
Smr3983 – Qatar (Oct. 2024)

Workshop on Fully Programmable
Systems-On-Chip for Scientific

Applications

High-level Synthesis Fernando Rincón
University of Castilla-La Mancha

fernando.rincon@uclm.es

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 2

Contents

● What is High-level Synthesis?
● Why HLS?
● How Does it Work?
● HLS Coding
● An example: Matrix Multiplication

– Design analysis
● Validation Flow
● RTL Export
● IP Integration
● Software Drivers
● HLS Libraries

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 3

Why HLS?

● Let’s design a FIR filter
● First decisions:

– Define the interface
● types for x, y and h
● h provided through a ROM, a register file?

– Define the architecture:
● Finite state machine

– Number of states
● Datapath

– Type of multipliers and adders (latencies may affect number of states)
– Bit-size of the resources

● Then write RTL code (Verilog or VHDL)
● And also a RTL testbench

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 4

Why HLS?

Data types and structure can
Be generalized up to a certain
point

Operations are assumed to be
Solved in one clock cycle

One possible implementation

I/O interface should later be wrapped
for the appropriate bus

The design choice is already made

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 5

Why HLS?

RTL tests are hard to write

Costly architecture redesign Even more costly. High impact in
Design time

What if not meeting clock cycle?

What if I want to integrate the FIR using another
Bus interface?

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 6

What is High-level Synthesis?

● Compilation of behavioral algorithms into RTL descriptions

RTL IP

High Level Synthesis:
● Microarchitecture evaluation
● FSM extraction
● Operations & datapath extraction
● Interface synthesis

Behavioral description:
● Algorithm

Constraints:
● I/O description
● Timing
● Memory

Input
Output

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 7

Why HLS?

Standard debug tasks.
Focused in algorithm not architecture

Always costly, but much less

Same C test for all stages Solution optimization through directives.
Fast design space exploration

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 8

Why HLS?

Video Design Example

Input C Simulation Time RTL Simulation Time Improvement

10 frames
1280x720

10s ~2 days
(ModelSim)

~12000x

RTL (Spec) RTL (Sim)

C (Spec/Sim) RTL (Sim)

This is what it
boost productivity

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 9

Why HLS?

● Need for productivity boosting at design level
– Fast Design Space Exploration
– Reduce Time-to-market
– Trend to use FPGAs as Hw accelerators

● Electronic System Level Design is based in
– Hw/Sw Co-design

● SystemC / SystemVerilog / C++
● Transaction-Level Modelling

– One common C-based description of the system
– Iterative refinement
– Integration of models at a very different level of abstraction
– But need an efficient way to get to the silicon (HLS)

● Rising the level of abstraction enables Sw programmers to have access to
silicon

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 10

HLS Benefits

● Design Space Exploration
– Early estimation of main design variables: latency, performance,

consumption
● Would imply endless recoding in VHDL or Verilog

– Can be targeted to different technologies
● Verification

– Reuse of C-based testbenches
– Can be complemented with formal verification

● Reuse
– Higher abstraction provides better reuse opportunities
– Cores can be exported to different bus technologies
– Vitis HLS provides a number of HLS libraries:

● Vision, finances, hpc, ...

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 11

Design Space Exploration
…
 loop: for (i=3;i>=0;i--) {
 if (i==0) {
 acc+=x*c[0];
 shift_reg[0]=x;
 } else {
 shift_reg[i]=shift_reg[i-1];
 acc+=shift_reg[i]*c[i];
 }
 }
….

Same hardware is used for each loop iteration :
• Small area
• Long latency
• Low throughput

Different iterations executed concurrently:
• Higher area
• Short latency
• Best throughput

Different hardware for each loop iteration :
• Higher area
• Short latency
• Better throughput

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 12

How Does it Work? - Scheduling & Binding

● Scheduling and Binding are at the heart of HLS
● Scheduling determines in which clock cycle an operation will occur

– Takes into account the control, dataflow and user directives
– The allocation of resources can be constrained

● Binding determines which library cell is used for each operation
– Takes into account component delays, user directives, ...

