                        std_logic_vector (15 downto 0);

signal ram: ram_type;

attribute syn_ramstyle: string;

attribute syn_ramstyle of ram: signal is “block_ram”; 

Example:



VHDL Statements

VHDL for Synthesis - C. Sisterna ICTP- MLAB 42



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

43

with <selection_signal> select

    target_signal <= <expression> when <value1_ss>,

          <expression> when <value2_ss>,

      ...

     <expression> when <last_value_ss>,

          <expression> when others;

Syntax

A selective signal assignment describes logic 
based on mutually exclusive combinations of 

values of the selection signal

43



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

44

library ieee; 

use ieee.std_logic_1164.all;

entity TRUTH_TABLE is

  port(A, B, C: in std_logic;

             Y: out std_logic);

end TRUTH_TABLE;

architecture BEHAVE of TRUTH_TABLE is

  signal S1: std_logic_vector(2 downto 0);

begin

  S1 <= A & B & C; -- concatenate A, B, C

  with S1 select

    Y <= ‘1’ when “000” | “010” | “100” ,

         ‘0’ when “001” | “011” | “101”,

         ‘-’ when others;

end BEHAVE;‘-’ means don’t care

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

“|” means OR only when 
used in “with” or “case” 

Example: Truth Table

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

44



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

45

Synthesis 
Result

RTL View

FPGA Technology 
View

45



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

46

target_signal <= 

 <expression> when <boolean_condition> else

 <expression> when <boolean_condition> else                 

 ....

 <expression> when <boolean_condition>[else 

<expression>];

Syntax

A conditional signal assignment describes logic based on 
unrelated boolean_conditions, the first condition that is 

true the value of expression is assigned to the 
target_signal

46



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

47

dbus <= data when enable = ‘1’ else ‘Z’;

dbus <= data when enable = ‘1’ else (others=>‘Z’);

Main usage

47



Example

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

48

library ieee;

use ieee.std_logic_1164.all;

entity my_tri is

  generic(bus_ancho: integer := 4);

  port(

   data:   in std_logic_vector(bus_ancho-1 downto 0);

   enable: in std_logic;

   dbus :  out std_logic_vector(bus_ancho-1 downto 0)

   );

end my_tri;

architecture behave of my_tri is

begin

  y <= a  when en = ‘1’ else (others => ‘z’) ;

end behave;

EN

A(0) Y(0)

EN

A(1) Y(1)

EN

A(2) Y(2)

EN

A(3) Y(3)

data(0)

data(1)

data(2)

data(3)

enable

enable

enable

enable

dbus(0)

dbus(1)

dbus(2)

dbus(3)

48



process Statement

❖A process, with all the sequential 
statements, is a simple concurrent 
statement. 

❖From the traditional programming view, it 
is an infinite loop

❖Multiple processes can be executed in 
parallel 

A process is a concurrent statement, but it is 
the primary mode of introducing 

sequential statements

VHDL for Synthesis - C. Sisterna ICTP- MLAB 49



Process Statement

50

execution

wait

A process has two states: execution and wait

Once the process has 
been executed,                 

it will wait for the 
next satisfied 

condition

Until a 
condition is 
satisfied

VHDL for Synthesis - C. Sisterna ICTP- MLAB 50



VHDL for Synthesis - C. Sisterna ICTP- MLAB 51

Process Statement

❖ Processes are composed of sequential statements, but 

process declarations are concurrent statements.

❖ The main features of a process are the following:

❖ It is executed in parallel with other processes;

❖ It defines a region of the architecture where statements are 

executed sequentially

❖ It must contain an explicit sensitivity list or a wait statement

❖ It allows functional descriptions, similar to the programming 

languages;



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Process Statement

52

[process_label:] process [(sensitivity_list)] [is]

[process_data_object_declarations]

begin

 variable_assignment_statement

 signal_assignment_statement

 wait_statement

 if_statement

 case_statement

 loop_statement

 null_statement

 exit_statement

 next_statement

 assertion_statement

 report_statement

 procedure_call_statement

 return_statement

  [wait on sensitivity_list]

end process [process_label];

Sequential 
statements

52



VHDL for Synthesis - C. Sisterna ICTP- MLAB 53

Parts of the process statement
sensitivity_list

◦ List of all the signals that are able to trigger the process

◦Simulation tools monitor events on these signals

◦Any event on any signal in the sensitivity list will cause to execute the 
process at least once

 sequential_statements

All the sequential statements that will be executed each 
time that the process is activated

declarations

Declarative part. Types, functions, procedures and variables 
can be declared in this part

 Each declaration is local to the process



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal Behaviour in a process

54

While a process is running ALL the SIGNALS in the system 

remain unchanged -> Signals are in effect CONSTANTS during 

process execution, EVEN after a signal assignment, the 

signal will NOT take a new value

SIGNALS are updated at the 

end of a process

Signals are a mean of communication between processes -> 

VHDL can be seen as a network of processes 

intercommunicating via signals

54



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Variable Behavior in a process

55

While a process is running ALL the Variables 

in the system are updates IMMEDIATELY by a 

variable assignment statement

55



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Combinational Process

56

 In a combinational process all the input signals must be 

contained in the sensitivity list

 If a signal is omitted from the sensitivity list, the VHDL 

simulation and the synthesized hardware will behave 

differently

 All the output signals from the process must be assigned a 

value each time the process is executed. If this condition is 

not satisfied, the signal will retain its value (latch !)

