Data
Schools

Day 3 - Module 2:
Spark Streaming

Introduction

. . ()
August, 2023 loT and Big Data Analytics cODATA-RDA Data Science School

Learning Objectives C Scho

Upon successful completion of this lecture, you will have a good
understanding of Spark Streaming, motivation and programming
model.

loT and Big Data Analytics M

(Data

Spark Streaming

. . C Data
Real-time Data Streaming

* Real-time data from sensors, loT devices, log files, social networks,
etc. needs to be closely monitored and immediately processed.

* Therefore, for real-time data analytics, we need a highly scalable,
reliable, and fault-tolerant data streaming engine.

loT and Big Data Analytics M

Data
Data Streaming C

* Data streaming is a way of collecting data continuously in real-time from
multiple data sources in the form of data streams. Datastream can be
thought of as a table that is continuously being appended.

* Data streaming is essential for handling massive amounts of live data. Such
data can be from a variety of sources like online transactions, log files,
sensors, in-game player activities, etc.

* There are various real-time data streaming techniques like Apache Kafka,
Spark Streaming, Apache Flume etc. We will discuss data streaming using
Spark Streaming

loT and Big Data Analytics M

Data
Spark Streaming @ Schools

MLib
Spark SQL Sparlf (machine Sap
Streaming earning) (graph)

Apache Spark Core

loT and Big Data Analytics

Data
Spark Streaming @ Schools

Data Sources

Streaming MLIib
Engl ne _. Aakal / machine learning
&!ﬁ ‘- oy

streaming data

Out ut Sinks train models use trained |
p sources Wlth live data model elasticsearch.
% kafka data storage
\‘\‘:] N systems
memsal cassandra
k APACHE
Spar Strea””ng > HEASE
APRPAEC HE
@a BRASE] <:\) % Parquet §8 kafka
cassandra . &'-,I
MySaL e process with interactively
J mongoDB staticdata \ DataFrames query with SQL
sources

elasticsearch Posigra SO

& Parquet Spark SQL

SQL + DataFrames

loT and Big Data Analytics N s

. C Data
Advantages of Spark Streaming

e Unified streaming framework for all data processing tasks(including
machine learning, graph processing, SQL operations) on live data streams.

* Dynamic load balancing and better resource management by efficiently
balar|1IC||ng the workload across the workers and launching the task in
parallel.

. 8eepkl]y)/(integrated with advanced processing libraries like Spark SQL, MLlib,
raphX.

* Faster recovery from failures by re-launching the failed tasks in parallel on
other free nodes.

loT and Big Data Analytics M

Spark Streaming Fundamentals C Scho

e Spark Streaming divides the live input data streams into
batches which are further processed by Spark engine

_\.'\"'\-\. e, “ =,

Input Data Stream . Spark '\ Batches of data N‘.ll Spark % Batches of processed data

: | Streaming = =31 | Engine == —

y ~ ;" _/e“

loT and Big Data Analytics M

DStream (Discretized Stream) @ Seho

e DStream is a high-level abstraction provided by Spark
Streaming, basically, it signifies the continuous stream of
data.

* Internally DStream is a sequence of RDDs

Data Stream Data from Data from Data from
o timeOtotl C3C timetltot2 C3IC3J| tmet2tot3 CIC—»
seconds seconds seconds
RDD @ time t1 RDD @ time t2 RDD @ time t3

loT and Big Data Analytics M

Sample Application C Scho

* As we discussed earlier, Spark Streaming also allows receiving data
streams using TCP sockets.

* So let’s write a simple streaming program to receive text data streams
on a particular port, perform basic text cleaning (like white space
removal, stop words removal, lemmatization, etc.), and print the
cleaned text on the screen.

loT and Big Data Analytics M

Dat
1. Creating Streaming Context and Receiving dat@ Schools

~crvrAaAarna e

StreamingContext is the main entry point for any streaming application. It can be created by instantiating

StreamingContext class from pyspark.streaming module.

from pyspark import SparkContext

from pyspark.streaming import StreamingContext

While creating StreamingContextwe can specify the batch duration, for e.g. here the batch durationis 3

seconds.

sc = SparkContext(appName = "Text Cleaning")

strc = StreamingContext(sc, 3)

Once the StreamingContextis created, we can start receiving data in the form of DStream through TCP

protocol on a specific port. For e.g. here the hostname is specified as “localhost” and port used is 8084.

text data = strc.socketTextStream("localhost™, 8084)

(Data

2. Performing operations on data streams Schools

After creating a DStream object, we can perform operations on it as per the requirement. Here, we wrote a

custom text cleaning function.

