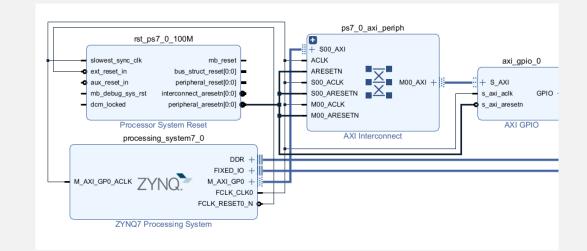
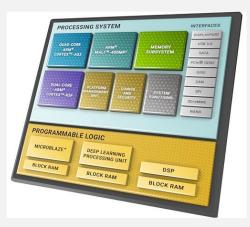


Workshop on Fully Programmable Systems-on-Chip for Scientific Applications

Lab 2: The RVI communication block: ComBlock

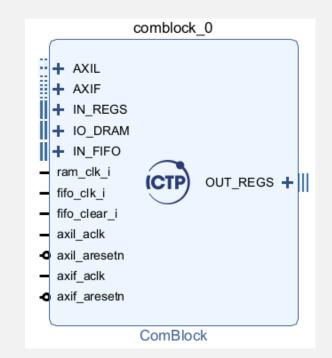
OATAR UNIVERSITY



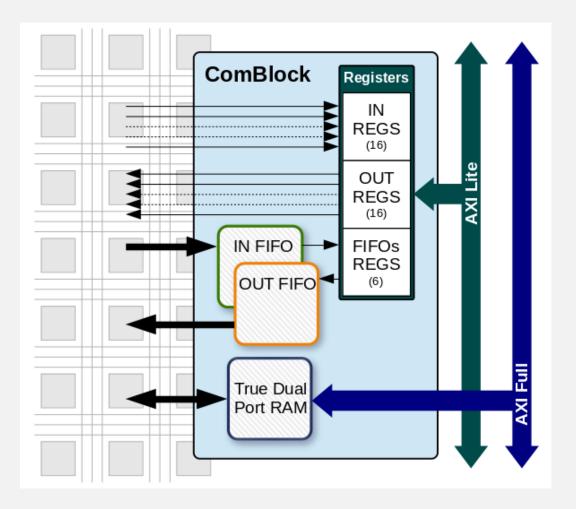

Maynor Ballina

Introduction

- Vendor specific interconnects (AXI, AVALON, Chiplink).
- What we learned yesterday?
 - ✓ AXI interconnect,
 - ✓ memory address,
 - ✓ data.
- Communication Block (ComBlock).



What is the ComBlock?


A communication block that abstracts you from the AXI protocol.

- Interconnect: AXI Known interfaces (registers, RAM and FIFOs).
- Configurable resources, width, length, etc.
- Simple Clock-Domain-Crossing with FIFOs and TDPRAM.
- C driver for easy complete project integration.

Features

- I/O Registers, I/O FIFOS, and TDPRAM.
- AXI Lite: Registers and FIFOs.
- AXI Full: TDPRAM.

Registers

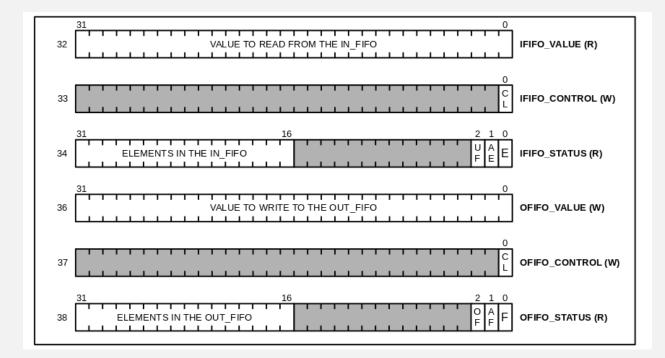
- 16 input registers (FPGA to Processor).
- 16 output registers (Processor to FPGA).
- User configurable data width, 1-32 bits.
- Input and output independently enabled.