56



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Combinational Process

57

a_process: process (a_in, b_in)

begin

 c_out <= not(a_in and b_in);

 d_out <= not b_in;

end process a_process;

. . . .

architecture rtl of com_ex is

begin

 ex_c: process (a,b)

begin

 z <= a and b;

end process ex_c;

end rtl;

57



 Syntax

VHDL for Synthesis - C. Sisterna ICTP- MLAB

if-elsif-end if Statement

58

if <boolean_expression> then

    <sequential_statement(s)>

[elsif <boolean_expression> then

    <sequential_statement(s)>]

 . . . 

[else 

    <sequential_statement(s)>]

end if;

58



VHDL for Synthesis - C. Sisterna ICTP- MLAB

if Statement – 3 to 8 Decoder

59

entity if_decoder_example is

  port(

 a: in  std_logic_vector(2 downto 0);

 z: out std_logic_vector(7 downto 0);

end entity; 

architecture rtl of if_decoder_example is

begin

if_dec_ex: process (a)

 begin

     if   (a = “000”) then 

   z <= “00000001”;

   elsif (a = “001”) then 

   z <= “00000010”;

          . . . 

   else                   

   z <= (others => ‘0’);

   end if;

 end process if_dec_ex;

end rtl;

a(2:0) b(7:0)
??

59



VHDL for Synthesis - C. Sisterna ICTP- MLAB

if Statement

60

entity example3 is

   port ( a, b, c: in  std_logic;

           z, y: out std_logic);

end example3;

architecture beh of example3 is

begin

 process (a, b)

  begin

   if c='1' then

  z <= a;

   else

  y <= b;

   end if;

 end process;

end beh;

Most common mistakes for describing

combinatorial logic

60



VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement

61

[case label:]case <selector_expression> is

   when <choice_1> =>

     <sequential_statements> -- branch #1

   when <choice_2> =>

     <sequential_statements> -- branch #2

     . . .

   [when <choice_n to/downto choice_m > =>

     <sequential_statements>] -- branch #n

     ....

   [when <choice_x | choice_y | . . .> =>

     <sequential_statements>] -- branch #...

   [when others =>

     <sequential_statements>]-- last branch 

end case [case_label];

61



VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement

62

entity mux4 is

  port ( sel            : in std_ulogic_vector(1 downto 0);

         d0, d1, d2, d3 : in std_ulogic;

         z              : out std_ulogic );

end entity mux4;

architecture demo of mux4 is

begin

out_select : process (sel, d0, d1, d2, d3) is

 begin

 case sel is

  when “00” =>   

   z <= d0;

      when “01” =>   

   z <= d1;

  when “10” =>   

   z <= d2;

      when others => 

   z <= d3;

    end case;

 end process out_select;

end architecture demo;

62



VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement with if Statement

63

mux_mem_bus :process 
(cont_out,I_P0,I_P1,I_A0,I_A1,Q_P0,Q_P1,Q_A0,Q_A1)

begin  

 mux_out <= I_P0;    

 case (cont_out) is      

 when "00" =>        

    if(iq_bus = '0') then        

   mux_out <= I_P0;--I_A0;       

    else          

  mux_out <= Q_P0;--Q_A0;       

    end if;       

 when "01" =>       

    if(iq_bus = '0') then       

  mux_out <= I_A0;--I_P0;        

    else         

  mux_out <= Q_A0;--Q_P0;       

     end if; 

     . . . . . . 

63



VHDL for Synthesis - C. Sisterna ICTP- MLAB

for loop-end loop Statement

64

[loop_label]: for <identifier> in discrete_range loop

<sequential_statements>

end loop [loop_label];

• The identifier is called loop parameter, and for each iteration of 

the loop, it takes on successive values of the discrete range, 

starting from the left element

• It is not necessary to declare the identifier 

• By default the type is integer 

• Only exists when the loop is executing

<identifier>

64



VHDL for Synthesis - C. Sisterna ICTP- MLAB

for-loop Statement

65

entity match_bit is

        port ( a, b    : in  std_logic_vector(7 downto 0);

                matches: out std_logic_vector(7 downto 0));

end entity;

architecture behavioral of match_bit is

begin

process (a, b)

  begin

  for i in a’range loop

        matches(i) <= not (a(i) xor b(i));

  end loop;

  end process;

end behavioral;

-- process (a, b)

-- begin

-- matches(7) <= not (a(7) xor b(7));

-- matches(6) <= not (a(6) xor b(6));

-- ..

