
Smr3983 – Qatar (Oct. 2024)

Workshop on Fully Programmable 
Systems-On-Chip for Scientific 

Applications

High-level Synthesis Fernando Rincón
University of Castilla-La Mancha

fernando.rincon@uclm.es



High-level Synthesis Smr3983 – Qatar (Oct. 2023) 2

Contents

● What is High-level Synthesis?
● Why HLS?
● How Does it Work?
● HLS Coding
● An example: Matrix Multiplication

– Design analysis
● Validation Flow
● RTL Export
● IP Integration
● Software Drivers
● HLS Libraries



High-level Synthesis Smr3983 – Qatar (Oct. 2023) 3

Why HLS?

● Let’s design a FIR filter
● First decisions:

– Define the interface 
● types for x, y and h
● h provided through a ROM, a register file?

– Define the architecture:
● Finite state machine

– Number of states
● Datapath

– Type of multipliers and adders (latencies may affect number of states)
– Bit-size of the resources

● Then write RTL code (Verilog or VHDL)
● And also a RTL testbench
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Why HLS?

Data types and structure can
Be generalized up to a certain 
point

Operations are assumed to be 
Solved in one clock cycle

One possible implementation

I/O interface should later be wrapped
for the appropriate bus

The design choice is already made
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Why HLS?

RTL tests are hard to write

Costly architecture redesign Even more costly. High impact in
Design time

What if not meeting clock cycle?

What if I want to integrate the FIR using another
Bus interface?
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What is High-level Synthesis?

● Compilation of behavioral algorithms into RTL  descriptions

RTL IP

High Level Synthesis:
● Microarchitecture evaluation
● FSM extraction
● Operations & datapath extraction
● Interface synthesis

Behavioral description:
● Algorithm

Constraints:
● I/O description
● Timing
● Memory

Input
Output
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Why HLS?

Standard debug tasks. 
Focused in algorithm not architecture

Always costly, but much less

Same C test for all stages Solution optimization through directives.
Fast design space exploration
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Why HLS?

Video Design Example

Input C Simulation Time RTL Simulation Time Improvement

10 frames
1280x720

10s ~2 days
(ModelSim)

~12000x

RTL (Spec) RTL (Sim)

C (Spec/Sim) RTL (Sim)

This is what it 
boost productivity
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Why HLS?

● Need for productivity boosting at design level
– Fast Design Space Exploration
– Reduce Time-to-market
– Trend to use FPGAs as Hw accelerators

● Electronic System Level Design is based in
– Hw/Sw Co-design

● SystemC / SystemVerilog / C++
● Transaction-Level Modelling

– One common C-based description of the system
– Iterative refinement
– Integration of models at a very different level of abstraction
– But need an efficient way to get to the silicon (HLS)

● Rising the level of abstraction enables Sw programmers to have access to 
silicon
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HLS Benefits

● Design Space Exploration
– Early estimation of main design variables: latency, performance, 

consumption
● Would imply endless recoding in VHDL or Verilog

– Can be targeted to different technologies
● Verification

– Reuse of C-based testbenches
– Can be complemented with formal verification

● Reuse
– Higher abstraction provides better reuse opportunities
– Cores can be exported to different bus technologies
– Vitis HLS provides a number of HLS libraries:

● Vision, finances, hpc, ...
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Design Space Exploration
…
  loop: for (i=3;i>=0;i--) {
     if (i==0) {
       acc+=x*c[0];
       shift_reg[0]=x;
     } else {
        shift_reg[i]=shift_reg[i-1];   
        acc+=shift_reg[i]*c[i];
     }
  }
….

Same hardware is used for each loop iteration :
• Small area
• Long latency 
• Low throughput

Different iterations  executed concurrently:
• Higher area
• Short latency 
• Best throughput

Different hardware  for each  loop  iteration :
• Higher area
• Short latency 
• Better throughput
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How Does it Work? - Scheduling & Binding

● Scheduling and Binding are at the heart of HLS
● Scheduling determines in which clock cycle an operation will occur

– Takes into account the control, dataflow and user directives
– The allocation of resources can be constrained

● Binding determines which library cell is used for each operation
– Takes into account component delays, user directives, ... 

