Symmetries in Physics

Andrea Banfi

The Abdus Salam International Centre for Theoretical Physics

Physics Without Frontiers

University of Sussex

IAEA International Atomic Energy Agency

United Nations Educational, Scientific and Cultural Organization

Lecture 1: discrete symmetries

Introduction: a look at the table of elementary particles

Part I: general considerations on symmetries

- What is a symmetry?
- Discrete and continuous symmetries

Part II: discrete symmetries in particle physics

- Violation of parity
- Violation of parity and charge conjugation

Periodic table of elements

	1																	18	
	1 1.0080													2 4.00260					
1	н													Не					
	Hydrogen Nonmetal	2											13	17	Helium Noble Gas				
	3 7.0	4 9.012183			Atomic N	umber <mark>1</mark>	.7 35.4	5 Atomic	c Mass, u				5 10.81	6 12.011	7 14.007	8 15.999	9 18.9984	10 20.180	
2	Li	Be					CI	Symb	ol				В	С	Ν	0	F	Ne	
-	Lithium	Beryllium				Name	Chlorine						Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon Noble Gas	
							Halogen	Chem	ical Group	Block				Nonnetar	Nonnetar	Nonnetar			
	11 22.989	22.989 12 24.305										13 26.981 14 28.085 15 30.973 16 32.07 17 35.45 18							
3	Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon	
	Alkali Metal	Alkaline Earth Me	3	4	5	6	7	8	9	10	11	12	Post-Transition M	Metalloid	Nonmetal	Nonmetal	Halogen	Noble Gas	
	19 39.0983	20 40.08	21 44.95591	22 47.867	23 50.9415	24 51.996	25 54.93804	26 55.84	27 58.93319	28 58.693	29 63.55	30 65.4	31 69.723	32 72.63	33 74.92159	34 78.97	35 79.90	36 83.80	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	Potassium Alkali Metal	Calcium Alkaline Earth Me	Scandium Transition Metal	Transition Metal	Vanadium Transition Metal	Transition Metal	Manganese Transition Metal	Iron Transition Metal	Cobalt Transition Metal	NICKEI Transition Metal	Copper Transition Metal	ZINC Transition Metal	Gallium Post-Transition M	Metalloid	Arsenic Metalloid	Nonmetal	Bromine Halogen	Krypton Noble Gas	
	37 85.468	38 87.62	39 88.90584	40 91.22	41 92.90637	42 95.95	43 96.90636	44 101.1	45 102.9055	46 106.42	47 107.868	48 112.41	49 114.818	50 118.71	51 121.760	52 127.6	53 126.9045	54 131.29	
5	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe	
	Rubidium Alkali Metal	Strontium Alkaline Earth Me	Yttrium Transition Metal	Zirconium Transition Metal	Niobium Transition Metal	Molybdenum Transition Metal	Technetium Transition Metal	Ruthenium Transition Metal	Rhodium Transition Metal	Palladium Transition Metal	Silver Transition Metal	Cadmium Transition Metal	Indium Post-Transition M	Tin Post-Transition M	Antimony Metalloid	Tellurium Metalloid	lodine Halogen	Xenon Noble Gas	
	55 132.90	56 137.33		72 178.49	73 180.9479	74 183.84	75 186.207	76 190.2	77 192.22	78 195.08	79 196.96	80 200.59	81 204.383	82 207	83 208.98	84 208.98	85 209.98	86 222.01	
C	Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Διι	На	TI	Ph	Ri	Po	Δ+	Rn	
0	Cesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon	
	Alkali Metal	Alkaline Earth Me		Iransition Metai	Iransition Metai	Iransition Metai	Iransition Metai	Iransition Metai	Iransition Metai	Iransition Metai	Iransition Metai	Iransition Metai	Post-Iransition M	Post-Iransition M	Post-Iransition M	Metalloid	Halogen	Noble Gas	
	87 223.01	88 226.02		104 267.1	105 268.1	106 269.1	107 270.1	108 269.1	109 277.1	110 282.1	111 282.1	112 286.1	113 286.1	114 290.1	115 290.1	116 293.2	117 294.2	118 295.2	
7	Francium Alkali Metal	Ka Radium Alkaline Earth Me		Rutherfordium Transition Metal	Dubnium Transition Metal	Sg Seaborgium Transition Metal	BN Bohrium Transition Metal	HS Hassium Transition Metal	Meitnerium Transition Metal	Darmstadtium Transition Metal	Roentgenium Transition Metal	Copernicium Transition Metal	Nihonium Post-Transition M	Flerovium Post-Transition M	Moscovium Post-Transition M	LV Livermorium Post-Transition M	Tennessine Halogen	Oganesson Noble Gas	
				57 138.9055	58 140.116	59 140.90	60 144.24	61 144.91	62 150.4	63 151.964	64 157.2	65 158.92	66 162.500	67 164.93	68 167.26	69 168.93	70 173.05	71 174.9668	
				La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu	
				Lanthanum Lanthanide	Cerium Lanthanide	Praseodymium Lanthanide	Neodymium Lanthanide	Promethium Lanthanide	Samarium Lanthanide	Europium Lanthanide	Gadolinium Lanthanide	Terbium Lanthanide	Dysprosium Lanthanide	Holmium Lanthanide	Erbium Lanthanide	Thulium Lanthanide	Ytterbium Lanthanide	Lutetium Lanthanide	
				89 227.02	90 232.038	91 231.03	92 238.0289	93 237.04	94 244.06	95 243.06	96 247.07	97 247.07	98 251.07	99 252.0830	100 257.0	101 258.0	102 259.1	103 266.1	
				Actinium Actinide	Th Thorium Actinide	Pa Protactinium Actinide	U Uranium Actinide	Neptunium Actinide	Pu Plutonium Actinide	Americium Actinide	Cm Curium Actinide	Bk Berkelium Actinide	Californium Actinide	Es Einsteinium Actinide	Fermium Actinide	Md Mendelevium Actinide	Nobelium Actinide	Lr Lawrencium Actinide	