-- matches(0) <= not (a(0) xor b(0));

-- end process;

65



VHDL for Synthesis - C. Sisterna ICTP- MLAB

for-loop Statement

66

library ieee; 

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; 

entity count_??? is
port(vec: in std_logic_vector(15 downto 0); 

count: out std_logic_vector(3 downto 0))

end count_ones;

architecture behavior of count_???? is

begin

cnt_ones_proc: process(vec) 

variable result: unsigned(3 downto 0); 

begin

result:= (others =>'0'); 

for i in vec’range loop

if vec(i)='1' then

result := result + 1; 

end if; 

end loop; 

count <= std_logic_vector(result); 

end process cnt_ones_proc;

end behavior;

66



VHDL for Synthesis - C. Sisterna ICTP- MLAB

The Role of Componentes in VHDL

67

Hierarchy in 
VHDL 

 Divide & Conquer

 Each subcomponent can be designed and 
completely tested

 Create library of components (technology 
independent if possible)

Third-party available components

 Code for reuse

67



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Component Instantiation

68

Component instantiation is a concurrent statement that is 
used to connect a component I/Os to the internal signals or 

to the I/Os of the higher lever component

▫ component_label it labels the instance by giving a name
to the instanced

▫ generic_assocation_list assign new values to the 
default generic values (given in the entity declaration)

▫ port_association_list associate the signals in the top 
entity/architecture with the ports of the component. There
are two ways of specifying the port map:
 Positional Association  / Name Association

component_label: entity work.component_name 

[generic map (generic_assocation_list)]

port map (port_association_list);

68



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Association By Name

69

In named association, an association list is of the form

(formal1=>actual1, formal2=>actual2, … formaln=>actualn);

-- component declaration

component NAND2

 port (a, b: in  std_logic;

    z: out std_logic);

end component;

-- component instantiation

U1: entity work.NAND2 port map (a=>S1, z=>S3, b=>S2);

-- S1 associated with a, S2 with b and S3 with z 

Connected to Component I/O Port 
Internal Signal or Entity 

I/O Port

69



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Component Instantiation Example

70

library ieee;

use ieee.std_logic_1164.all;

entity glue_logic is

  port (A, CK, MR, DIN: in  std_logic; 

 RDY, CTRLA     : out std_logic); 

end glue_logic ;

architecture STRUCT of glue_logic is 

signal S1, S2: std_logic; 

begin

 D1: entity work.DFF  port map (D=>A, CLOCK=>CK, Q=>S1, QBAR=>S2);

 A1: entity work.AND2 port map (X=>S2, Y=>DIN, Z=>CTRLA); 

 N1: entity work.NOR2 port map 

 (a =>S1, 

  b =>MR, 

  c =>RD1); 

end STRUCT;

dff
d

      clock

q

qbar

and2
x

y
z

nor2
a

b

c

70



VHLD for Sequential
Logic Design

VHDL for Synthesis - C. Sisterna ICTP- MLAB 71



VHDL for Synthesis - C. Sisterna ICTP- MLAB

D Flip-Flop – VHDL 

entity ff_d_example is

  port(

  d   : in  std_logic;

  clk : in  std_logic;

  q   : out std_logic);

end entity; 

architecture rtl of ff_d_example is

begin

 ff_d: process(clk)

 begin

  if (rising_edge(clk)) then

    q <= d;

  end if;

 end process ff_d;

end rtl;

q

clk

d

72



VHDL for Synthesis - C. Sisterna ICTP- MLAB

D-ff with asynchronous reset

entity ff_example is

  port(

    d, clk, rst_n: in  std_logic;

                q: out std_logic);

end entity; 

architecture rtl of ff_example is

begin

 ff_d_rst: process (clk, rst_n)

 begin

 if (rst_n=‘0’) then 

     q <= ‘0’;

 elsif (rising_edge (clk)) then 

     q <= d;

 end if; 

 end process ff_d_rst;

end rtl;

73

q

clk

d

rst_n



VHDL for Synthesis - C. Sisterna 74

D-ff with synchronous reset
entity ff_d_srst is

  port(

 d, clk, rst: in  std_logic;

           q: out std_logic);

end entity; 

architecture rtl of ff_d_srst is

begin

 ff_d_srst: process (clk)

begin

 if (rising_edge (clk)) then 

    if (rst =‘1’) then 

  q <= ‘0’;

    else 

  q <= d;

   end if; 

 end if; 

end process ff_d_srst;

end rtl;

