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Introduction

Plasma in Nature

99 % of the photonic universe is 

plasma.

What is Plasma? 

Plasma is an ionized gas.
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Classical Plasma 

𝜔𝑝 =
𝑒2𝑛

𝑚𝜀0

Τ1
2

   

       𝑣𝑇 =
𝑘𝐵𝑇

𝑚

Τ1
2
  

𝜆𝐷 =
𝑣𝑇

𝜔𝑝
=

𝜀0𝑘𝐵𝑇

𝑛𝑒2

ൗ1
2

 Г𝑐 =
𝑞2𝑛1/3

𝜖0𝑘𝐵𝑇
                            

The classical regime 

focuses on high 
temperature and low 

densities.
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Quantum Plasma 

𝜔𝑝𝑒 =
𝑒2𝑛

𝑚𝜀0

ൗ1
2

𝑉𝐹𝑒 =
2𝐸𝐹

𝑚𝑒

1
2

𝜆𝐹𝑒 =
𝑉𝐹𝑒

𝜔𝑃𝑒

The quantum regime 

focuses on low 
temperature and high 

number densities.
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Dense Astrophysical Objects

Exhaust most of their nuclear fuel. 

High mass concentrations within relatively 
compact volumes.

• White Dwarfs

• Neutron Stars

• Black Holes
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Drift

𝑣𝑔𝑐 =
𝐸 × 𝐵

𝐵2
=

𝐸

𝐵

𝑣𝐷 = −
𝑘𝐵𝑇

𝑞𝐵0𝑛0

𝜕𝑛0

𝜕𝑥

𝑣𝑝 = ∓
1

𝜔𝐶𝐵

𝜕𝐸

𝜕𝑡

Charged particles in a magnetic field gyrate 

around the z-axis. When a drift source is introduced, 
it causes a drift, orthogonal to both the magnetic 

field and the drift source. 

• 𝑬 × 𝑩 Drift: Introducing a uniform electric field.

• Diamagnetic Drift: Is collective due to pressure 

gradients, and absent in individual particles.

• Polarization Drift: Time-varying electric field is 

introduced. 
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Waves in Plasma 

In plasma, due to oscillations of 

particles 𝜔𝑝 =
𝑛0𝑒2

𝜀0𝑚

Τ1
2

, create 

waves, leading to electron and 
ion wave types, each with 

subcategories.

 𝑦 = 𝑦0𝑒𝑖 𝑘𝑥−𝜔𝑡

𝑛 = 𝑛0𝑒𝑖 𝑘𝑥−𝜔𝑡

𝑞 = 𝑞0𝑒𝑖 𝑘𝑥−𝜔𝑡

𝐸 = 𝐸0𝑒𝑖 𝑘𝑥−𝜔𝑡
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Alfven Waves 

𝜔2 = 𝑣𝐴
2𝑘2

𝑣𝐴 = Τ𝐵0 𝜇0𝜌

• Low-frequency ion oscillations in a 
magnetic field, and propagate 
along the magnetic field.

• Predicted by Hannes Alfvén in 
1942.

• They are like waves on a magnetic 
string with plasma particles as 
beads.

• Laboratory and space plasmas.
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Drift Alfven Waves 

𝜔3 − 𝜔2𝜔∗ − 𝜔 1 + 𝑘𝑦
2𝜌𝑠

2 𝑣𝐴
2𝑘𝑧

2 + 𝜔∗𝑣𝐴
2𝑘𝑧

2 = 0

➢ Drift Alfven waves are Alfven wave in presence of non 

uniform medium. 

➢ Laboratory and space plasma.

𝜔∗ = 𝑣𝑒𝑑𝑘𝑦 is diamagnetic drift frequency.

𝜌𝑠 =
𝐶𝑠𝑖

𝜔𝑐𝑖
 is Larmor Radius.

𝐶𝑆𝑖 =
𝑘𝐵𝑇𝑒

𝑚𝑖
  is ion acoustic speed.