Design Source
(C, C++, SystemC)

Scheduling Binding

RTL
(Verilog, VHDL, SystemC)

Technology
Library

User
Directives

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 13

How Does it Work? - Scheduling

void foo (
 …
 t1 = a * b;
 t2 = c + t1;
 t3 = d * t2;
 out = t3 – e;
}

+
*a

b
c

-
*d

e out

* -*+
Schedule 1

* -*+Schedule 2

When a faster technology or slower clock ...

● Operations are mapped into clock cycles, depending on timing,
resources, user directives, ... Internal representation to expose parallelism

(directed acyclic graph)

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 14

How Does it Work? - Allocation & Binding

Operations are assigned to available functional units in the library

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 15

How Does it Work? - Control Extraction

void fir (
 data_t *y,
 coef_t c[4],
 data_t x
) {

 static data_t shift_reg[4];
 acc_t acc;
 int i;

 acc=0;
 loop: for (i=3;i>=0;i--) {
 if (i==0) {
 acc+=x*c[0];
 shift_reg[0]=x;
 } else {
 shift_reg[i]=shift_reg[i-1];
 acc+=shift_reg[i]*c[i];
 }
 }
 *y=acc;
}

Code

FIR C code example ..
The loops in the C
code correlated to
states of behavior

Function Start

For-Loop Start

For-Loop End

Function End

0

2

Control Behavior

1

Finite State Machine
(FSM) states

This behavior is extracted
into a hardware state

machine

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 16

How does it work? - Datapath Extraction

void fir (
 data_t *y,
 coef_t c[4],
 data_t x
) {

 static data_t shift_reg[4];
 acc_t acc;
 int i;

 acc=0;
 loop: for (i=3;i>=0;i--) {
 if (i==0) {
 acc+=x*c[0];
 shift_reg[0]=x;
 } else {
 shift_reg[i]=shift_reg[i-1];

 acc+=shift_reg[i]*c[i];
 }
 }
 *y=acc;
}

Code Operations

Operations are
extracted…

-
==
+

>=

*
+
*

RDx

WRy

RDc

Control & Datapath Behavior

A unified control dataflow
behavior is created.

Control Dataflow

>=
-

+
==

*
+ *

WRy

-
RDx RDc

Scheduling + Binding

FIR C code example ..

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 17

Vitis HLS

RTL

RTL

RTL

RTL

RTL

RTL

………………
………………VHDL

Verilog
System C

Vivado HLS

Constraints/
Directives

………………
………………

C, C++,
SystemC

RTL Export
IP-XACT Sys Gen PCore

● High-level Synthesis Suite from Xilinx

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 18

Source Code: Language Support

● Vivado HLS supports C, C++, SystemC and OpenCL API C kernel
– Provided it is statically defined at compile time
– Default extensions: .c for C / .cpp for C++ & SystemC

● Modeling with bit-accuracy
– Supports arbitrary precision types for all input languages
– Allowing the exact bit-widths to be modeled and synthesized

● Floating point support
– Support for the use of float and double in the code

● Support for OpenCV functions
– Enable migration of OpenCV designs into Xilinx FPGA
– Libraries target real-time full HD video processing

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 19

Source Code: Key Attributes

void fir (
 data_t *y,
 coef_t c[4],
 data_t x
) {

 static data_t shift_reg[4];
 acc_t acc;
 int i;

 acc=0;
 loop: for (i=3;i>=0;i--) {
 if (i==0) {
 acc+=x*c[0];
 shift_reg[0]=x;
 } else {
 shift_reg[i]=shift_reg[i-1];
 acc+=shift_reg[i] * c[i];
 }
 }
 *y=acc;
}

Functions: Represent the design hierarchy

Loops: Their scheduling has major impact on
 area and performance

Arrays: Mapped into memory. May become main
 performance bottlenecks

Operators: Can be shared or replicated to meet
 performance

Types: Type influences area and performance

Top Level IO : Top-level arguments determine
 Interface ports

● Only one top-level function is allowed

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 20

Functions & RTL Hierarchy

void A() { ..body A..}
void B() { ..body B..}
void C() {

B();
}
void D() {

B();
}

void foo_top() {
A(…);

