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Machine learning

What should the model 
be like?
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Precise
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Machine learning
Generalization 

 Image from 
Togootogtokh, E., & Amartuvshin, A. (2018). Deep Learning Approach for Very Similar Objects Recognition Application on Chihuahua and Muffin Problem. ArXiv, abs/1801.09573.
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Machine learning for classification
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Machine learning for classification

- In a classifier, an input is mapped to a specific class.

- Supervised training phase: the network compares its current output with the desired output. The 
difference between these two values is corrected using backpropagation.
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Input ML model Prediction

Machine learning for classification
A classifier as example
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An Artificial Neural Network (ANN) is composed of interconnected neurons (or nodes) 
arranged in multiple layers.

Neural networks

x1

x2

xi

...

Romina Soledad Molina | Doha - Qatar | 2024



W1

W2

Wi

x1

x2

xi

...
...

Romina Soledad Molina | Doha - Qatar | 2024

An Artificial Neural Network (ANN) is composed of interconnected neurons (or nodes) 
arranged in multiple layers.

Neural networks



W1

W2

Wi

x1

x2

xi

...
...

Romina Soledad Molina | Doha - Qatar | 2024

An Artificial Neural Network (ANN) is composed of interconnected neurons (or nodes) 
arranged in multiple layers.

Neural networks



W1

W2

Wi

x1

x2

xi

...
...

Romina Soledad Molina | Doha - Qatar | 2024

An Artificial Neural Network (ANN) is composed of interconnected neurons (or nodes) 
arranged in multiple layers.

Neural networks



W1

W2

Wi

x1

x2

xi

...
...

Romina Soledad Molina | Doha - Qatar | 2024

An Artificial Neural Network (ANN) is composed of interconnected neurons (or nodes) 
arranged in multiple layers.

Neural networks



W1

W2

Wi

x1

x2

xi

...
...

Romina Soledad Molina | Doha - Qatar | 2024

An Artificial Neural Network (ANN) is composed of interconnected neurons (or nodes) 
arranged in multiple layers.

Neural networks



W1

W2

Wi

b

x1

x2

xi

...
...

Romina Soledad Molina | Doha - Qatar | 2024

An Artificial Neural Network (ANN) is composed of interconnected neurons (or nodes) 
arranged in multiple layers.

Neural networks



W1

W2

Wi

b

f

x1

x2

xi

...
...

Romina Soledad Molina | Doha - Qatar | 2024

An Artificial Neural Network (ANN) is composed of interconnected neurons (or nodes) 
arranged in multiple layers.

Neural networks



W1

W2

Wi

b

f

x1

x2

xi

...
...

y

Romina Soledad Molina | Doha - Qatar | 2024

An Artificial Neural Network (ANN) is composed of interconnected neurons (or nodes) 
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ML and model compression techniques 
for reconfigurable hardware accelerators

Ensemble of compression techniques - Exploration of the interplay between:
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Pruning Quantization Knowledge distillation

Remove neurons and 
connections.

Selection of the number of bits 
to represent the weights and 

bias.

Transfers the knowledge from 
a teacher network to a smaller 

and faster target network. 

Fully on-chip deployment

ML and model compression techniques 
for reconfigurable hardware accelerators

Ensemble of compression techniques - Exploration of the interplay between:
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An end-to-end workflow
to efficiently compress and deploy DNN 

on SoC/FPGA
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Dataset DNN model Compression

End-to-end workflow
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Dataset DNN model Compression

Inference 
hardware

Final 
hardware Bitstream Application

End-to-end workflow

A- DNN training and compression

B- Integration with a hardware synthesis  tool for ML

C- Hardware assessment framework

Hardware synthesis tool 
for ML

Available at https://github.com/RomiSolMolina/workflowCompressionML
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A. DNN training and compression

Romina Soledad Molina | Doha - Qatar | 2024



DNN training and compression
Stage 1 - Teacher training

Untrained teacher 
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Hyperparameters 
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DNN training and compression
Stage 2 - Student training