ICTP- MLAB

q

clk

d

rst



VHDL for Synthesis - C. Sisterna 75

D-ff with async. reset and enable

end entity; 

architecture rtl of ff_d_en_rst is

begin

ff_d_en_rst: process (clk, rst)

 begin

 if (rst=‘1’) then 

     q <= ‘0’;  

 elsif (rising_edge (clk)) then 

   if (en=‘1’) then 

    q <= d;

   end if; 

 end if; 

 end process ff_d_en_rst;

end rtl;

ICTP- MLAB

q

clk

d

rst

en

entity ff_d_en_rst is

  port(

 d, clk, en, rst: in  std_logic;

 q:              out std_logic);

end entity; 



VHDL for Synthesis - C. Sisterna 76

Registers
entity reg_d_rst is

 generic(width:= 4);

 port(

  d      : in  std_logic_vector(width-1 downto 0);

   clk, clr_l: in  std_logic;

  q      : out std_logic_vector(width-1 downto 0));

end entity; 

architecture rtl of reg_d_rst is

begin

 reg_d_arst: process (clk,clr_l)

 begin

 if (clr_l = ‘1’) then 

     q <= (others =>‘0’);    -- q <= “0000”

  elsif(rising_edge (clk)) then 

     q <= d;

 end if; 

 end process reg_d_arst;

end rtl;

ICTP- MLAB



VHDL for Synthesis - C. Sisterna ICTP- MLAB 77

What is the implementation result??
library ieee;

use ieee.std_logic_1164.all;

entity shift_pi_po_x8 is

port(

clk, clr : in std_logic; 

serial_in : in std_logic;

data_out : out std_logic_vector(7 downto 0);

end shift_pi_po_x8;

architecture behav of shift_si_so_x4 is

signal data_out_temp: std_logic_vector(3 downto 0); 

begin

shift_proc: process(clk, clr)

begin

if (clr = '0') then

data_out_temp <= others(=>'0‘);

elsif (rising_edge(clk)) then

data_out_temp <= serial_in & data_out_temp(3 downto 1);

end if;

end process shift_proc;

data_out <= data_out_temp;

end behave;



architecture behav of shift_74x194 is

signal temp_q: std_logic_vector(3 downto 0); 

signal ctrl  : std_logic_vector(1 downto 0);

begin

ctrl <= s0 & s1;

shift_proc: process(clk, clr_n)

begin

if (clr_n = '0') then

temp_q <= (others => '0');

elsif (rising_edge(clk)) then

case ctrl is

when "11" => temp_q <= paralel_in; 
 when "10" => temp_q <= rin & temp(3 downto 1); 
 when "01" => temp_q <= temp(2 downto 0) & lin;

   when others => temp_q <= temp_q;

     end case; 

   end if; 

end process; 

q <= temp_q; 

end behav; 

VHDL for Synthesis - C. Sisterna ICTP- MLAB 78

Shift Register : 74x194



VHDL for Synthesis - C. Sisterna ICTP- MLAB 79

Counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; 

entity counter_nbits is

  generic(cnt_w: natural:= 4)    

  port (

 -- clock & reset inputs

 clk     : in std_logic;        

 rst     : in std_logic;

 -- ouptuts

 count   : out std_logic_vector(cnt_w-1 downto 

0));

end counter_nbits;

architecture rtl of counter_nbits is 

 -- signal declarations 

 signal count_i: unsigned(cnt_w-1 downto 0); 

begin    

count_proc: process(clk, rst)  

 begin    

  if(rst='0') then      

    count_i <= (others => '0');            

  elsif(rising_edge(clk)) then      

    count_i <= count_i + 1; 

       

end process count_proc;  

 count <= std_logic_vector(count_i); 

end architecture rtl; 

?



VHDL for Synthesis - C. Sisterna ICTP- MLAB 80

Up/Down Counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; 

entity counter_ud is

  generic(cnt_w: natural:= 4)    

  port (

 -- clock & reset inputs

 clk     : in std_logic;        

 rst     : in std_logic;

 -- control input signals

 up_dw   : in std_logic; 

 -- ouptuts

 count   : out std_logic_vector(cnt_w-1 downto 

0));

end counter_ud;

architecture rtl of counter_ud is 

-- signal declarations 

signal count_i: unsigned(cnt_w-1 downto 0); 

begin    

 count_proc: process(clk, rst)  

 begin    

  if(rst='0') then      

    count_i <= (others => '0');       

  elsif(rising_edge(clk)) then      

    if(up_dw = '1') then -- up        

       count_i <= count_i + 1;      

    else                 -- down

       count_i <= count_i - 1;      

    end if;    

   end if;     

 end process count_proc;  

 count <= std_logic_vector(count_i);

end architecture rtl; 



