
Day 4 – Lab2:

IoT Spark Stream Solution

NOTE: Please complete the iot-kafka lab before trying this lab, as this lab reuses the

data producer from that one.

This example reuses the gps-pump, and therefore, the sample data, provided in the iot-

kafka lab.

We're going to do the same as that lab, count the number of times a vehicle parked in a

certain position, except we'll use Spark streaming to do it, being fed from a Kafka topic.

Lab

There is only one project in this lab.

• gps-monitor-spark: consumes simulated messages and produces vehicles that

have parked.

The idea is that we'll start the gps-monitor-spark, then start producing messages from

the gps-pump.
gps-monitor-spark
Using your favorite editor, open the file iot-kafka/gps-monitor-

spark/src/main/java/app/GpsMonitor.java.

First, we instantiate a JavaStreamingContext given a SparkConf & a Duration. Then, we

use KafakUtils, from Spark's Kafka streaming connector, to create a stream of lines

coming in from the configured input topic. The Kafka properties come in via

resource streams.properties.

Next, we establish the Topology of our stream by invoking methods on the stream that

represent the processing logic that we want to perform.

• map transforms the incoming messages from ConsumerRecords containing a tab-

separated values string into arrays of strings.

• filter takes care to ensure that the data we get is in the expected

format and represents a "parked" record by ensuring that the vehicle's speed is

less than 1.0. Any poorly formatted or other records are discarded.

• mapToPair prepares us to count things up by converting the incoming "parked"

record into a tuple of vehicle id plus geohash and an initial count of 1.

• reduceByKey uses the tuples produced in the prior step to count each unique

combination of vehicle id & geohash, yielding our desired values.

• print simply prints those counts.

NOTE: this topology isn't actually executed until the stream is started and lines are

presented to the stream.

Do it!

Build the consumer application

Open a new terminal in the iot-spark/gps-monitor-spark directory and build it:
$ docker run -it --rm -v "$(cd "$PWD/../../../.."; pwd)":/course-root -w /course-
root/labs/06-Streaming/iot-spark/gps-monitor-spark -v
"$HOME/.m2/repository":/root/.m2/repository maven:3-jdk-11 ./mvnw clean package

Run everything

Now, it's time to fire up Kafka & Spark, the gps-monitor-spark and the gps-pump.

First, ensure any prior Kafka clusters from any previous labs are stopped.

Open another new terminal in the lab's root directory, 06-Streaming, and start the Kafka

& Spark cluster:
$ docker-compose -f spark-streaming.yaml up

Once the log output from the above commands stops being written, open yet another

terminal in the lab's root directory and create our topics then listen to the output topic

using a console consumer:

$ docker-compose -f spark-streaming.yaml exec kafka bash
I have no name!@2ec21727cbdc:/$ kafka-topics.sh --boostrap-server kafka:9092 --create
--topic gps-locations

Return to the terminal in which you built the gps-monitor-spark project, and submit the

Spark job:
$ docker-compose -f spark-streaming.yaml exec spark-master bash
I have no name!@2ec21727cbdc:/$ spark-submit --master spark://spark-master:7077 --
class app.GpsMonitor /lab-root/iot-spark/gps-monitor-spark/target/gps-monitor-spark-
1.0.0-SNAPSHOT.jar

After successful submission, that terminal will now periodically produce empty output

until we start pumping data into the Kafka topic with the gps-pump.

Next, return to the terminal in which you built the iot-kafka/gps-pump project, and start

it:

$ docker run --network "$(cd ../.. && basename "$(pwd)" | tr '[:upper:]'
'[:lower:]')_default" --rm -it -v "$PWD:/pwd" -w /pwd openjdk:11 java -jar
target/gps-pump*.jar

You should see activity in the two project terminals. Return your attention to the

terminal running the Spark job. You should see output similar to the following:

Time: 1645132250000 ms

(120@9v6mjwp,1)
(111@9v6mjwp,1)
(111@9v6mjy2,1)
(107@9v6mjy9,11)
(111@9v6mjwn,2)
(111@9v6mjy0,1)
(120@9v6mjy8,2)
(88@9ufw1jp,5)
(120@9v6mjwn,1)
(120@9v6mjy9,15)
...

This output is showing you the count of a given vehicle in each location.

Congratulations, you've completed this lab!