Periodic table of elements

	1																	18
1	1 1.0080 H Hydrogen Nonmetal	2											12	Puk	o Ch	em	17	2 4.00260 Hee Helium Noble Gas
	3 7.0	4 9.012183		Atomic Number			35.4	Atomic Mass, u				5 10.81	14 6 12.011	7 14.007 8 15.99	10 8 15.999	9 18.9984	10 20 180	
2	Li Lithium Alkali Metal	Beryllium Alkaline Earth Me				Name	Cl Chlorine	Symb	ol	Block			B Boron Metalloid	C Carbon Nonmetal	Nitrogen Nonmetal	O Oxygen Nonmetal	F Fluorine Halogen	Neon Noble Gas
	11 22.989	12 24.305					Halogen Chernical Group Block							14 28.085	15 30.973	16 32.07	17 35.45	18 39.9
3	Na Sodium Alkali Metal	Mg Magnesium Alkaline Earth Me	3	4	5	6	7	8	9	10	11	12	Aluminum Post-Transition M	Silicon Metalloid	Phosphorus Nonmetal	S Sulfur Nonmetal	Chlorine Halogen	Argon Noble Gas
	19 39.0983	20 40.08	21 44.95591	22 47.867	23 50.9415	24 51.996	25 54.93804	26 55.84	27 58.93319	28 58.693	29 63.55	30 65.4	31 69.723	32 72.63	33 74.92159	34 78.97	35 79.90	36 83.80
4	K Potassium Alkali Metal	Ca Calcium Alkaline Earth Me	Scandium Transition Metal	Ti Titanium Transition Metal	Vanadium Transition Metal	Chromium Transition Metal	Manganese Transition Metal	Fe Iron Transition Metal	Cobalt Transition Metal	Nickel Transition Metal	Copper Transition Metal	Zn Zinc Transition Metal	Gallium Post-Transition M	Germanium Metalloid	As Arsenic Metalloid	Selenium Nonmetal	Bromine Halogen	Krypton Noble Gas
	37 85.468	38 87.62	39 88.90584	40 91.22	41 92.90637	42 95.95	43 96.90636	44 101.1	45 102.9055	46 106.42	47 107.868	48 112.41	49 114.818	50 118.71	51 121.760	52 127.6	53 126.9045	54 131.29
5	Rb Rubidium Alkali Metal	Strontium Alkaline Earth Me	Y Yttrium Transition Metal	Zr Zirconium Transition Metal	Nb Niobium Transition Metal	Mo Molybdenum Transition Metal	Tc Technetium Transition Metal	Ru Ruthenium Transition Metal	Rh Rhodium Transition Metal	Pd Palladium Transition Metal	Ag Silver Transition Metal	Cd Cadmium Transition Metal	Indium Post-Transition M	Sn Tin Post-Transition M	Sb Antimony Metalloid	Tellurium Metalloid	lodine Halogen	Xe Xenon Noble Gas
	55 132.90	56 137.33		72 178.49	73 180.9479	74 183.84	75 186.207	76 190.2	77 192.22	78 195.08	79 196.96	80 200.59	81 204.383	82 207	83 208.98	84 208.98	85 209.98	86 222.01