Design Source
(C, C++, SystemC)

Scheduling Binding

RTL
(Verilog, VHDL, SystemC)

Technology 
Library

User 
Directives
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How Does it Work? - Scheduling

void foo (
 …
  t1 = a * b;
  t2 = c + t1;
  t3 = d * t2;
  out = t3 – e; 
}

+
*a

b
c

-
*d

e out

* -*+
Schedule 1

* -*+Schedule 2

When a faster technology or slower clock ...

● Operations are mapped into clock cycles, depending on timing, 
resources, user directives, ... Internal representation to expose parallelism

(directed acyclic graph)
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How Does it Work? - Allocation & Binding

Operations are assigned to available functional units in the library
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How Does it Work? - Control Extraction

void fir (
  data_t *y,
  coef_t c[4],
  data_t x
  ) {

  static data_t shift_reg[4];
  acc_t acc;
  int i;
  
  acc=0;
  loop: for (i=3;i>=0;i--) {
     if (i==0) {
       acc+=x*c[0];
       shift_reg[0]=x;
     } else {
        shift_reg[i]=shift_reg[i-1];         
        acc+=shift_reg[i]*c[i];
     }
  }
  *y=acc;
}

Code 

FIR C code example ..
The loops in the C 
code correlated to 
states of behavior

Function Start

For-Loop Start

For-Loop End

Function End

0

2

Control Behavior

1

Finite State Machine 
(FSM) states

This behavior is extracted 
into a hardware state 

machine
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How does it work? - Datapath Extraction

void fir (
  data_t *y,
  coef_t c[4],
  data_t x
  ) {

  static data_t shift_reg[4];
  acc_t acc;
  int i;
  
  acc=0;
  loop: for (i=3;i>=0;i--) {
     if (i==0) {
       acc+=x*c[0];
       shift_reg[0]=x;
     } else {
        shift_reg[i]=shift_reg[i-1];        
 
        acc+=shift_reg[i]*c[i];
     }
  }
  *y=acc;
}

Code Operations

Operations are 
extracted…

-
==
+

>=

*
+
*

RDx

WRy

RDc

Control & Datapath Behavior

A unified control dataflow 
behavior is created.

Control Dataflow

>=
-

+
==

*
+ *

WRy

-
RDx RDc

Scheduling + Binding

FIR C code example ..
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Vitis HLS

RTL

RTL

RTL

RTL

RTL

RTL

………………
………………VHDL

Verilog
System C

Vivado HLS

Constraints/ 
Directives

………………
………………

C, C++, 
SystemC

RTL Export
IP-XACT Sys Gen PCore

● High-level Synthesis Suite from Xilinx
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Source Code: Language Support

● Vivado HLS supports C, C++, SystemC and OpenCL API C kernel
– Provided it is statically defined at compile time
– Default extensions: .c for C / .cpp for C++ & SystemC

● Modeling with bit-accuracy
– Supports arbitrary precision types for all input languages
– Allowing the exact bit-widths to be modeled and synthesized

● Floating point support
– Support for the use of float and double in the code

● Support for OpenCV functions
– Enable migration of OpenCV designs into Xilinx FPGA
– Libraries target real-time full HD video processing
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Source Code: Key Attributes

void fir (
  data_t *y,
  coef_t c[4],
  data_t x
  ) {

  static data_t shift_reg[4];
  acc_t acc;
  int i;
  
  acc=0;
  loop: for (i=3;i>=0;i--) {
    if (i==0) {
      acc+=x*c[0];
      shift_reg[0]=x;
    } else {
      shift_reg[i]=shift_reg[i-1];  
      acc+=shift_reg[i]  *   c[i];
    }
  }
  *y=acc;
}

Functions:  Represent the design hierarchy

Loops:  Their scheduling has major impact on 
                area and performance

Arrays:  Mapped into memory. May  become main 
                performance  bottlenecks