Untrained student 
network

Dataset
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(P) and number of 

bits (Q)
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BO 
hyperparameters 

tuning combined with 
QAP and KD

Romina Soledad Molina | Doha - Qatar | 2024



B. Integration with a hardware synthesis  
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Integration with a hardware synthesis tool for ML

Model Compressed 
model

HLS 
conversion

HLS 
project

Tune
configuration

Custom 
firmware/kernel

https://github.com/fastmachinelearning/
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Integration with a hardware synthesis tool for ML

ML framework support:

● (Q)Keras
● PyTorch (limited)

● (Q)ONNX (in development)

https://fastmachinelearning.org/hls4ml/
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ML framework support:

● (Q)Keras
● PyTorch (limited)

● (Q)ONNX (in development)

Neural networks architectures:

● Fully Connected NN 
● Convolutional NN
● Recurrent NN
● Graph NN

HLS backends:

● Vivado HLS 
● Intel HLS
● Vitis HLS (experimental)

https://fastmachinelearning.org/hls4ml/
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Integration with a hardware synthesis tool for ML

Python integration
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QKeras for quantization-aware training

Integration with a hardware synthesis tool for ML
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High-level synthesis project generated through hls4ml

Integration with a hardware synthesis tool for ML
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C. Hardware assessment 
framework
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ML and model compression techniques for SoC/FPGA 
Applications

● Gamma/Neutron discrimination [submitted TNS].

● Pest classification in fruit crops [9, 11].

● Pulse shape discriminator for cosmic rays studies [8, 11].

● Volcanic seismic event detection [12].

● Object detection for adverse weather conditions, particularly haze and fog [India - on-going].

● Water quality monitoring applied to Dunav river [Serbia - Remarkable / on-going].
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Gamma/neutron 
discrimination

ML and model compression techniques for SoC/FPGA 
Applications

● Tagged dataset of gamma and neutron events from Deuterium-Deuterium 

(DD) and Deuterium-Tritium (DT) generators. 

● The dataset was recorded at the Neutron Science Facility (NSF) of the 

Nuclear Science and Instrumentation Laboratory (NSIL), IAEA. 

● The detector is based on a small CLYC (Cs2LiYCl6:Ce) crystal (0.5 in 

diameter by 30 mm length) coupled to a 4-element SiPM array. 

● The data were sampled at 4 GSPS with 10-bits resolution using a CAEN 

DT5761 digitizer. 

● The total gamma and neutron events in this dataset are 10,913 and 

27,696, respectively.
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Gamma/neutron 
discrimination

ML and model compression techniques for SoC/FPGA 
Applications

Morales, I. R., Crespo, M. L., Bogovac, M., Cicuttin, A., Kanaki, K., & Carrato, S. (2023). Gamma/neutron classification with SiPM CLYC detectors 
using frequency-domain analysis for embedded real-time applications. Nuclear Engineering and Technology.

Dataset from https://doi.org/10.5281/zenodo.8037059
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ML and model compression techniques for SoC/FPGA 
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ML and model compression techniques for SoC/FPGA 
Applications

Gamma/neutron 
discrimination

Input size reduction: 
35 samples of the leading edge 

of the pulse.

Teacher architecture with 2,623
parameters distributed in 6 

hidden layers (MLP). 

Compressed architecture with 
217 parameters, distributed in 

6 hidden layers (MLP).
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ML and model compression techniques for SoC/FPGA 
Applications

Gamma/neutron 
discrimination

● Overall accuracy

○ Teacher architecture (original): 99.00%
○ Student architecture (compressed):  98.20%
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ML and model compression techniques for SoC/FPGA 
Applications

● SoC latency

○ Zedboard platform:  45 clk cycles (@200MHz)

Gamma/neutron 
discrimination

● SoC memory footprint in terms of resource utilization @200MHz

○ Artix-7 platform: below 35%

● Overall accuracy

○ Teacher architecture (original): 99.00%
○ Student architecture (compressed):  98.20%
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Image classification based on CNN
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ML and model compression techniques for SoC/FPGA 
Applications

Precision agriculture on the edge

Pest classification
in fruit crops
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ML and model compression techniques for SoC/FPGA 
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Dataset

ML techniques

Embedded system

Memory footprint

Pest classification
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ML and model compression techniques for SoC/FPGA 
Applications

Pest classification
in fruit crops

Precision agriculture on the edge

Romina Soledad Molina | Doha - Qatar | 2024



ML and model compression techniques for SoC/FPGA 
Applications

Pest24 [6]

A standard dataset available in the literature for training, 
granting a stable and effective performance.