6	Cesium Alkali Metal	Barium Alkaline Earth Me		Hf Hafnium Transition Metal	Ta Tantalum Transition Metal	W Tungsten Transition Metal	Re Rhenium Transition Metal	Osmium Transition Metal	Ir Iridium Transition Metal	Platinum Transition Metal	Au Gold Transition Metal	Hg Mercury Transition Metal	TI Thallium Post-Transition M	Pb Lead Post-Transition M	Bi Bismuth Post-Transition M	Polonium Metalloid	Attatine Halogen	Rn Radon Noble Gas
	87 223.01	88 226.02		104 267.1	105 268.1	106 269.1	107 270.1	108 269.1	109 277.1	110 282.1	111 282.1	112 286.1	113 286.1	114 290.1	115 290.1	116 293.2	117 294.2	118 295.2
7	Fr Francium Alkali Metal	Ra Radium Alkaline Earth Me		Rf Rutherfordium Transition Metal	Db Dubnium Transition Metal	Seaborgium Transition Metal	Bh Bohrium Transition Metal	Hs Hassium Transition Metal	Mt Meitnerium Transition Metal	DS Darmstadtium Transition Metal	Rg Roentgenium Transition Metal	Copernicium Transition Metal	Nihonium Post-Transition M	FI Flerovium Post-Transition M	Mc Moscovium Post-Transition M	Lv Livermorium Post-Transition M	Ts Tennessine Halogen	Oganesson Noble Gas
				57 138.9055	58 140.116	59 140.90	60 144.24	61 144.91	62 150.4	63 151.964	64 157.2	65 158.92	66 162.500	67 164.93	68 167.26	69 168.93	70 173.05	71 174.9668
				La Lanthanum Lanthanide	Cerium Lanthanide	Praseodymium Lanthanide	Nd Neodymium Lanthanide	Promethium Lanthanide	Sm Samarium Lanthanide	Eu Europium Lanthanide	Gd Gadolinium Lanthanide	Tb Terbium Lanthanide	Dysprosium Lanthanide	Ho Holmium Lanthanide	Er Erbium Lanthanide	Tm Thulium Lanthanide	Yb Ytterbium Lanthanide	Lu Lutetium Lanthanide
				89 227.02	90 232.038	91 231.03	92 238.0289	93 237.04	94 244.06	95 243.06	96 247.07	97 247.07	98 251.07	99 252.0830	100 257.0	101 258.0	102 259.1	103 266.1
				Actinium Actinide	Th Thorium Actinide	Pa Protactinium Actinide	U Uranium Actinide	Np Neptunium Actinide	Pu Plutonium Actinide	Americium Actinide	Curium Actinide	Bk Berkelium Actinide	Californium Actinide	Es Einsteinium Actinide	Fermium Actinide	Md Mendelevium Actinide	No Nobelium Actinide	Lr Lawrencium Actinide

Elements are organised in a table according to their electronic structure

Table of elementary particles

There are only 17 elementary particles, which are organised in a modern table of elements

Table of elementary particles

There are only 17 elementary particles, which are organised in a modern table of elements

What is a symmetry?

