
Day 4 – Lab1:

IoT Kafka Stream Solution

In this example, we process real-world vehicle IoT data. Our data is in a tab-separated

values file iot-kafka/gps-pump/src/main/resources/data.tsv. This file contains rows of

vehicle sensor data representing car movements.

Data Schema

The data fields are:

• Col 1: Device ID (unique for each vehicle)

• Col 2: Instant of the observation (in ISO-8601 format)

• Col 3: Speed of the vehicle

• Col 4: The compass direction of the vehicle

• Col 5: The longitude of the GPS coordinates

• Col 6: The latitude of the GPS coordinates

Accuracy of GPS Coordinates

For GPS coordinates, about 100 meters accuracy is roughly coordinates rounded to 3

decimal places.

See GIS Accuracy for a detailed explanation.

We'll use a trick using geohashing. Geohashing is an open-source algorithm that splits

the world into tiles. You can read about geohashes here

Goal

The goal is to count the number of times a car is observed parked at the same location

(that is, the same geohash) with accuracy of about 100 meters. We'll use Kafka Streams

to do so.

https://gis.stackexchange.com/questions/8650/measuring-accuracy-of-latitude-and-longitude
https://en.wikipedia.org/wiki/Geohash

Lab

There are two projects in the lab.

• gps-pump: produces simulated messages from a tab-separated values file.

• gps-monitor: consumes simulated messages and produces vehicles that have

parked.

The idea is that we'll start the gps-monitor and a console consumer of the final output

topic, then start producing messages from the gps-pump.
gps-pump
In your favorite editor, open file iot-kafka/gps-

pump/src/main/java/app/GpsDeviceSimulator.java. Notice that it takes a Kafka producer

and the data file name, which must be on the application's classpath.

All it does is read the data file from beginning to end, streaming each literal, tab-

delimited line as a Kafka message on the gps-locations topic, then restarts from the top

each time we hit the end of the file.

The file iot-kafka/gps-pump/src/main/java/app/GpsDeviceSimulatorApp.java simply

contains the bootstrap logic to configure dependencies then instantiate and start

the GpsDeviceSimulator.
gps-monitor
Now open file iot-kafka/gps-monitor/src/main/java/app/GpsMonitor.java. Notice that it

uses a StreamsBuilder to create the stream processing topology that implements our

business logic.

1. The first step in our topology is to split the tab-delimited line into an array for

downstream processing, using map.

2. Next, we use filter to keep only those messages that contain valid data & have a

speed value of less than one, meaning "parked".

3. Then we use map to transform the "parked" record into a string form of a vehicle

& location using the toString() method of LocationKey.

4. Now, we group by vehicle & location, and

5. count them up, giving us the running count of the number of times a vehicle was

parked at a location.

6. Finally, we convert the counts from Long to String to abide by our serde's

requirements,

7. Convert the KTable of counts back to a KStream, and

8. Produce those records on the configured output topic.

We then build our Topology, and get a KafkaStreams reference to start, then run until the

user hits enter.

Do it!

Build both applications

Open a terminal in the gps-pump directory and issue the following command:
$ docker run -it --rm -v "$(cd "$PWD/../../../.."; pwd)":/course-root -w /course-
root/labs/06-Streaming/iot-kafka/gps-pump -v
"$HOME/.m2/repository":/root/.m2/repository maven:3-jdk-11 ./mvnw clean package

On a windows machine, you have to replace the $PWD with the current directory and

the $HOME with a directory where you have the .m2 folder.

Similarly, open another terminal in the gps-monitor directory and build it:
$ docker run -it --rm -v "$(cd "$PWD/../../../.."; pwd)":/course-root -w /course-
root/labs/06-Streaming/iot-kafka/gps-monitor -v
"$HOME/.m2/repository":/root/.m2/repository maven:3-jdk-11 ./mvnw clean package

On a windows machine, you have to replace the $PWD with the current directory and

the $HOME with a directory where you have the .m2 folder.

Run everything

Now, it's time to fire up Kafka, a console consumer of the final output topic, the gps-

monitor and the gps-pump.

Open another new terminal in the lab's root directory, 06-Streaming, and start the Kafka

cluster:
$ docker-compose -f kafka-streaming.yaml up

Once the log output from the above commands stops being written, open yet another

terminal in the lab's root directory and create our topics then listen to the output topic

using a console consumer:

$ docker-compose -f kafka-streaming.yaml exec kafka bash
I have no name!@2ec21727cbdc:/$ for it in gps-locations frequent-parking; do kafka-
topics.sh --boostrap-server kafka:9092 --create --topic $it; done
I have no name!@2ec21727cbdc:/$ kafka-console-consumer.sh --boostrap-server
kafka:9092 --topic frequent-parking --property print.key=true

That terminal will now be quiet until our gps-monitor produces some messages on

the frequent-parking topic.

Return to the terminal in which you built the gps-monitor project, and fire it up:

$ docker run --network "$(cd ../.. && basename "$(pwd)" | tr '[:upper:]'
'[:lower:]')_default" --rm -it -v "$PWD:/pwd" -w /pwd openjdk:11 java -jar
target/gps-monitor*.jar

On a windows machine, you have to replace the $PWD with the current directory and

the $HOME with a directory where you have the .m2 folder.

Next, return to the terminal in which you built the gps-pump project, and start it:
$ docker run --network "$(cd ../.. && basename "$(pwd)" | tr '[:upper:]'
'[:lower:]')_default" --rm -it -v "$PWD:/pwd" -w /pwd openjdk:11 java -jar
target/gps-pump*.jar

On a windows machine, you have to replace the $PWD with the current directory and

the $HOME with a directory where you have the .m2 folder.

You should see activity in the two project terminals. After some time, you'll see activity

in the console consumer terminal similar to the following:

88@9uftzw3 6
88@9uftzqs 24
88@9ufw1jp 30
120@9v6mjy8 12
111@9v6mjwn 12
120@9v6mjwn 6
111@9v6mjwp 6
120@9v6mjwp 6
111@9v6mjy2 6
111@9v6mjy0 6
120@9v6mjy3 24
...

This output is showing you the count of a given vehicle in a given location.

Congratulations, you've completed this lab!