This function first converts the input text into lower case, then removes extra spaces, non-alphanumeric

characters, links/URLs, stop words, and then further lemmatizes the text using the NLTK library.

import re
from nltk.corpus import stopwords
stop words = set(stopwords.words(english’))
from nltk.stem import WordNetlLemmatizer
lemmatizer = WordNetlLemmatizer()
def clean_ text(sentence):

sentence = sentence.lower()

sentence = re.sub("s+", » sentence)

sentence = re.sub("W"," ", sentence)

sentence = re.sub(r"httpS+", "", sentence)

sentence *.join(word for word in sentence.split() if word not in stop words)

sentence = [lemmatizer.lemmatize(token, “v") for token in sentence.split()]

sentence .join(sentence)

return sentence.strip()

Dat
3. Starting the Streaming service @ Schools

The streaming service has not started yet. Use the start() function on top of the StreamingContext object to
start it and keep on receiving streaming data until the termination command (Ctrl + C or Ctrl + Z) is not

received by awaitTermination() function.

strc.start()

strc.awaitTermination()

loT and Big Data Analytics M

L Data
Schools

Running the Application

Now first we need to run the ‘nc’ command (Netcat Utility) to send the text data from the data server to the
spark streaming server. Netcat is a small utility available in Unix-like systems to read from and write to

network connections using TCP or UDP ports. Its two main options are -
* -|: To allow nc to listen to an incoming connection rather than initiating a connection to a remote host.
* -k:Forces ncto stay listening for another connection after its current connection is completed.

So run the following hc command in the terminal.

nc -1k 86883

Similarly, run the pyspark script in a different terminal using the following command in order to perform text

cleaning on the received data.

spark-submit streaming.py localhost 8083

As per this demo, any text written in the terminal (running netcat server) will be cleaned and the cleaned text

is printed in another terminal after every 3 seconds (batch duration). O,

Code

#!/usr/bin/env python
coding: utf-8

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

sc = SparkContext (appName = "Text Cleaning")
strc = StreamingContext (sc, 3)

text data = strc.socketTextStream("localhost"™, 8083)

import re
from nltk.corpus import stopwords

stop words = set (stopwords.words ('english'))
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer ()

def clean text (sentence):
sentence = sentence.lower ()
sentence = re.sub("\s+"," ", sentence)
sentence = re.sub ("\W"," ", sentence)
sentence = re.sub(r"http\sS+", "", sentence)
sentence = ' '.join(word for word in sentence.split ()
sentence = [lemmatizer.lemmatize (token, "v") for token in sentence.split ()]
sentence = " ".join (sentence)

return sentence.strip()

cleaned text = text data.map(lambda line: clean text(line))

cleaned text.pprint()

strc.start ()
strc.awaitTermination ()

loT and Big Data Analytics

if word not in stop words)

(

Data
Schools

MO

loT and Big Data Analytics

	Slide 1: Day 3 - Module 2: Spark Streaming Introduction
	Slide 2: Learning Objectives
	Slide 3: Spark Streaming
	Slide 4: Real-time Data Streaming
	Slide 5: Data Streaming
	Slide 6: Spark Streaming
	Slide 7: Spark Streaming
	Slide 8: Advantages of Spark Streaming
	Slide 9: Spark Streaming Fundamentals
	Slide 10: DStream (Discretized Stream)
	Slide 11: Sample Application
	Slide 12: 1. Creating Streaming Context and Receiving data streams
	Slide 13: 2. Performing operations on data streams
	Slide 14: 3. Starting the Streaming service
	Slide 15: Running the Application
	Slide 16: Code
	Slide 17