- If an object does not change after some transformation, we say it possesses a symmetry
- Can you tell a common symmetry of the letters A and H?

Symmetries

- If an object does not change after some transformation, we say it possesses a symmetry
- Letters A and H possess a mirror symmetry

What are the symmetries of physical systems?

Translations

Rotations

Discrete symmetries

Only a finite number of transformations leave an object invariant

Example: the hexagon is invariant under rotations by 60 degrees only

Discrete symmetries

Only a finite number of transformations leave an object invariant

Example: the hexagon is invariant under rotations by 60 degrees only

Continuous symmetries

There exist infinitely many transformations that leave an object invariant

Example: the circle is invariant under rotations by any angle

Mirror symmetry

Gravity, electromagnetism and the strong nuclear force act exactly in the same way on a physical system and on its mirror image

How can we tell left from right?

Parity in radioactive beta decay

Let us consider the beta decay of Cobalt nuclei, and its mirror image

If mirror symmetry, or "parity", were realised in beta decay, electrons would be emitted equally in the same direction and opposite the nuclear spin

Parity in radioactive beta decay

Experiments tell us that electrons are predominantly emitted opposite to the nuclear spin

This implies that parity is violated in beta decay, i.e. the world is not mirrorsymmetric for weak interactions

Parity in radioactive beta decay

Radioactive decay

Weak interactions are responsible for radioactive beta decay

Why is parity violated?

Weak interactions involve only left-handed particles and right-handed antiparticles

Right-handed: spin aligned in the same direction as momentum

Left-handed: spin aligned opposite to the momentum

We could distinguish left from right using beta decay, right would be the direction of the nuclear spin, and left the direction of the electron

Charge conjugation

Gravitational, electromagnetic and strong forces are the same whether they affect particles or anti-particles

Anti-Hydrogen has the same atomic spectrum as hydrogen atom

Combining P and C

We obtain a process allowed in nature if we not only mirror-image Cobalt decay, but we swap particles with antiparticles

If CP is conserved, and if we are made of anti-matter, we would see cobalt anti-nuclei emit positrons in the same direction as their spin, so again no chance of telling left from right [Analogy taken from minutephysics]

CP violation in kaons

Kaon mixing

CP transforms spinless neutral particles called kaons (K^0) into (minus) their antiparticles ($\overline{K^0}$)

Kaons and antikaons oscillate one into the other while they travel

Kaon mixing

- If CP is conserved, states with definite CP are mixtures of K^0 and $\overline{K^0}$ called K_S (short lifetime) and K_L (long lifetime)
- It is useful to represent these particles as vectors in two dimensions

We say that K_S is CP-even and K_L is CP-odd

If CP is conserved, K_L can never decay into two pions ($\pi^0 \pi^0$ or $\pi^+ \pi^-$) as this is a CP-even state, e.g.

If CP is conserved, K_L can never decay into two pions ($\pi^0 \pi^0$ or $\pi^+ \pi^-$) as this is a CP-even state

This can be verified experimentally by measuring

$$|\eta_{00}|^2 = \frac{N(K_L \to \pi^0 \pi^0)}{N(K_S \to \pi^0 \pi^0)} \qquad \qquad |\eta_{+-}|^2 = \frac{N(K_L \to \pi^+ \pi^-)}{N(K_S \to \pi^+ \pi^-)}$$

In a CP-conserving universe, $\eta_{00} = \eta_{+-} = 0$, instead we find

$$|\eta_{00}| \simeq |\eta_{+-}| \simeq 2.2 \times 10^{-3} \neq 0$$

If CP is conserved, K_L can never decay into two pions ($\pi^0 \pi^0$ or $\pi^+ \pi^-$) as this is a CP-even state

This can be verified experimentally by measuring

$$|\eta_{00}|^2 = \frac{N(K_L \to \pi^0 \pi^0)}{N(K_S \to \pi^0 \pi^0)} \qquad \qquad |\eta_{+-}|^2 = \frac{N(K_L \to \pi^+ \pi^-)}{N(K_S \to \pi^+ \pi^-)}$$