𝑣𝐴 =
𝐵0

𝜇0𝑛0𝑚𝑖
 is Alfven wave.

  

𝑣𝑒𝑑 =
𝑘𝐵𝑇𝑒

𝑒𝐵0
Κ𝑛 Diamagnetic drift

Κ𝑛=
1

𝑛0

𝜕𝑛0

𝜕𝑥
 is inverse inhomogeneity length scale

10



Literature Review

 Pokhotelov in his paper derived two-fluid equation set captures the nonlinear 

dynamics of drift Alfvén waves in multicomponent dusty plasma, revealing the 

coupling between drift-Alfvén waves and drift convective cells in the linear 

limit[1].

 H. Saleem examines low-frequency electrostatic and electromagnetic linear 

modes in nonuniform cold quantum electron-ion plasma. Additionally, the 

impact of stationary dust on an electrostatic mode is explored. Quantum 

corrections in the linear dispersion relations for cold dense plasma are 

presented, accompanied by relevant equations [2].

 Onishchenko in a paper derived, The classical development of the theory of 

drift Alfvén waves, with a spatial scale comparable to the ion Larmor radius, has 

been undertaken. This includes investigating the dispersion relation and 

analyzing how plasma density perturbations vary with the wave frequency [3].
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Literature Review

 A paper by Misra presents a concise analysis of Drift-Alfven modes in non-

uniform, quantum dusty plasma, which consist of electron-ion and negatively 

charged dust grain. By solving linearized equations within the linear regime and 

using quantum hydrodynamics model and Fourier transformation they derived 

the dispersion relation[4]. 

 Haijun Ren, studied electromagnetic drift waves in a nonuniform quantum 

magnetized electron-positron-ion plasma. By using quantum hydrodynamics 

equations, and magnetic field of Wigner-Maxwell system, they derived a new 

dispersion relation which ion’s motion are not considered[5].

 Qamar studied analytical description of drift Alfven modes in nonuniform 

bounded magnetized electron-positron-ion plasma. By considering Gaussian 

density profile linearized equations are solved[6]. 
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Motivation

 Most research is conducted on multi-component plasmas (e.g., Electron-
Positive Ion or Dusty plasma), whereas our study focuses on a two-species 
plasma (electron-ion).

 Most papers ignore the spin effect and only consider Fermi pressure and Bohm 
potential effects. However, we incorporated the spin term, providing a more 
comprehensive understanding of astrophysical objects by including all relevant 
corrections. 

 The model manipulation and calculation methods are different. We can study 
it in three ways: Two-fluid theory, two-potential theory, and MHD theory. Most 
literature is based on two-potential theory, but we conducted our study using 
the two-fluid theory. Additionally, those who worked on the two-fluid theory 
employed different methods.
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Abstract of the Work

Our research introduces a more complete picture of spin quantum 

plasma, along with other previously unexplored corrections.

 In this academic study, we utilized some novel analytical 

techniques to identify new modes within spin quantum plasmas for 
the first time.

  These findings mark a significant advancement in the 
understanding of quantum plasma dynamics in dense 

astrophysical objects.
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Discerption and Geometry of The Problem

• It is Electron Ion Plasma 

• Quantum Mechanical regime 
• Low Frequency perturbation is 

there (𝜔 < 𝜔𝑐𝑖)

• (𝐵0) is in ( Ƹ𝑧) direction.
• We have two kinds of electric 

field (𝐸Ʇ) and (𝐸‖).

• (𝐸‖) is in ( Ƹ𝑧) direction and is in 

term of scaler and vector 

potential (−∇‖𝜑 −
𝜕𝐴𝑧

𝜕𝑡
). 

• (𝐸Ʇ) is in ( ො𝑦) direction and is just in 

term of scalar potential (−∇Ʇ𝜑). 
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Our quantum mechanical study focuses on Fermi, Bohm, and Spin pressures 
with density variations, and considers electrons as inertia-less in low-
frequency Drift Alfvén Waves (DAW).   