Operators:  Can be shared or replicated  to meet 
                       performance

Types:  Type influences area and performance

Top Level IO :  Top-level arguments determine  
                             Interface ports

● Only one top-level function is allowed
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Functions & RTL Hierarchy

void A() { ..body A..}
void B() { ..body B..}
void C() {

B();
}
void D() {

B();
}

void foo_top() {
A(…);

  C(…);
D(…)

}

foo_top
A

C B

D B

Source Code

RTL hierarchy

my_code.c

● Each function is translated into an RTL block.
● Can be shared or inlined (dissolved)
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Operator Types

● Standard C Types
– Integers:

● long long => 64 bits
● int => 32 bits
● short => 16 bits

– Characters:
● char => 8 bits

– Floating Point
● Float => 32 bits
● Double => 64 bits

● Arbitrary Precission Types
– C

● ap(u)int  => (1-1024)

– C++:
● ap_(u)int => (1-1024)
● ap_fixed

– C++ / SystemC:
● sc_(u)int => (1-1024)
● sc_fixed

● They define the size of the hardware used
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Loops

● Rolled by default
– Each iteration implemented in the same state
– Each iteration implemented with the same resources

● Loops can be unrolled if their indexes are statically determinable 
at elaboration time
– Not when the number of iterations is variable
– Result in more elements to schedule but greater operator mobility

void foo_top (…) {
  ...
  Add: for (i=3;i>=0;i--) {

b = a[i] + b;
  ...
  }

foo_top

+Synthesis
a[N] b

N
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void fir (
 …
acc=0;
  loop: for (i=3;i>=0;i--) {
     if (i==0) {
       acc+=x*c[0];
       shift_reg[0]=x;
     } else {
        shift_reg[i]=shift_reg[i-1];         
        acc+=shift_reg[i]*c[i];
     }
  }
  *y=acc;
}

+
==
-

>=
RDx

*
+

==
-

>=*
+

==
-

>=*
+

==
-

>=* WRy

Iteration 1 Iteration 2 Iteration 3 Iteration 4

- - -
RDcRDcRDcRDc

The read X operation has 
good mobility

Data Dependencies: Good

Default Schedule

● Example of good mobility
– The read on data port X can occur anywhere from the start to iteration 4

● The only constraint on RDx is that it occur before the final multiplication
– Vivado HLS has a lot of freedom with this operation

● It waits until the read is required, saving a register
● Input reads can be optionally registered

Rolled loop
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Data Dependencies: Bad

● The final multiplication must occur before the read and final addition
● Loops are rolled by default

– Each iteration cannot start till the previous iteration completes
– The final multiplication (in iteration 4) must wait for earlier iterations to 

complete
● The structure of the code is forcing a particular schedule 

– There is little mobility for most operations

void fir (
 …
acc=0;
  loop: for (i=3;i>=0;i--) {
     if (i==0) {
       acc+=x*c[0];
       shift_reg[0]=x;
     } else {
        shift_reg[i]=shift_reg[i-1];         
        acc+=shift_reg[i]*c[i];
     }
  }
  *y=acc;
}

+
==
-

>=
RDx

*
+

==
-

>=*
+

==
-

>=*
+

==
-

>=* WRy

Iteration 1 Iteration 2 Iteration 3 Iteration 4

- - -
RDcRDcRDcRDc

Mult is very constrained

Default Schedule
Rolled loop
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Arrays

void 
foo_top(int x, …)
{
  int A[N];
  L1: for (i = 0; 
           i < N; 
           i++)
    A[i+x] = A[i] + i; 
}

N-1

N-2

…

1
0

Synthesis

foo_top

DOUTDIN
ADDR

CE
WE

SPRAMBA[N]
A_outA_in

● By default implemeted as RAM
– Dual port if performance can be improved otherwise Single Port RAM 
– optionally as a FIFO or registers bank

● Can be targeted to any memory resource in the library
● Can be merged with other arrays and reconfigured
● Arrays can be partitioned into individual elements

