
Day 3 – Lab2:

Word Count with Spark Streaming &

Kafka

In this lab, you'll hook Spark Streaming up to a Kafka topic to count words.

Build Java 11 Spark Docker image

The image we'll use is bitnami/spark. As of this writing, the existing image is built for

Java 8, so you will need to locally build a new Docker image for Java 11 (see this

issue for why).

Run the following script in the lab's root directory:

$./build-spark-image.sh

Ensure that the image got built ok by listing the image:

$ docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE
...
bitnami/spark 3-java11 caf5988de8ed 2 minutes ago
1.81GB
...

Make sure you see the binami/spark image listed with the tag 3-java11, similar to the line

above.

The Java Spark streaming app

Examine the code

Using your favorite editor, open the file wordcount-spark-

streaming/src/main/java/app/SparkKafka.java.

First, we instantiate a JavaStreamingContext given a SparkConf & a Duration. Then, we

use KafakUtils, from Spark's Kafka streaming connector, to create a stream of lines

coming in from the configured input topic. The Kafka properties come in via

resource streams.properties.

https://hub.docker.com/r/bitnami/spark
https://github.com/bitnami/bitnami-docker-spark/issues/40
https://github.com/bitnami/bitnami-docker-spark/issues/40

Next, we establish the Topology of our stream by invoking methods on the stream that

represent the processing logic that we want to perform.

• flatMap takes each line, splits it into words, then provides a stream of words.

• filter ensures that we didn't get anything composed of only a blank string.

• mapToPair is used to convert each word into an initial tuple of the word and a

count (beginning with 1).

• reduceByKey is invoked on all pairs with the same word and updates the word's

count by summing the word's value in each pair's value with the next pair's value,

which is 1.

• print simply prints the reduced pairs, representing each word and its count.

NOTE: this topology isn't actually executed until the stream is started and lines are

presented to the stream.

Last, we start the streaming context and wait for program termination.

Build the streaming app

Now that we have coded our app, we need to build it. Fortunately, we can use docker for

this so that we don't have to have maven and its prerequisites installed locally. Open a

terminal in the lab's wordcount-spark directory and issue the following command:
$ docker run -it --rm -v "$(cd "$PWD/../.."; pwd)":/course-root -w "/course-
root/$(basename $(cd "$PWD/.."; pwd))/$(basename "$PWD")" -v
"$HOME/.m2/repository":/root/.m2/repository maven:3-jdk-11 ./mvnw clean package

The command above will build and package our uber jar with the application and all of

its dependencies.

Run Kafka & Spark

In order to run our app, we first need to run Kafka & Spark. First, ensure that you've shut

down any prior docker containers.

Next, open a new terminal in the lab's root directory & run the Docker Compose stack

using the spark-streaming.yaml configuration file:
$ docker-compose -f spark-streaming.yaml up

You will see logs from all the containers that are launched as part of the solution. Once

the terminal stops reflecting new output, the infrastructure is initialized.

Submit our Spark application

Now, let's submit our Spark application to the Spark cluster running in our docker

environment.

In a new terminal in the lab's root directory, open a bash prompt with the following

command:

$ docker-compose -f spark-streaming.yaml exec spark-master bash

Then, now inside the container, submit your Spark application to the cluster with spark-

submit:
I have no name!@0c68c1412a1d:/opt/bitnami/spark$ spark-submit --master spark://spark-
master:7077 --class app.SparkKafka /lab-root/wordcount-spark/target/wordcount-spark-
1.0.0-SNAPSHOT.jar 2>/dev/null

NOTE: we have mapped the lab's root directory as /lab-root in the spark-

master & kafka containers so that you have access to the built Spark streaming jar and

the input files that you'll feed into Kafka.

After a short time, you will see output representing one-second windows of batch

operations in Spark:

Time: 1644874421000 ms

Time: 1644874422000 ms

Time: 1644874423000 ms

...

Now that our Spark application is running, it's time to feed it some input lines via the

Kafka topic.

In yet another terminal, change into the lab's root directory again and this time, start a

bash session in the kafka container:

$ docker-compose -f spark-streaming.yaml exec kafka bash

At the subsequent prompt, pump some lines into the kafka console producer:

$ cat /lab-root/ickle-pickle-tickle.txt | kafka-console-producer.sh --bootstrap-
server kafka:9092 --topic stream-input

This should produce the output count in the terminal where we submitted the spark

app:

Time: 1644874789000 ms

(went,1)
(captain,1)
(tickle,8)
(coffee,1)
(hope,1)
(ride,1)
(never,1)
(pickle,8)
(flew,2)
(as,1)
...

For fun, you can submit the full text of Leo Tolstoy's "War & Peace"!

$ cat /lab-root/war-and-peace.txt | kafka-console-producer.sh --bootstrap-server
kafka:9092 --topic stream-input

In the lab's root directory, you can now bring down the cluster with the command

$ docker-compose -f spark-streaming.yaml down

Congratulations, you've completed this lab!

