Data Schools

Day 3 - Module 1: Spark Framework

Introduction

August, 2023

IoT and Big Data Analytics

CODATA-RDA Data Science School

Upon successful completion of this lecture, you will have a good understanding on the Spark framework, motivation and programming model.

Spark

What is Spark?

- Fast and expressive cluster computing system interoperable with Apache Hadoop
 Up to 100 X faste
- Improves efficiency through:
 - In-memory computing primitives
 - General computation graphs
- Improves usability through:
 - -Rich APIs in Scala, Java, Python
 - Interactive shell

Up to 100 × faster (2-10 × ondisk)

The Spark Stack

 Spark is the basis of a wide set of projects in the Berkeley Data Analytics Stack (BDAS)

More details: <u>amplab.berkeley.edu</u>

Why a New Programming Model?

- MapReduce greatly simplified big data analysis
- But as soon as it got popular, users wanted more:
 - More **complex**, multi-pass analytics (e.g. ML, graph)
 - More interactive ad-hoc queries
 - More **real-time** stream processing
- All 3 need faster data sharing across parallel jobs

Data Sharing in MapReduce

Spark Programming Model

- Key idea: resilient distributed datasets (RDDs)
 - Distributed collections of objects that can be cached in memory across the cluster
 - Manipulated through parallel operators
 - Automatically recomputed on failure
- Programming interface
 - Functional APIs in Scala, Java, Python
 - Interactive use from Scala shell

Spark SQL

- Columnar SQL analytics engine for Spark
 - Support both SQL and complex analytics
 - Columnar storage, JIT-compiled execution, Java/Scala/Python UDFs
 - Catalyst query optimizer (also for DataFrame scripts)

Hive Architecture

Spark SQL Architecture

What is MLLIB?

- MLlib is a Spark subproject providing machine learning primitives:
 - initial contribution from AMPLab, UC Berkeley
 - shipped with Spark since version 0.8

What is MLLIB?

Algorithms:

- classification: logistic regression, linear support vector machine (SVM), naive Bayes
- **regression**: generalized linear regression (GLM)
- **collaborative filtering**: alternating least squares (ALS)
- clustering: k-means
- decomposition: singular value decomposition (SVD), principal component analysis (PCA)

Conclusion

- Big data analytics is evolving to include:
 - More **complex** analytics (e.g. machine learning)
 - More interactive ad-hoc queries
 - More real-time stream processing
- Spark is a fast platform that *unifies* these apps
- More info: spark-project.org