	Registers	
+ AXIL - IN_REGS OUT_REGS -	Input (FPGA to PROC)	Output (PROC to FPGA)
<pre>- > reg0_i[31:0] reg0_o[15:0] > > reg1_i[31:0] reg1_o[15:0] > -</pre>	🕑 Enable	🕑 Enable
axil_aclk reg2_o[15:0] ▶ = •o axil_aresetn	Data Width 32	[1 - 32] Data Width 16
	Quantity 2	[1-16] Quantity 3 (1-16)

FIFOs

- Input and output FIFOs.
- Customizable width and depth.
- Asynchronous.
- Control registers on the Processor's side.

	+ AXIL		F	FIFOs					
Ï	- IN_FIFO			Input (FPGA to PROC)			Output (PROC to FPGA	A)	
	▶ fifo_we_i ▶ fifo_data_i(15:0)	OUT_FIFO — fifo_re_i ┥ -		🕑 Enable			🕑 Enable		
	 fifo_full_o 	fifo_data_o[7:0] 🕨 -	-					_	
	fifo_afull_o	fifo_valid_o 🕨 - fifo_empty_o 🕨 -		Data Width	16	🛞 [1 - 32]	Data Width	8 🛞	[1 - 32]
	fifo_clk_i	fifo_aempty_o 🕨	-	Depth	1024	\otimes	Depth	256 🛞	
	fifo_clear_i	fifo_underflow_o 🕨 🔸		Almost Full Offset	1	8	Almost Full Offset	1 🛞	
	axil_aclk axil_aresetn				-	-		-	
				Almost Empty Offset	1	8	Almost Empty Offset	1 🛞	


TDPRAM

- Bidirectional.
- Clock-domain-crossing.
- Configurable depth, width and address width.

+ AXIF	True Dual Port RA	AM (FPGA to PROC, I	PROC to FPGA)
- IO_DRAM - > ram_we_i	🗹 Enable		
 ram_addr_i[15:0] ram_data_i[7:0] 	Data Width	8	3 [1 - 32]
 aram_data_o[7:0] ram_clk_i 	Address Width	16 6	3 [1 - 32]
 axif_aclk axif_aresetn 	Depth	0	3

Processor Interaction

- Device information in **xparameters.h**.
- Register mappings in **comblock.h**.
- CB_IREG, CB_OREG, ...
- Control registers.

C Drives

• Read and write functions **single memory position**:

void **cbWrite**(UINTPTR baseaddr, u32 reg, u32 value) u32 **cbRead**(UINTPTR baseaddr, u32 reg)

Read and write several contiguous memory positions:

void **cbWriteBulk**(UINTPTR baseaddr, int *buffer, u32 depth) void **cbReadBulk**(int *buffer, UINTPTR baseaddr, u32 depth)

Where and how to get it?

• Hosted on GitLab (with continuous updates):

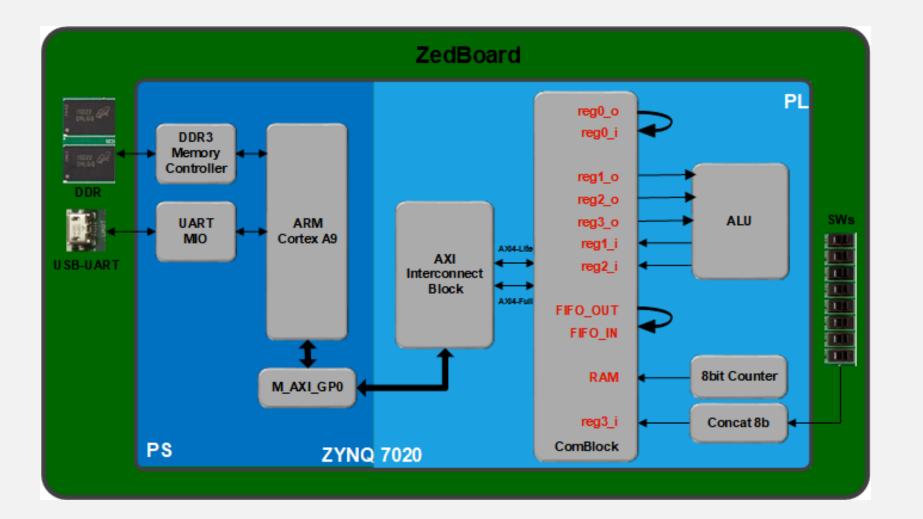
git clone https://gitlab.com/ictp-mlab/core-comblock.git