VHDL for Synthesis - C. Sisterna ICTP- MLAB 81

Up/Down Counter - Integers

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; 

entity counter_ud_i is

  generic(cnt_w: natural:= 4)    

  port (

 -- clock & reset inputs

 clk     : in std_logic;        

 rst_n   : in std_logic;

 -- ouptuts

 count   : out std_logic_vector(cnt_w-1 downto 

0));

end counter_ud_i;

architecture rtl of counter_ud_i is 

begin    

 count_proc: process(clk, rst) 

  variable count_i: integer range 0 to 255; 

begin    

  if(rst_n = '0') then      

     count_i := 0;    

  elsif(rising_edge(clk)) then      

    if(count_i = 255) then        

       count_i := 0;      

    else                 

       count_i := count_i + 1;      

    end if;    

   end if;     

 end process count_proc;  

 count <= std_logic_vector(to_unsigned(count_i,8));

end architecture rtl; 
?



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Asynchronous Inputs

82



VHDL for Synthesis - C. Sisterna ICTP- MLAB 83

Synchronizer



VHDL for Synthesis - C. Sisterna ICTP- MLAB 84

Synchronizer

library ieee;
use ieee.std_logic_1164.all;

entity synchronizer is
port(

clk      : in std_logic; 
asyncin  : in std_logic;
syncin   : out std_logic);

end synchronizer;

architecture behave of synchronizer is

signal sync_temp: std_logic; 

begin 

sync_proc: process(clk)

begin
if (rising_edge(clk)) then 

sync_temp <= asyncin;

syncin    <= sync_temp; 

end if;
end process;

end behave;



FINITE STATE 
MACHINES (FSM) 

DESCRIPTION IN VHDL 

Cristian Sisterna

UNSJ
VHDL for Synthesis - C. Sisterna ICTP- MLAB 85



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 86

State Machine General Scheme 1

Outputs
Inputs

Next

State

Logic

Current

State

Logic
Current

      State

Next

State

Output

Logic

Clk

Rst

Next State 

Logic

Current 

State Logic

Output 

Logic



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 87

State Machine General Scheme 2

Outputs

Next

State

Inputs
Next

State

Logic

Current

State

Logic

Current

      State Output

Logic

Clk

Rst

Sync

Output

FFs

Next 

State 

Logic

Current 

State 

Logic

Output 

Logic

Synchr. 

Output 

Logic



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 88

FSM VHDL General Design Flow

Specification
s

Understand the 
Problem 

Draw the ASM or State 
Diagram

Define an FSM 
Enumerated Type

Define FSM Signals

Select an Encoding 
Technique (optional)

Write the VHDL 
Code

Traditional Steps

VHDL Steps

+



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 89

FSM  Enumerated Type Declaration

Declare an enumerated data type with values (names) that symbolize 

the states of the state machine

The only values that current_state and next_state can hold are: 

IDLE,START,STOP_1BIT,PARITY,SHIFT

-- declare signals of FSM_States type            

signal current_state, next_state: FSM_States;

-- declare the states of the state-machine 

-- as enumerated type   

type FSM_States is(IDLE,START,STOP_1BIT,PARITY,SHIFT);    

Declare the signals for the next state and current state of the state 

machine as signal of the enumerated data type already defined for the 

state machine

Symbolic State 
Names



State Assignment

 During synthesis each symbolic state name has to be mapped to a 

unique binary representation

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 90

FSM Encoding Techniques

 A good state assignment can reduce the circuit size and increase the 

clock rate (by reducing propagation delays)

 The hardware needed  for the implementation of the next state logic 

and the output logic is directly related to the state assignment 

selected



An FSM with n symbolic states requires at least [log2 n ] bits to 

encode all the possible symbolic values

Commonly used state assignment schemes:

 Binary: assign states according to a binary sequence

 Gray: use the Gray code sequence for assigning states

 One-hot: assigns one ‘hot’ bit for each state

 Almost one-hot: similar to one-hot but add the all zeros code 

(initial state)

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 91

FSM Encoding Schemes



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 92

FSM Encoding Schemes

Binary Gray One-Hot Almost One-hot

idle 000 000 00001 0000

start 001 001 00010 0001

stop_1bit 010 011 00100 0010

parity 011 010 01000 0100

shift 100 110 10000 1000



How is the map process done ? 

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 93

Encoding Schemes in VHDL 

During synthesis each symbolic state name has to be 

mapped to a unique binary representation

user attribute 
(synthesis attribute)

enum_encoding 
(VHDL standard)

explicit user-defined 
assignment

default encoding



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 94

syn_encoding – Quartus & Synplify

• syn_encoding is the synthesis user-attribute of Quartus 

(Synplify) that specifies encoding for the states modeled by an 

enumeration type

• To use the syn_encoding attribute, it must first be 

declared as string type. Then, assign a value to it, referencing 

the current state signal. 