– Implemented as smaller RAMs or registers
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Top-Level IO Ports

sum_dataout

in1

in2

ap_done
ap_start ap_idle

ap_return

in1_ap_ack

in2_read

in1_ap_vld

in2_empty_n

sum_req_write
sum_rsp_read
sum_req_din
sum_address
sum_size

sum_req_full_n
sum_rsp_empty_n

sum_datain

adders

ap_clk
ap_rst22- 26

#include "adders.h"
int adders(int in1, int in2, 

       int *sum) {

    int temp;
*sum = in1 + in2 + *sum;

    temp = in1 + in2;
               

return  temp;
}

Function activation

Input data can include 
strobes, acks, …
Or be modelled as fifo channels

Data passed by reference
is modeled as R/W
(not necessarily as memory
As in this case)
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An example: Matrix Multiplication

Loop Latency Iteration 
latency

Trip 
count

Initiation
interval

Row 132 44 3 0
Col 42 14 3 0
Product 12 4 3 0

Clock cycle:  8.50 ns

Resources BRAM DSP FF LUT

Total 0 3 158 271

typedef int mat_a_t;
typedef int mat_b_t;
Typedef int result_t;

void matrixmul(
    mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
    mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
    result_t res[MAT_A_ROWS][MAT_B_COLS])
{
    // Iterate over the rows of the A matrix
    Row: for(int i = 0; i < MAT_A_ROWS; i++) {

    // Iterate over the columns of the B matrix
        Col: for(int j = 0; j < MAT_B_COLS; j++) {

        // Inner product of a row of A and col of B
        res[i][j] = 0;

        Product: for(int k = 0; k < MAT_B_ROWS; k++) {
            res[i][j] += a[i][k] * b[k][j];
      }
    }
  }
}

132 cc
a
b res

Solution 1: naive implementation (no optimization)

32

32

32

3x3 square matrixes
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Schedule Viewer

● Perspective for design analysis

Module hierarchy

Hierarchical summary
And navigation

Performance Profile

Hw resources
Latencies + Intervals

Scheduling

Mapping of operations 
to cycles
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Schedule Viewer

Module hierarchy

Operations, loops
And functions

Scheduled states

Cross references
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Guidance

● Outlines the main problems and proposes solutions
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MM Pipelined version

Latency = 3 cycles

Throughput = 1 cycle

RD CMP WR

RD CMP WR

Loop Latency = 4 cycles

RD
CMP
WR

Loop Latency Iteration 
latency

Trip 
count

Initiation
interval

Row_col 99 11 9 1
Product 7 4 3 2

Clock cycle:  8.50 ns

Resources BRAM DSP FF LUT
Total 0 3 137 322

void matrixmul(
    mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
    mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
    result_t res[MAT_A_ROWS][MAT_B_COLS])
{
    // Iterate over the rows of the A matrix
    Row: for(int i = 0; i < MAT_A_ROWS; i++) {

    // Iterate over the columns of the B matrix
        Col: for(int j = 0; j < MAT_B_COLS; j++) {

        // Inner product of a row of A and col of B
        res[i][j] = 0;

        Product: for(int k = 0; k < MAT_B_ROWS; k++) {
                                              #pragma HLS PIPELINE
            res[i][j] += a[i][k] * b[k][j];
      }
    }
  }
}

Solution 2: pipelining
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MM Custom bit size

Loop Latency Iteration 
latency

Trip 
count

Initiation
interval

Row_col 99 11 9 1
Product 7 4 3 2

Clock cycle:  8.50 ns

Resources BRAM DSP FF LUT
Total 0 3 137 322

typedef ap_int<18> mat_a_t;
Typedef ap_int<18> mat_b_t;
typedef ap_int<18> result_t;

void matrixmul(
    mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
    mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
    result_t res[MAT_A_ROWS][MAT_B_COLS])
{
    // Iterate over the rows of the A matrix
    Row: for(int i = 0; i < MAT_A_ROWS; i++) {

