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Random Matrix

Consider a matrix:

A =



a11 a12 ... ... a1n
a21 a22 ... ... a2n
a31 ...
...
...
...

am1 am2 ... ... amn


where some or all the entries are drawn randomly from various probability distributions
traditionally referred to as the random matrix ensembles. The main goal of the Random Matrix
Theory is to provide understanding of the diverse properties of random matrix theory by
studying statistics of matrix eigenvalues(spacing, discrete spectral density, gap probability, etc.).
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Characterizing Quantum Systems using RMT

Random matrix theory is used to characterize complex quantum systems when there is limited
knowledge about the Hamiltonian. The fundamental hypothesis is that the Hamiltonian can be
treated as a random matrix drawn from an ensemble with appropriate symmetries. This
approach is particularly useful for systems with many degrees of freedom and unknown
interaction couplings among them.
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Eigen Spectrum of Hamiltonian

Integrable Hamiltonian Models Let the eigenvalues be λ1 ≤ λ2 ≤ .... and let Sn = λn+1 − λn be
the consecutive splittings. In this case, the distribution P(s) of the neighboring spacings
s = S/D, where S is a particular spacing and D is the mean distance between neighboring
intervals is given by:

P(s) = 1
D e−s
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Non-Integrable Hamiltonian Models

In contrast, the level spacing distribution P(s) of chaotic models is closely approximated by the
Wigner-Dyson (WD) distribution:

P(s) = bβsβe−αβ s2 (1)

where β depends on which universality class of random matrices the chaotic Hamiltonian
belongs to.
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Broody Distribution

To compare the spectral statistics with regular and chaotic limits and also exhibit interpolation
between them, different distribution functions have been proposed. For example, for the
Gaussian Orthogonal Ensemble (GOE) statistics, one popular intermediate distribution is
Broody distribution:

P(s) = b(1 + q)sqe−bsq+1
, b =

(
Γ2 + q

1 + q

)q+1

where q = 0 corresponds to the Poisson limit while q = 1 corresponds to Wigner-Dyson limit.
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Signature of Quantum Chaos

Bohigas-Giannoni-Schmit conjecture The BGS conjecture associates the quantum chaotic
properties of a system with the correlations between its energy levels. Chaotic Hamiltonian
exhibit level correlations in agreement with the predictions of random matrix theory (RMT):
Adjacent eigenvalues show level repulsion and, at larger energy scales, signals of spectral
rigidity. This understanding can be extended to the eigen spectrum of the Hamiltonian,
allowing us to determine the chaotic nature of a quantum state based on its level
spacing distribution.
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Thank you
bhattarai0rohit49@gmail.com
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Cuernavaca Transport

The bus system is decentralized.
The transport system of Cuernavaca is a chaotic coherent Quantum system so, it’s
statistical properties are described by Wigner Dyson random matrix ensembles.
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Bus statistical data

The bus statistical data is collected from line number four near city center in which 3500
arrivals were recorded within 27 days.
Evaluation of bus spacing distribution and comparison of results with predictions of
Gaussian Unitary Ensemble(GUE).
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Cuernavaca Buses and Dyson(One dimensional interacting) gas

Coulomb potential is given by:
V = −

∑
i<j(log |xi − xj |

The acceleration of buses is :
dvi
dt ≈ f ((vi+1,vi )

(xi+1−xi )a

For low velocities and a=1, the buses accelerate as similar as dyson gas particles.
For given a in case of buses and for particular temperature in case of gases, the
distribution of both gas particles and buses is given by GUE.

Physics without Frontier Nepal () Cuernavaca Case Cuernavaca Buses and Dyson(One dimensional interacting) gas



ICTP PWF: Nepal Holographic Himalaya (Group 2)

Interaction Potential

No constraints to influence the transport which makes each bus a property of driver
Tries to maximize income and passengers
Leads to competition and mutual interaction
Engage people to record bus arrivals at bus stops to avoid bus clustering so that
distribution of buses is Wigner Dyson rather than Poisson
With the information about position of preceding and following bus, drivers try to
optimize distances between them
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Relationship between GUE prediction and statistical results

Assuming the random matrix of bus distribution in Cuernavaca is hermitian, the total
information of the system is minimum and hence it conforms Gaussian Unitary
Ensemble(GUE) prediction.
The bus number variance is simply obtained as:
N(T) =

∑n
i=1(n(Ti) − T )2

where, (n(Ti) is actual number of bus arrivals
T is expected average bus arrivals
The bus number variance from GUE prediction is:
N(T ) ≈ 1

π2 (ln (2πT ) + γ + 1)
The number variance from bus data is consistent with GUE upto the time interval T ≈ 3
which implies strong interaction between three subsequent buses whereas weaker long
range correlation between more than three buses.
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Motivation and Objective

What we learned from RMT and Case of Cuernavaca
Chaotic system can give an optimum distribution
RMT can be used to model bus system of Cuernavaca
Wigner-Dyson Distribution-GUE gives optimum spacing distribution for Cuernavaca bus
system
Similar with Ring Road Bus system of Kathmandu

Objective of the project
Design theoretical protocol for optimization of bus spacing of Ring road bus system of
Kathmandu
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Kathmandu Ring Road

Properties of Bus system in Ring Road
40 buses in the system by Mahanagar
Yatayat(Metropolitan Transport)
Leave bus system at a predefined time with no
route-scheduling
Drivers drive buses independently of another(no
mutual information shared)
Income is based on the number of passengers
Virtually no interaction with bus drivers *

What to optimize
Optimal bus spacing
Reduce clustering and maximize passenger and
profit
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Optimization protocol

Generate a distributionG(x1, x2, x3, . . . , t) with x’s as a real-time position of the bus
system at time t,
Shift bus position in G(xi s ) by δxi in time δxi such that
G ′(x1 + δx1, x1 + δx1, x2 + δx2, ..., xn + δxn, t + δt) closely resembles Wigner Dyson
distribution

|G
′
(xi , t) − PWD | ≤ ϵ

If δxi/ ⟨v⟩ ≤ ts , the bus should stop at bus stop for δxi/ ⟨v⟩ time,
If δxi/ ⟨v⟩ > ts , the bus should stop at bus stop for δxi − ⟨v⟩ ts time
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Protocol using Quantum Algorithms

Prepare a Hamiltonian using G(xi s )
Encode the Hamiltonian G(xi s into a quantum circuit using parameterized variational
quantum algorithms
Check eigen spectrum of Hamiltonian using spectral analysis [1]
Build a cost function using spectral analysis so as to get close to a Hamiltonian based on
the Wigner-Dyson Distribution
Use the evaluations to generate a new set of parameters to feed back into the variational
algorithm
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The algorithm will run in a loop to minimize the cost function and results in a
Hamiltonian that is required.
Evaluate δxi using initial and final Hamiltonian.
Check eigen spectrum of Hamiltonian using spectral analysis
Build a cost function using spectral analysis so as to get close to a Hamiltonian based on
the Wigner-Dyson Distribution
Use the evaluations to generate a new set of parameters to feed back into the variational
algorithm
If δxi/ ⟨v⟩ ≤ ts , the bus should stop at bus stop for δxi/ ⟨v⟩ time,
If δxi/ ⟨v⟩ > ts , the bus should stop at bus stop for δxi − ⟨v⟩ ts time
Get an optimized bus spacing for the bus system
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Q&A

Thank You!
I will now be taking questions.
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