- Completely open source under BSD 3-clause license.
- Rodrigo Melo, collaboration between the Multidisciplinary Laboratory (MLAB) from The Abdus Salam International Centre for Theoretical Physics (ICTP, Italy). (not updated)

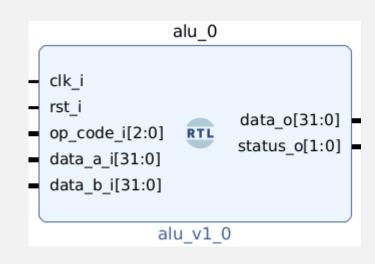
Workshop on Fully Programmable Systems-on-Chip for Scientific Applications

Lab 2: ComBlock and RTL instantiation

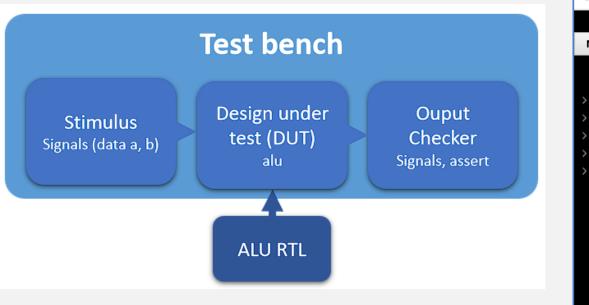
IUB Independent University, Bangladesh


Maynor Ballina

Labs 2: Objectives

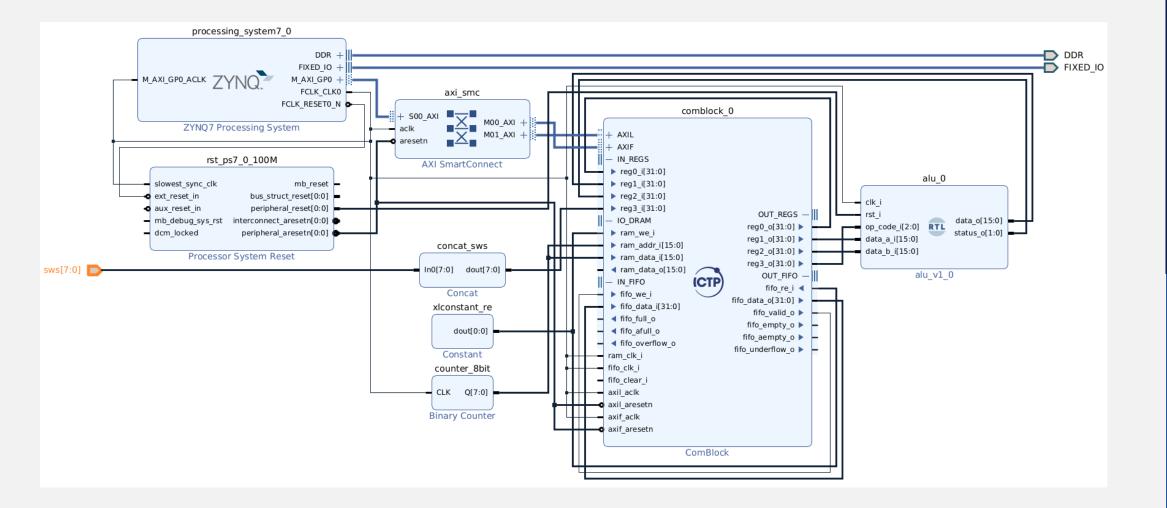

- Simulate a simple ALU and understand the VHDL code.
- Use and configuration of the **ComBlock** IP.
- Understand the data transfer between PL and PS using **ComBlock** IP.
- Instantiate RTL blocks and control them through the **ComBlock** registers.
- Perform unsigned integer arithmetic operations.