-- declare the (state-machine) enumerated type

type my_fms_states is (IDLE,START,STOP_1BIT,PARITY,SHIFT);

-- declare signals as my_fsm_states type

signal nxt_state, current_state: my_fsm_states;

-- set the style encoding

attribute syn_encoding: string;

attribute syn_encoding of my_fms_states : type is “one-hot”;



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 95

Results for Different Encoding Schemes

One-hot 

safe

One-hot Gray Gray-Safe Binary Johnson

Total 

combination

al functions

76 66 66 68 66 68

Dedicated 

logic 

registers

45 45 43 43 43 43

Max. frq. 352.24 340.95 331.02 335.01 338.34 311.72

Simple, 5 states, state machine



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 96

Results for Different Encoding Schemes

One-hot 

safe

One-hot Gray Gray-Safe Binary Johnson

Total 

combinational 

functions

556 523 569 566 561 573

Dedicated 

logic registers
215 215 201 201 201 206

Max. frq. 187.3 175.22 186.39 180.6 197.63 186.22

19 states, state machine



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 97

State Machine VHDL Coding - Example

wait_inpin_2det

X = 0edge_det

wait_fall

pulsein_2det

in_2det

in_2det

FSMin_2det
pulse

in_2det

in_2det

clock
reset

Describe in VHDL an FSM 
that generate a pulse 
per each rising edge of 
the input. 



Seq. Output

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 98

FSM VHDL Coding
Comb. Next State 

Logic

Seq. Present State

Clk

Rst

in_2det state

nxt_pr:process (state, in_2det)

begin

  case state is

     when wait_inp => 

         if (in_2det='0') then 

            next_state <= wait_inp;

         else 

           next_state <= edge_det;

         end if; 

  when edge_det => 

         if(in_2det='0') then

            next_state <= wait_inp;

         else  

            next_state <= wait_fall; 

         end if;

  when wait_fall => 

         if(in_2det='0') then

             next_state <= wait_inp;

         else 

             next_state <= wait_fall; 

         end if;  

    when others => 

          next_state <= wait_inp;  

 end case;

end process nxt_pr;

cst_pr: process (clk, rst)

begin

   if(rst = ‘1’) then

         state <= wait_inp;

  elsif (rising_edge(clk)) then

         state <= next_state;

   end if;

end process cst_pr;

out_pr:process (clk, rst)

begin

 if (rst = ‘1’) then

      pulse   <= ‘0’;

 elsif (rising_edge(clk)) then

    case state is

        when wait_inp => 

                       pulse <= ‘0’;

         when edge_det =>  

                       pulse <= ‘1’;

         when wait_fall => 

                        pulse <= ‘0’;

          when others =>  

                        pulse <= ‘-’;

     end case;

 end if;

end process out_pr;

pulse



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 99

State Machine VHDL Coding (complete)

-- VHDL code example for an FSM

library ieee;

use ieee.std_logic_1164.all;

entity fsm _edge_detect is

  port( 

         in_2det : in   std_logic;

        clk          : in  std_logic;

        rst          : in std_logic;

        pulse     : out std_logic );

end entity fsm_edge_detect;

architecture beh of my_fsm is

 -- fsm enumerated type declaration

 type fsm_states is (wait_inp, edge_det, wait_fall); 

 -- fsm signal declarations

 signal next_state, state: fsm_states;

begin  

-- current state logic 

cst_pr: process (clk, rst)

begin

   if(rst = ‘1’) then

         state <= wait_inp;

   elsif (rising_edge(clk)) then

         state <= next_state;

   end if;

end process cst_pr;

-- next state logic

nxt_pr:process (state, in_2det)

begin

  case state is

     when wait_inp => 

         if(in_2det=‘0’) then 

               next_state <= wait_inp;

         else

               next_state <= edge_det;

        end if; 

     when edge_det => 

         if ….

               next_state <= .. ;

          …. 

      when others => 

          …. 

  end case;

end process nxt_pr;

- - output logic

out_pr:process (clk, rst)

begin

   if(rst = ‘1’) then

          pulse   <= ‘0’;

   elsif (rising_edge(clk)) then

     case state is

          when wait_inp  =>   pulse <= ‘0’;

           . . .

         when others    =>   pulse <= ‘-’;

     end case;

 end process out_pr;

end architecture beh;



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 100

FSM Simulation 



Let’s try to obtain an state diagram of a hypothetical memory controller FSM that has the 

following specifications: 

The controller is between a processor and a memory chip, interpreting commands from the 

processor and then generating a control sequence accordingly. The commands, mem, rw and 

burst, from the processor constitute the input signals of the FSM. The mem signal is asserted to 

high when a memory access is required. The rdwr signal indicates the type of memory access, 

and its value can be either ’1’ or ’0’, for memory read and memory write respectively. The 

burst signal is for a special mode of a memory read operation. If it is asserted, four 

consecutive read operations will be performed. The memory chip has two control signals, oe 