    // Iterate over the columns of the B matrix
        Col: for(int j = 0; j < MAT_B_COLS; j++) {

        // Inner product of a row of A and col of B
        res[i][j] = 0;

        Product: for(int k = 0; k < MAT_B_ROWS; k++) {
                                              #pragma HLS PIPELINE II=2
            res[i][j] += a[i][k] * b[k][j];
      }
    }
  }
}

Solution 3: 10 bit inputs

99 cc
a
b res

10

10

10
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MM Array Partition

Loop Latency Iteration 
latency

Trip 
count

Initiation
interval

Row_col 81 9 9 1
Product 6 3 3 2

Clock cycle:  8.50 ns

Resources BRAM DSP FF LUT
Total 0 1 64 243

void matrixmul(
    mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
    mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
    result_t res[MAT_A_ROWS][MAT_B_COLS])
{
#pragma HLS ARRAY_PARTITION variable=b complete dim=1
#pragma HLS ARRAY_PARTITION variable=a complete dim=2
    // Iterate over the rows of the A matrix
    Row: for(int i = 0; i < MAT_A_ROWS; i++) {

    // Iterate over the columns of the B matrix
        Col: for(int j = 0; j < MAT_B_COLS; j++) {

        // Inner product of a row of A and col of B
        res[i][j] = 0;

        Product: for(int k = 0; k < MAT_B_ROWS; k++) {
                                              #pragma HLS PIPELINE II=2
            res[i][j] += a[i][k] * b[k][j];
      }
    }
  }
}

Solution 4: fully partition a & b

81 cc

a0

b0
res10

10

10a1
10

a2
10

b1 10

b2 10
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MM Floating-Point

Loop Latency Iteration 
latency

Trip 
count

Initiation
interval

Row_col 216 24 9 0
Product 20 11 3 5

Clock cycle:  7.96 ns

Resources BRAM DSP FF LUT
Total 0 5 489 1002

typedef float mat_a_t;
Typedef float mat_b_t;
typedef float result_t;

void matrixmul(
    mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
    mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
    result_t res[MAT_A_ROWS][MAT_B_COLS])
{
    // Iterate over the rows of the A matrix
    Row: for(int i = 0; i < MAT_A_ROWS; i++) {

    // Iterate over the columns of the B matrix
        Col: for(int j = 0; j < MAT_B_COLS; j++) {

        // Inner product of a row of A and col of B
        res[i][j] = 0;

        Product: for(int k = 0; k < MAT_B_ROWS; k++) {
                                              #pragma HLS PIPELINE II=2
            res[i][j] += a[i][k] * b[k][j];
      }
    }
  }
}

Solution 5: floating point

99 cc
a
b res

32

32

32
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MM Interface Synthesis
RTL ports dir bits Protocol C Type

ap_clk in 1 ap_ctrl_hs return value
ap_rst in 1 ap_ctrl_hs return value
ap_start in 1 ap_ctrl_hs return value
ap_done out 1 ap_ctrl_hs return value
ap_idle out 1 ap_ctrl_hs return value
ap_ready out 1 ap_ctrl_hs return value
in_a_address0 out 8 ap_memory array
in_a_ce0 out 1 ap_memory array
in_a_q0 in 32 ap_memory array
in_b_address0 out 8 ap_memory array
in_b_ce0 out 1 ap_memory array
in_b_q0 in 32 ap_memory array
in_c_address0 out 8 ap_memory array
in_c_ce0 out 1 ap_memory array
in_c_we0 out 1 ap_memory array
in_c_d0 out 32 ap_memory array

Function activation 
interface

Synthesized memory
ports

Can be disabled
  ap_control_none

Also dual-ported

In the array partitioned
Version, 3 mem ports.
One per partial product
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Interface synthesis

● I/O ports can be mapped to different bus interfaces
● Let’s map the MM to an AXI Lite bus