Labs 2: Design description

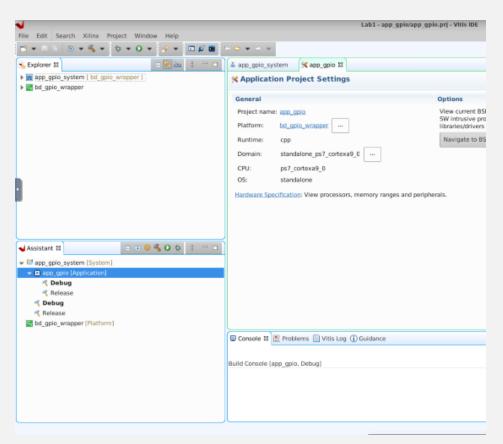

Labs 2: Hardware

RTL block, VHDL coded. Unsigned integer data. Customizable data width.

	Re-	customize IP					^
omBlock (2.0)							4
Documentation 🛛 🕞 IP Location							
Show disabled ports + AXIL + AXIF + AXIF + IN_REGS + IO_DRAM + IN_FIFO - ram_clk_i OUT_REGS + - fifo_clk_i OUT_FIFO + - fifo_clear_i - axil_aclk - axil_aresetn - axif_aresetn - axif_aresetn	Component Name combio Registers Input (FPGA to PROC) © Enable Data Width 32 Quantity 4 True Dual Port RAM (FPG © Enable Data Width 16 Address Width 16 Depth 0 FIFOS Input (FPGA to PROC) © Enable	A to PROC, PRO	[1 - 32] [1 - 32] [0 - 671088	63] Outpu	32 4 t (PROC to FPGA Enable		
	Data Width Depth Almost Full Offset	32 1024 1	8	Dej	ost Full Offset	32 1024 1	[1 - 32] [1 - 16] [1 - 32]
	Almost Empty Offset	1	8	Alm	ost Empty Offset		, `


Labs 2: Simulation

ର୍ 🔛 🔍 ର୍ 🔀	* +	H ± ±r	+ F Fe		-Γ	[⊷		
				8 <mark>0.41</mark> 7	ns			
Name	Value	0.000 ns	50.000 n	^{\$} .	100.0	10 ns	15). C
谒 clk	1							
Ъ rst	0							
> 😻 op_code[2:0]	1							
> 😻 data_a[16:0]	00001	00000		000	01	00002		\subset
> 😻 data_b[16:0]	00000	\langle						
> 😻 result[16:0]	00000		00000			00001		\subset
> 😻 status[1:0]	0							
🐻 stop	FALSE							
\rm WIDTH	17							
USAMPL	1							


clock.vhd x alu_tb.vhdl x alu.vhdl x Untitled 1 x

Labs 2: Final Block Design

Labs 2: Software

- C driver, use ComBlock instructions.
- Configuration and data exchange.
- Unsigned integer arithmetic operations.
- Select the operation with an SW.
- Identify and print status flag.

Labs 2: Results

- PL Hardware
- PS program
- Comblock Communication
- data transfer

Optional:

Challenge

10	GTKTerm - /dev/ttyACM0 115200-8-N-1	-	` _		×
File	Edit Log Configuration Control signals View Help				
##	Testing the Comblock Registers				
	Testing the Loopback				
00P	value send 100, read 100				
##	Testing the ALU				
	in $A=10$, $B=5$				
	ation status: 2				
	ation option = 0, result = 0				
per	ation status: 0				
	ation option = 1, result = 15				
	ation status: 0				
	ation option = 2, result = 5				
	ation status: 0				
	ation option = 3, result = 15 ation status: 2				
	ation option = 4, result = 0				
	ation status: 0				
	ation option = 5, result = 15				
	ation status: 2				
per	ation option = 6, result = 0				
	ation status: 0				
	ation option = 7, result = 320				
	sting FIFOs with 1024 values				
	• _ ETEO _ A A				ľ
/dev	/ttyACM0 115200-8-N-1 DTR RTS CT	S CD	DS	RR	Ł

User: smr3983 Password: 3983smr!CPT24

WARNING: Do not fail the password more than 3 times. Feel free to raise your hand. Is better ask for help.

Links: WhatsApp group

Google Fotos

