
Luis Guillermo García Ordóñez

 Tool Command Language (TCL)

2

What is TCL?

TCL (Tool Command Language) or “Tickle” is a powerful, flexible scripting
language initially developed in the late 1980s by John Ousterhout. It's designed
for command scripting and rapid prototyping.

● Key Characteristics:
○ Interpreted Language: TCL scripts are executed line-by-line, making it

easy to test and modify in real-time.
○ Cross-Platform Compatibility: Runs on various operating systems,

making it versatile across different development environments.
○ Extensible: TCL supports integration with other languages and tools,

allowing it to adapt to various workflows.

3

Why TCL is relevant?
What is TCL?

Widely Used in FPGA Tools: Major FPGA design tools, such as Xilinx Vivado, Intel Quartus, and
Microsemi Libero, include TCL as their primary scripting language.

Automation and Control: TCL scripts can control FPGA design tools for tasks like synthesis,
simulation, and implementation. It allows engineers to automate complex workflows that would be
tedious and error-prone if done manually.

Adaptability: TCL provides a way to customize and streamline the FPGA design process, making it
easier to adapt the workflow to specific project requirements and increase productivity.

4

TCL is both ingenious and frustrating
What is TCL?

Tcl interpreters follow a basic set of rules, and that’s what makes it a good tool
command language in the first place.

Everything is a string:

5

Everything can be redefined
What is TCL?

6

Role of TCL in FPGA Design Flow
TCL for FPGA Design

● Automating Repetitive Tasks: SoC design involves many repetitive tasks, such as defining
constraints, running synthesis, or generating reports. TCL scripts can be written to perform these
tasks automatically. E.g. Synthesis, implementation, and generate a bitstream.

● Configuration and Setup:TCL scripts are frequently used to configure the design environment,
including initializing settings and setting up design constraints, paths, and other variables. E.g.
Board selection, Constraints (timing, placement, etc).

● Synthesis, Simulation, and Implementation

● Batch Processing: Multiple simulations, implementations, or tests need to be run on different
configurations or parameters.

Instantiating Comblock

create_bd_cell -type ip -vlnv www.ictp.it:user:comblock:2.0 MY_COMBLOCK

set_property -dict [list \

 CONFIG.REGS_IN_DEPTH {1} \

 CONFIG.REGS_OUT_DEPTH {2} \

 CONFIG.DRAM_IO_ENA {false} \

 CONFIG.FIFO_IN_ENA {false} \

] [get_bd_cells MY_COMBLOCK]

Instantiating Flopoco division module

create_bd_cell -type ip -vlnv xilinx.com:ip:util_vector_logic:2.0 MY_AND_GATE

set_property CONFIG.C_SIZE {32} [get_bd_cells MY_AND_GATE]

Block Diagarm Interconnection

Comblock to Logic Vector

connect_bd_net [get_bd_pins MY_COMBLOCK/reg0_o] [get_bd_pins MY_AND_GATE/Op1]

connect_bd_net [get_bd_pins MY_COMBLOCK/reg1_o] [get_bd_pins MY_AND_GATE/Op2]

Logic Vector to Comblock

connect_bd_net [get_bd_pins MY_AND_GATE/Res] [get_bd_pins MY_COMBLOCK/reg0_i]

TCL Example

8

It can get very complicated very quickly.
The Frustrating Part

9

Why TCL?
Great for automation flow

You haven’t answered the
question….

source ./my_project.tcl

10

Why TCL?
Great for automation flow

You haven’t answered the
question….

Luis Guillermo García Ordóñez

We will continue in the lab.