 C(…);
D(…)

}

foo_top
A

C B

D B

Source Code

RTL hierarchy

my_code.c

● Each function is translated into an RTL block.
● Can be shared or inlined (dissolved)

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 21

Operator Types

● Standard C Types
– Integers:

● long long => 64 bits
● int => 32 bits
● short => 16 bits

– Characters:
● char => 8 bits

– Floating Point
● Float => 32 bits
● Double => 64 bits

● Arbitrary Precission Types
– C

● ap(u)int => (1-1024)

– C++:
● ap_(u)int => (1-1024)
● ap_fixed

– C++ / SystemC:
● sc_(u)int => (1-1024)
● sc_fixed

● They define the size of the hardware used

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 22

Loops

● Rolled by default
– Each iteration implemented in the same state
– Each iteration implemented with the same resources

● Loops can be unrolled if their indexes are statically determinable
at elaboration time
– Not when the number of iterations is variable
– Result in more elements to schedule but greater operator mobility

void foo_top (…) {
 ...
 Add: for (i=3;i>=0;i--) {

b = a[i] + b;
 ...
 }

foo_top

+Synthesis
a[N] b

N

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 23

void fir (
 …
acc=0;
 loop: for (i=3;i>=0;i--) {
 if (i==0) {
 acc+=x*c[0];
 shift_reg[0]=x;
 } else {
 shift_reg[i]=shift_reg[i-1];
 acc+=shift_reg[i]*c[i];
 }
 }
 *y=acc;
}

+
==
-

>=
RDx

*
+

==
-

>=*
+

==
-

>=*
+

==
-

>=* WRy

Iteration 1 Iteration 2 Iteration 3 Iteration 4

- - -
RDcRDcRDcRDc

The read X operation has
good mobility

Data Dependencies: Good

Default Schedule

● Example of good mobility
– The read on data port X can occur anywhere from the start to iteration 4

● The only constraint on RDx is that it occur before the final multiplication
– Vivado HLS has a lot of freedom with this operation

● It waits until the read is required, saving a register
● Input reads can be optionally registered

Rolled loop

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 24

Data Dependencies: Bad

● The final multiplication must occur before the read and final addition
● Loops are rolled by default

– Each iteration cannot start till the previous iteration completes
– The final multiplication (in iteration 4) must wait for earlier iterations to

complete
● The structure of the code is forcing a particular schedule

– There is little mobility for most operations

void fir (
 …
acc=0;
 loop: for (i=3;i>=0;i--) {
 if (i==0) {
 acc+=x*c[0];
 shift_reg[0]=x;
 } else {
 shift_reg[i]=shift_reg[i-1];
 acc+=shift_reg[i]*c[i];
 }
 }
 *y=acc;
}

+
==
-

>=
RDx

*
+

==
-

>=*
+

==
-

>=*
+

==
-

>=* WRy

Iteration 1 Iteration 2 Iteration 3 Iteration 4

- - -
RDcRDcRDcRDc

Mult is very constrained

Default Schedule
Rolled loop

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 25

Arrays

void
foo_top(int x, …)
{
 int A[N];
 L1: for (i = 0;
 i < N;
 i++)
 A[i+x] = A[i] + i;
}

N-1

N-2

…

1
0

Synthesis

foo_top

DOUTDIN
ADDR

CE
WE

SPRAMBA[N]
A_outA_in

● By default implemeted as RAM
– Dual port if performance can be improved otherwise Single Port RAM
– optionally as a FIFO or registers bank

● Can be targeted to any memory resource in the library
● Can be merged with other arrays and reconfigured
● Arrays can be partitioned into individual elements