– #pragma HSL INTERFACE s_axilite port=a bundle=myBus

– The bundle is used to group more than one port into the same bus

RTL ports dir bits Protocol RTL ports dir bits Protocol
ap_clk in 1 ap_ctrl_hs s_axi_myBus_WSTRB in 4 s_axi
ap_rst_n in 1 ap_ctrl_hs s_axi_myBus_ARVALID in 1 s_axi
ap_start in 1 ap_ctrl_hs s_axi_myBus_ARREADY out 1 s_axi
ap_done out 1 ap_ctrl_hs s_axi_myBus_ARADDR in 8 s_axi
ap_idle out 1 ap_ctrl_hs s_axi_myBus_RVALID out 1 s_axi
ap_ready out 1 ap_ctrl_hs s_axi_myBus_RREADY in 1 s_axi
s_axi_myBus_AWVALID in 1 s_axi s_axi_myBus_RDATA out 32 s_axi
s_axi_myBus_AWREADY out 1 s_axi s_axi_myBus_RRESP out 2 s_axi
s_axi_myBus_AWADDR in 1 s_axi s_axi_myBus_BVALID out 1 s_axi
s_axi_myBus_WVALID in 1 s_axi s_axi_myBus_BREADY in 1 s_axi
s_axi_myBus_WREADY out 1 s_axi s_axi_myBus_BRESP out 2 s_axi
s_axi_myBus_WDATA in 32 s_axi
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Validation Flow
● Two steps for design verification

– Before synthesis
– After synthesis

● Pre-synthesis: C Validation
– Validate the algorithm is correct

● Post-synthesis: RTL Verification
– Verify the RTL is correct

● C validation
– A HUGE reason to use HLS

● Fast, free verification
– Validate the algorithm is correct before synthesis

● Follow the test bench tips given over
● RTL Verification

– Vivado HLS can co-simulate the RTL with the 
original test bench

Validate C

Verify RTL
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Test benches

● The test bench should be in a 
separate file 

● Or excluded from synthesis
– The Macro __SYNTHESIS__ 

can be used to isolate code 
which will not be synthesized

// test.c
#include <stdio.h>
void test (int d[10]) {
  int acc = 0;
  int i;
  for (i=0;i<10;i++) {
    acc += d[i];
    d[i] = acc;   
  }
}
#ifndef __SYNTHESIS__
int main () {
  int d[10], i;
  for (i=0;i<10;i++) {
    d[i]   = i;
  }
  test(d);
  for (i=0;i<10;i++) {
    printf("%d %d\n", i, d[i]);
  }
  return 0;
}
#endif

Design to be synthesized

Test Bench

Nothing in this ifndef will be read by Vivado HLS



High-level Synthesis Smr3983 – Qatar (Oct. 2023) 39

Test benches: ideal test bench

● Self checking
– RTL verification will re-use the C test bench
– If the test bench is self-checking

● Allows RTL Verification to be run without a requirement to check the results 
again

● RTL verification “passes” if the test bench return value is 0 (zero)

int main () {
 
  // Compare results
  int ret = system("diff --brief -w output.dat output.golden.dat");
  if (ret != 0) {
        printf("Test failed !!!\n", ret); return 1;
  } else {
        printf("Test passed !\n", ret); return 0;
  }
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RTL Export

RTL output in Verilog, VHDL and SystemC

Scripts created for RTL synthesis tools

IP-XACT and SysGen => Vivado HLS for 7 Series 
and Zynq families

PCore => Only Vivado HLS Standalone for all 
families

RTL Export to IP-XACT, SysGen, and Pcore 
formats
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IP integration

● Exported cores can be directly integrated in Vivado
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Software Drivers

● And both drivers for baremetal and User Space linux are generated



High-level Synthesis Smr3983 – Qatar (Oct. 2023) 43

HLS Libraries

● Vitis accelerated libraries
– Valid for classic Vivado flow
– Compatible with the new OpenCL-based flow
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An example: Vision libraries

● Based on the OpenCV 
standard

● Big number of OpenCV 
operations available for 
synthesis

● Full OpenCV for test
● Interface synthesis for 

common Xilinx bus interfaces
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An example: Vision libraries

● Difference of Gaussian Filter
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