(for output enable) and we (for write enable), which need to be asserted during the memory 

read and memory write respectively. The two output signals of the FSM, oe and we, are 

connected to the memory chip’s control signals. For comparison purpose, let also add an 

artificial Mealy output signal, we_mealy , to the state diagram. Initially, the FSM is in the idle 

state, waiting for the mem command from the processor. Once mem is asserted, the FSM 

examines the value of rdwr and moves to either the read1 or the write state. The input 

conditions can be formalized to logic expressions, as shown below:

• mem’ : represents that no memory operation is required (mem=‘0’)

• mem.rdwr: represents that a memory read operation is required (mem=rdwr=‘1’).

• mem.rdwr’: represents that a memory write operation is required (mem=‘1’; rdwr=‘0’)

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 101

Another Ex.: Memory Controller FSM

Based on an example from the “RTL Hardware Design Using VHDL” book, By Pong Chu



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 102

Memory Controller FSM

Processor

FPGA Memory 

Controller FSM

Memory IC

Data Bus

Address Bus

mem

burst

rdwr

oe

we

we_mealy



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 103

Memory Controller FSM
mem’

read1

read2

read3

read4

mem.rdwr

burst’

idle

write

we

oe

oe

oe

oe

mem.rdwr’

we_mealy

burst



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 104

Memory Controller FSM – VHDL Code

library ieee ;

use ieee.std_logic_1164.all;

entity mem_ctrl is

port (

 clk, reset      : in  std_logic;

 mem, rdwr, burst: in  std_logic;

 oe, we, we_mealy: out std_logic

      );

end mem_ctrl ;

architecture mult_seg_arch of mem_ctrl is

 type fsm_states_type is

       (idle, read1, read2, read3, read4, write);

 signal crrnt_state, next_state: fsm_states_type;

begin



VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 105

Memory Controller FSM – VHDL Code

−− current state process

cs_pr: process (clk, reset)

begin

 if(reset = ’1’) then

     crrnt_state <= idle ;

 elsif(rising_edge(clk))then

     crrnt_state <= next_state;

 end if;

end process cs_pr;



 Next state process (1)

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 106

Memory Controller FSM – VHDL Code

−− next−state logic

nxp:process(crrnt_state,mem,rdwr,burst)

begin

 case crrnt_state is

   when idle =>

     if mem = ’1 ’ then

       if rdwr = ’1’ then

         next_state <= read1;

       else

   next_state <= write;

       end if;

     else

  next_state <= idle;

     end if;

   when write =>

     next_state <= idle;



 Next state process (2)

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 107

Memory Controller FSM – VHDL Code

when read1 =>

    if (burst = ’1’) then

      next_state <= read2;

    else

      next_state <= idle;

    end if;

  when read2 =>

    next_state <= read3;

  when read3 =>

    next_state <= read4;

  when read4 =>

    next_state <= idle;

  when others =>

    next_state <= idle;

 end case;

end process nxp;



 Moore outputs process

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 108

Memory Controller FSM – VHDL Code
−− Moore output logic

moore_pr: process (crrnt_state)

begin

  we <= ’0’; −− default value

  oe <= ’0’; −− default value

  case crrnt_state is

     when idle => null;

     when write =>

          we <= ’1’;

     when read1 =>

          oe <= ’1’;

     when read2 =>

          oe <= ’1’;

     when read3 =>

          oe <= ’1’;

     when read4 =>

          oe <= ’1’;

     when others => null;

  end case ;

end process moore_pr;



 Mealy output process

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 109

Memory Controller FSM – VHDL Code

−− Mealy output logic

mly_pr: process(crrt_state,mem,rdwr)

begin

  we_me <= ’0’; −− default value

  case state_reg is

    when idle =>

      if (mem=’1’)and(rdwr =’0’)then

         we_me <= ’1’;

      end if;

    when write => null;

    when read1 => null;

    when read2 => null;

    when read3 => null;

    when read4 => null;

  end case;

end process mly_pr;



 Mealy output statement 

VHDL for Synthesis - C. 