– Implemented as smaller RAMs or registers

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 26

Top-Level IO Ports

sum_dataout

in1

in2

ap_done
ap_start ap_idle

ap_return

in1_ap_ack

in2_read

in1_ap_vld

in2_empty_n

sum_req_write
sum_rsp_read
sum_req_din
sum_address
sum_size

sum_req_full_n
sum_rsp_empty_n

sum_datain

adders

ap_clk
ap_rst22- 26

#include "adders.h"
int adders(int in1, int in2,

 int *sum) {

 int temp;
*sum = in1 + in2 + *sum;

 temp = in1 + in2;

return temp;
}

Function activation

Input data can include
strobes, acks, …
Or be modelled as fifo channels

Data passed by reference
is modeled as R/W
(not necessarily as memory
As in this case)

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 27

An example: Matrix Multiplication

Loop Latency Iteration
latency

Trip
count

Initiation
interval

Row 132 44 3 0
Col 42 14 3 0
Product 12 4 3 0

Clock cycle: 8.50 ns

Resources BRAM DSP FF LUT

Total 0 3 158 271

typedef int mat_a_t;
typedef int mat_b_t;
Typedef int result_t;

void matrixmul(
 mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
 mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
 result_t res[MAT_A_ROWS][MAT_B_COLS])
{
 // Iterate over the rows of the A matrix
 Row: for(int i = 0; i < MAT_A_ROWS; i++) {

 // Iterate over the columns of the B matrix
 Col: for(int j = 0; j < MAT_B_COLS; j++) {

 // Inner product of a row of A and col of B
 res[i][j] = 0;

 Product: for(int k = 0; k < MAT_B_ROWS; k++) {
 res[i][j] += a[i][k] * b[k][j];
 }
 }
 }
}

132 cc
a
b res

Solution 1: naive implementation (no optimization)

32

32

32

3x3 square matrixes

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 28

Schedule Viewer

● Perspective for design analysis

Module hierarchy

Hierarchical summary
And navigation

Performance Profile

Hw resources
Latencies + Intervals

Scheduling

Mapping of operations
to cycles

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 29

Schedule Viewer

Module hierarchy

Operations, loops
And functions

Scheduled states

Cross references

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 30

Guidance

● Outlines the main problems and proposes solutions

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 31

MM Pipelined version

Latency = 3 cycles

Throughput = 1 cycle

RD CMP WR

RD CMP WR

Loop Latency = 4 cycles

RD
CMP
WR

Loop Latency Iteration
latency

Trip
count

Initiation
interval

Row_col 99 11 9 1
Product 7 4 3 2

Clock cycle: 8.50 ns

Resources BRAM DSP FF LUT
Total 0 3 137 322

void matrixmul(
 mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
 mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
 result_t res[MAT_A_ROWS][MAT_B_COLS])
{
 // Iterate over the rows of the A matrix
 Row: for(int i = 0; i < MAT_A_ROWS; i++) {

 // Iterate over the columns of the B matrix
 Col: for(int j = 0; j < MAT_B_COLS; j++) {

 // Inner product of a row of A and col of B
 res[i][j] = 0;

 Product: for(int k = 0; k < MAT_B_ROWS; k++) {
 #pragma HLS PIPELINE
 res[i][j] += a[i][k] * b[k][j];
 }
 }
 }
}

Solution 2: pipelining

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 32

MM Custom bit size

Loop Latency Iteration
latency

Trip
count

Initiation
interval

Row_col 99 11 9 1
Product 7 4 3 2

Clock cycle: 8.50 ns

Resources BRAM DSP FF LUT
Total 0 3 137 322

typedef ap_int<18> mat_a_t;
Typedef ap_int<18> mat_b_t;
typedef ap_int<18> result_t;

void matrixmul(
 mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
 mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
 result_t res[MAT_A_ROWS][MAT_B_COLS])
{
 // Iterate over the rows of the A matrix
 Row: for(int i = 0; i < MAT_A_ROWS; i++) {

 // Iterate over the columns of the B matrix
 Col: for(int j = 0; j < MAT_B_COLS; j++) {

 // Inner product of a row of A and col of B
 res[i][j] = 0;

 Product: for(int k = 0; k < MAT_B_ROWS; k++) {
 #pragma HLS PIPELINE II=2
 res[i][j] += a[i][k] * b[k][j];
 }
 }
 }
}