Pest classification
in fruit crops
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ML and model compression techniques for SoC/FPGA 
Applications

Pest24 [6]

Argentina

A standard dataset available in the literature for training, 
granting a stable and effective performance.

Images provided by the system in Argentina.

Pest classification
in fruit crops
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Teacher architecture based on VGG16 and obtained through transfer learning 
– 14,818,706 parameters – 

Pest classification
in fruit crops

ML and model compression techniques for SoC/FPGA 
Applications
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Compressed architecture. 
Compression ratio: 7,409x  – in number of parameters –

Teacher architecture based on VGG16 and obtained through transfer learning 
– 14,818,706 parameters – 

Pest classification
in fruit crops
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Pest classification
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Pest classifiation
in fruit crops

● Overall accuracy

○ Teacher architecture: 98.87%
○ Student architecture:  95.78%

Pest classification
in fruit crops

ML and model compression techniques for SoC/FPGA 
Applications
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● SoC memory footprint in terms of resource utilization @200MHz

○ KRIA platform: below 21%
○ PYNQ-Z1 platform: below 63%

Pest classification
in fruit crops

● Overall accuracy

○ Teacher architecture: 98.87%
○ Student architecture:  95.78%

Pest classification
in fruit crops

ML and model compression techniques for SoC/FPGA 
Applications
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Pest classification
in fruit crops

Object detection 
[work in progress]

ML and model compression techniques for SoC/FPGA 
Applications

Image from Cityscapes dataset. 
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., ... & Schiele, B. (2016). The cityscapes dataset for semantic urban scene 
understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3213-3223).
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Pest classification
in fruit crops

ML and model compression techniques for SoC/FPGA 
Applications

Object detection 
[work in progress]

Image from Du, X., Lin, T. Y., Jin, P., Ghiasi, G., Tan, M., Cui, Y., ... & Song, 
X. (2020). Spinenet: Learning scale-permuted backbone for recognition and 
localization. In Proceedings of the IEEE/CVF conference on computer vision 
and pattern recognition (pp. 11592-11601).

Image from Cityscapes dataset. 
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Final remarks

● The proposed workflow successfully generates compressed models, leading to a fully on-chip 
memory-mapped implementation on the FPGA. 

● The integration of KD into the ensemble of compression techniques contributes to achieving a 
balanced student model in terms of size, computational efficiency, and accuracy. 

● The workflow addresses the entire development cycle: from the ML-based architecture training to the 
hardware deployment, overcoming the limitations outlined in previous works. 

● Addition of FPGA metric estimation in the training stage to adapt the ML-based model to the hardware 
architecture. 
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Pulse shape discriminator 
for cosmic rays studies
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Pest classification
in fruit crops

Pulse shape 
discriminator

for cosmic rays 
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Pest classification
in fruit crops

Pulse shape 
discriminator

for cosmic rays 
studies

ML and model compression techniques for SoC/FPGA 
Applications

Left. Teacher architecture based on MLP - 16,352 parameters. 

Right: Distilled architecture - 529 parameters
Compression ratio: 30.91x.
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● Overall accuracy

○ Teacher architecture: 99.70%
○ Student architecture:  98.96%

■ 8-bit fixed point
■ Target sparsity: 20%
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● SoC memory footprint in terms of resource utilization @200MHz

○ Artix-7: below 27%

● Overall accuracy

○ Teacher architecture: 99.70%
○ Student architecture:  98.96%

■ 8-bit fixed point
■ Target sparsity: 20%
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● SoC memory footprint in terms of resource utilization @200MHz

○ Artix-7: below 27%

● Overall accuracy

○ Teacher architecture: 99.70%
○ Student architecture:  98.96%

■ 8-bit fixed point
■ Target sparsity: 20%

● SoC latency @200MHz

○ Artix-7: 10 clock cycles
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