In a CP-conserving universe, $\eta_{00} = \eta_{+-} = 0$, instead we find

$$|\eta_{00}| \simeq |\eta_{+-}| \simeq 2.2 \times 10^{-3} \neq 0$$

The fact that $|\eta_{00}| \simeq |\eta_{+-}| \neq 0$ implies that the mixing with K^0 and $\overline{K^0}$ does not give two particles with definite CP properties \Rightarrow CP violation in the mixing

- Even if CP is violated in the mixing, it might be possible that the interactions responsible for kaon decay conserve CP $\Rightarrow \eta_{00} = \eta_{+-} = \epsilon$
- This is not what is seen in data, which gives

$$\left|\frac{\eta_{00}}{\eta_{+-}}\right| = 0.9950 \pm 0.0007 \neq 1$$

This phenomenon is known as CP violation in kaon decays

The fact that $|\eta_{00}| \simeq |\eta_{+-}| \neq 0$ implies that the mixing with K^0 and $\overline{K^0}$ does not give two particles with definite CP properties \Rightarrow CP violation in the mixing

- Even if CP is violated in the mixing, it might be possible that the interactions responsible for kaon decay conserve CP $\Rightarrow \eta_{00} = \eta_{+-} = \epsilon$
- This is not what is seen in data, which gives

$$\left|\frac{\eta_{00}}{\eta_{+-}}\right| = 0.9950 \pm 0.0007 \neq 1$$

This phenomenon is known as CP violation in kaon decays

Distinguishing left from right

- After some time, any beam of K^0 or $\overline{K^0}$ will consist mostly of K_L
- Solution One can look into the so-called semi-leptonic decays of K_L

If CP is conserved, the two decays should happen at the same rate (see Cobalt beta decay). This is not what is seen in the data

$$\delta_L = \frac{N(K_L \to \pi^- e^+ \nu_e) - N(K_L \to \pi^+ e^- \bar{\nu}_e)}{N(K_L \to \pi^- e^+ \nu_e) + N(K_L \to \pi^+ e^- \bar{\nu}_e)} \simeq 0.3\%$$

For the left-handed electron is the particle into which K_L decays less frequently (albeit by a tiny amount)

Distinguishing left from right

- After some time, any beam of K^0 or $\overline{K^0}$ will consist mostly of K_L
- Solution One can look into the so-called semi-leptonic decays of K_L

If CP is conserved, the two decays should happen at the same rate (see Cobalt beta decay). This is not what is seen in the data

$$\delta_L = \frac{N(K_L \to \pi^- e^+ \nu_e) - N(K_L \to \pi^+ e^- \bar{\nu}_e)}{N(K_L \to \pi^- e^+ \nu_e) + N(K_L \to \pi^+ e^- \bar{\nu}_e)} \simeq 0.3\%$$

For the left-handed electron is the particle into which K_L decays less frequently (albeit by a tiny amount)

Implications of CP violation

Time reversal

After C and P, time reversal T is the last fundamental discrete symmetry

Source: Veritasium

We can prove that CPT is always conserved, given some assumptions. Giving up those would require a major rewriting of many theories

Violation of time reversal

- If CP is violated, and CPT is conserved, then T must be violated
- This means that kaon oscillations do not look the same if time reversed

Matter and antimatter

Particles and antiparticles can annihilate, giving light (photons)

If there were the same amount of matter and antimatter in the universe, they would annihilate and we would have only photons

Matter-antimatter asymmetry

In the early universe, about 1/1000000000 more matter than antimatter was produced

- This is due to processes that violate CP, where matter and antimatter are not produced at equal rate (see e.g. kaon decays)
- Our Standard Model of elementary particles predicts a fraction of matter that is ten orders of magnitude less than that observed \Rightarrow new physics!

Lecture 1: learning outcomes

In this lecture, we have learnt

- What a symmetry is and why it's important
- The difference between discrete and continuous symmetries
- Parity and its violation in weak decays
- Charge conjugation and the violation of CP in kaon decays
- Time reversal and the cosmological consequences of its violation