Sisterna
ICTP- MLAB 110

Memory Controller FSM – VHDL Code

−− Mealy output logic

we_me <= ’1’ when ((crrnt_state=idle) and (mem=’1’) and(rdwr=’0’))   

             else

         ’0’;


	Slide 1: VHDL For Synthesis
	Slide 2: Introduction
	Slide 3: Hardware Description Language
	Slide 4: HDL Synthesis Sub-Set
	Slide 5: HDL Synthesis Sub-Set
	Slide 6: VHDL Describing Digital System
	Slide 7: Synthesis versus Simulation
	Slide 8: VHDL ‘Description’ Examples
	Slide 9: VHDL - General Component Structure
	Slide 10: VHDL – General Component Structure 
	Slide 11: VHDL – General Component Structure 
	Slide 12: VHDL – General Component Structure 
	Slide 13: VHDL – General Component Structure 
	Slide 14: VHDL Code – Is it really Works? 
	Slide 15: Test Bench - Verification
	Slide 16: VHDL –   Simulation / Verification 
	Slide 17: VHDL - FPGA Design Flow
	Slide 18: VHDL – FPGA: Synthesis + P&R 
	Slide 19: VHDL Simple Example
	Slide 20: Simple Example – VHDL 
	Slide 21: Libraries & Packages
	Slide 22: Signal/Port Declarations in the Entity
	Slide 23: Architecture (top)
	Slide 24: Counter entity/arch.
	Slide 25: Counter Architecture
	Slide 26: Understanding Concurrency
	Slide 27: Architecture (top)
	Slide 28: VHDL Data Types
	Slide 29: Signal Assignment – strongly typed
	Slide 30: VHDL Object
	Slide 31: std_logic Type
	Slide 32: Type Conversion - Casting
	Slide 33: Type Conversion - Functions
	Slide 34: Type Conversion – Cast / Function
	Slide 35: VHDL Operators
	Slide 36: VHDL Attributes
	Slide 37: Array Attributes
	Slide 38: Array Attributes
	Slide 39: User-defined/Synthesis Attributes
	Slide 40: User-defined/Synthesis Attributes
	Slide 41: User-defined/Synthesis Attributes
	Slide 42: VHDL Statements
	Slide 43: Selective Signal Assignment Statement
	Slide 44: Selective Signal Assignment Statement
	Slide 45: Selective Signal Assignment Statement
	Slide 46: Conditional Signal Assignment
	Slide 47: Conditional Signal Assignment
	Slide 48: Conditional Signal Assignment
	Slide 49: process Statement
	Slide 50: Process Statement
	Slide 51: Process Statement
	Slide 52: Process Statement
	Slide 53: Parts of the process statement
	Slide 54: Signal Behaviour in a process
	Slide 55: Variable Behavior in a process
	Slide 56: Combinational Process
	Slide 57: Combinational Process
	Slide 58: if-elsif-end if  Statement
	Slide 59: if Statement – 3 to 8 Decoder
	Slide 60: if Statement
	Slide 61: case Statement
	Slide 62: case Statement
	Slide 63: case Statement with if Statement
	Slide 64: for loop-end loop  Statement
	Slide 65: for-loop Statement
	Slide 66: for-loop Statement
	Slide 67: The Role of Componentes in VHDL
	Slide 68: Component Instantiation
	Slide 69: Association By Name
	Slide 70: Component Instantiation Example
	Slide 71: VHLD for Sequential Logic Design
	Slide 72: D Flip-Flop – VHDL 
	Slide 73: D-ff with asynchronous reset
	Slide 74: D-ff with synchronous reset
	Slide 75: D-ff with async. reset and enable
	Slide 76: Registers 
	Slide 77: What is the implementation result??
	Slide 78: Shift Register : 74x194
	Slide 79: Counter
	Slide 80: Up/Down Counter
	Slide 81: Up/Down Counter - Integers
	Slide 82: Asynchronous Inputs
	Slide 83: Synchronizer
	Slide 84: Synchronizer
	Slide 85: FINITE STATE MACHINES (FSM) Description in VHDL 
	Slide 86: State Machine General Scheme 1
	Slide 87: State Machine General Scheme 2
	Slide 88: FSM VHDL General Design Flow
	Slide 89: FSM  Enumerated Type Declaration
	Slide 90: FSM Encoding Techniques
	Slide 91: FSM Encoding Schemes
	Slide 92: FSM Encoding Schemes
	Slide 93: Encoding Schemes in VHDL 
	Slide 94: syn_encoding – Quartus & Synplify
	Slide 95: Results for Different Encoding Schemes
	Slide 96: Results for Different Encoding Schemes
	Slide 97: State Machine VHDL Coding - Example
	Slide 98: FSM VHDL Coding
	Slide 99: State Machine VHDL Coding (complete)
	Slide 100: FSM Simulation 
	Slide 101: Another Ex.: Memory Controller FSM
	Slide 102: Memory Controller FSM
	Slide 103: Memory Controller FSM
	Slide 104: Memory Controller FSM – VHDL Code
	Slide 105: Memory Controller FSM – VHDL Code
	Slide 106: Memory Controller FSM – VHDL Code
	Slide 107: Memory Controller FSM – VHDL Code
	Slide 108: Memory Controller FSM – VHDL Code
	Slide 109: Memory Controller FSM – VHDL Code
	Slide 110: Memory Controller FSM – VHDL Code