Solution 3: 10 bit inputs

99 cc
a
b res

10

10

10

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 33

MM Array Partition

Loop Latency Iteration
latency

Trip
count

Initiation
interval

Row_col 81 9 9 1
Product 6 3 3 2

Clock cycle: 8.50 ns

Resources BRAM DSP FF LUT
Total 0 1 64 243

void matrixmul(
 mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
 mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
 result_t res[MAT_A_ROWS][MAT_B_COLS])
{
#pragma HLS ARRAY_PARTITION variable=b complete dim=1
#pragma HLS ARRAY_PARTITION variable=a complete dim=2
 // Iterate over the rows of the A matrix
 Row: for(int i = 0; i < MAT_A_ROWS; i++) {

 // Iterate over the columns of the B matrix
 Col: for(int j = 0; j < MAT_B_COLS; j++) {

 // Inner product of a row of A and col of B
 res[i][j] = 0;

 Product: for(int k = 0; k < MAT_B_ROWS; k++) {
 #pragma HLS PIPELINE II=2
 res[i][j] += a[i][k] * b[k][j];
 }
 }
 }
}

Solution 4: fully partition a & b

81 cc

a0

b0
res10

10

10a1
10

a2
10

b1 10

b2 10

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 34

MM Floating-Point

Loop Latency Iteration
latency

Trip
count

Initiation
interval

Row_col 216 24 9 0
Product 20 11 3 5

Clock cycle: 7.96 ns

Resources BRAM DSP FF LUT
Total 0 5 489 1002

typedef float mat_a_t;
Typedef float mat_b_t;
typedef float result_t;

void matrixmul(
 mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
 mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
 result_t res[MAT_A_ROWS][MAT_B_COLS])
{
 // Iterate over the rows of the A matrix
 Row: for(int i = 0; i < MAT_A_ROWS; i++) {

 // Iterate over the columns of the B matrix
 Col: for(int j = 0; j < MAT_B_COLS; j++) {

 // Inner product of a row of A and col of B
 res[i][j] = 0;

 Product: for(int k = 0; k < MAT_B_ROWS; k++) {
 #pragma HLS PIPELINE II=2
 res[i][j] += a[i][k] * b[k][j];
 }
 }
 }
}

Solution 5: floating point

99 cc
a
b res

32

32

32

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 35

MM Interface Synthesis
RTL ports dir bits Protocol C Type

ap_clk in 1 ap_ctrl_hs return value
ap_rst in 1 ap_ctrl_hs return value
ap_start in 1 ap_ctrl_hs return value
ap_done out 1 ap_ctrl_hs return value
ap_idle out 1 ap_ctrl_hs return value
ap_ready out 1 ap_ctrl_hs return value
in_a_address0 out 8 ap_memory array
in_a_ce0 out 1 ap_memory array
in_a_q0 in 32 ap_memory array
in_b_address0 out 8 ap_memory array
in_b_ce0 out 1 ap_memory array
in_b_q0 in 32 ap_memory array
in_c_address0 out 8 ap_memory array
in_c_ce0 out 1 ap_memory array
in_c_we0 out 1 ap_memory array
in_c_d0 out 32 ap_memory array

Function activation
interface

Synthesized memory
ports

Can be disabled
 ap_control_none

Also dual-ported

In the array partitioned
Version, 3 mem ports.
One per partial product

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 36

Interface synthesis

● I/O ports can be mapped to different bus interfaces
● Let’s map the MM to an AXI Lite bus

– #pragma HSL INTERFACE s_axilite port=a bundle=myBus

– The bundle is used to group more than one port into the same bus

RTL ports dir bits Protocol RTL ports dir bits Protocol
ap_clk in 1 ap_ctrl_hs s_axi_myBus_WSTRB in 4 s_axi
ap_rst_n in 1 ap_ctrl_hs s_axi_myBus_ARVALID in 1 s_axi
ap_start in 1 ap_ctrl_hs s_axi_myBus_ARREADY out 1 s_axi
ap_done out 1 ap_ctrl_hs s_axi_myBus_ARADDR in 8 s_axi
ap_idle out 1 ap_ctrl_hs s_axi_myBus_RVALID out 1 s_axi
ap_ready out 1 ap_ctrl_hs s_axi_myBus_RREADY in 1 s_axi
s_axi_myBus_AWVALID in 1 s_axi s_axi_myBus_RDATA out 32 s_axi
s_axi_myBus_AWREADY out 1 s_axi s_axi_myBus_RRESP out 2 s_axi
s_axi_myBus_AWADDR in 1 s_axi s_axi_myBus_BVALID out 1 s_axi
s_axi_myBus_WVALID in 1 s_axi s_axi_myBus_BREADY in 1 s_axi
s_axi_myBus_WREADY out 1 s_axi s_axi_myBus_BRESP out 2 s_axi
s_axi_myBus_WDATA in 32 s_axi

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 37

Validation Flow
● Two steps for design verification

– Before synthesis
– After synthesis

● Pre-synthesis: C Validation
– Validate the algorithm is correct

● Post-synthesis: RTL Verification
– Verify the RTL is correct

● C validation
– A HUGE reason to use HLS

● Fast, free verification
– Validate the algorithm is correct before synthesis

● Follow the test bench tips given over
● RTL Verification

– Vivado HLS can co-simulate the RTL with the
original test bench

Validate C

Verify RTL

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 38

Test benches

● The test bench should be in a
separate file

● Or excluded from synthesis
– The Macro __SYNTHESIS__

can be used to isolate code
which will not be synthesized

// test.c
#include <stdio.h>
void test (int d[10]) {
 int acc = 0;
 int i;
 for (i=0;i<10;i++) {
 acc += d[i];
 d[i] = acc;
 }
}
#ifndef __SYNTHESIS__
int main () {
 int d[10], i;
 for (i=0;i<10;i++) {
 d[i] = i;
 }
 test(d);
 for (i=0;i<10;i++) {
 printf("%d %d\n", i, d[i]);
 }
 return 0;
}
#endif

Design to be synthesized

Test Bench

Nothing in this ifndef will be read by Vivado HLS

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 39

Test benches: ideal test bench

● Self checking
– RTL verification will re-use the C test bench
– If the test bench is self-checking

● Allows RTL Verification to be run without a requirement to check the results
again

● RTL verification “passes” if the test bench return value is 0 (zero)

int main () {

 // Compare results
 int ret = system("diff --brief -w output.dat output.golden.dat");
 if (ret != 0) {
 printf("Test failed !!!\n", ret); return 1;
 } else {
 printf("Test passed !\n", ret); return 0;
 }

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 40

RTL Export

RTL output in Verilog, VHDL and SystemC

Scripts created for RTL synthesis tools

IP-XACT and SysGen => Vivado HLS for 7 Series
and Zynq families

PCore => Only Vivado HLS Standalone for all
families

RTL Export to IP-XACT, SysGen, and Pcore
formats

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 41

IP integration

● Exported cores can be directly integrated in Vivado

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 42

Software Drivers

● And both drivers for baremetal and User Space linux are generated

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 43

HLS Libraries

● Vitis accelerated libraries
– Valid for classic Vivado flow
– Compatible with the new OpenCL-based flow

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 44

An example: Vision libraries

● Based on the OpenCV
standard

● Big number of OpenCV
operations available for
synthesis

● Full OpenCV for test
● Interface synthesis for

common Xilinx bus interfaces

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 45

An example: Vision libraries

● Difference of Gaussian Filter

High-level Synthesis Smr3983 – Qatar (Oct. 2023) 46

References

● M. Fingeroff, “High-Level Synthesis Blue Book”, X libris Corporation,
2010

● P. Coussy, A. Morawiec, “High-Level Synthesis:
from Algorithm to Digital Circuit”, Springer, 2008

● “High-Level Synthesis Flow on Zynq” Course materials
from the Xilinx University Program, 2016

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