For electron:

𝑚𝑛0

𝜕𝑣

𝜕𝑡
= 𝑒𝑛0 𝐸 + 𝑣 × 𝐵 − 𝛻𝑃

0 = −𝑒𝑛0 𝐸 + 𝑣𝑒 × 𝐵 − 𝛻𝑃𝐹𝑒 + 𝛻𝑃𝐵 + 𝛻𝑃𝑠

0 = −𝑒 𝐸 + 𝑣𝑒 × 𝐵 −
∇𝑃𝐹𝑒

𝑛𝑒
+

ӍӍӍℎ2

2𝑚𝑒
∇

𝛻2 𝑛𝑒

𝑛𝑒
+

2𝜇𝐵𝑛𝑒

ӍӍӍℎ2 ∇ Ԧ𝑆 ∙ 𝐵

0 = −𝑒 𝐸 + 𝑣𝑒 × 𝐵 −
𝑘𝐵𝑇𝐹𝑒

𝑛0
∇𝑛0 +

ӍӍӍℎ2

2𝑚𝑒𝑛0
∇ 𝛹0 − ∇

𝑛𝑒𝜇𝐵
2

𝐸𝐹

Ԧ𝐵2

0 = 𝑒 ∇⊥𝛷 − 𝑒 𝐵0 × Ԧ𝑣𝑒⊥ −
𝑘𝐵𝑇𝐹𝑒

𝑛0
∇𝑛0 +

ӍӍӍℎ2

2𝑚𝑒𝑛0
∇ 𝛹0 −

∈

𝑛0
∇𝑛0

0 = 𝑒 Ƹ𝑧 × ∇⊥𝛷 − 𝑒 Ƹ𝑧 × 𝐵0 × Ԧ𝑣𝑒⊥ −
𝑘𝐵𝑇𝐹𝑒

𝑛0
Ƹ𝑧 × ∇𝑛0 +

ӍӍӍℎ2

2𝑚𝑒𝑛0
Ƹ𝑧 × ∇⊥ 𝛹0 −

∈

𝑛0
Ƹ𝑧 × ∇𝑛0

Ԧ𝑣𝑒⊥ =
1

𝐵0
Ƹ𝑧 × ∇⊥𝛷 −

𝑘𝐵𝑇𝐹𝑒

𝑒𝐵0𝑛0
Ƹ𝑧 × ∇𝑛0 +

ӍӍӍℎ2

2𝑚𝑒𝑒𝐵0𝑛0
Ƹ𝑧 × ∇⊥𝛹0 −

1

𝑒𝐵0𝑛0
∈0 Ƹ𝑧 × ∇𝑛0

Ԧ𝑣𝑒⊥ = 𝑣𝐸 ො𝑥 + 𝑣𝑒𝐷 ො𝑦           ……….    1

Ԧ𝑆 = −
 ℎ2𝑀

2𝜇𝐵𝑛𝑒

𝑀 =
𝑛𝑒𝜇𝐵

2

𝐸𝐹
𝐵

∈=
𝐵0

2𝜇𝐵
2

𝐸𝐹

𝐵2 = 𝐵0 + 𝐵1

2

−∇
𝑛𝑒𝜇𝐵

2

𝐸𝐹
𝐵0

2 1 +
2𝐵1

𝐵0

2
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Electric current density arise from electron movement, resulting in two types: 

free electron motion and bound electron motion. Thus, the total electric 

current density is the sum of these two types. 

Ԧ𝐽𝑡 = Ԧ𝐽𝑝 + Ԧ𝐽𝐵

Ԧ𝐽𝑧 = −𝑒𝑛0 Ԧ𝑣𝑒𝑧 + 𝛻 × 𝑀
𝑧

Ԧ𝐽𝑧 = −𝑒𝑛0 Ԧ𝑣𝑒𝑧 +
3

2

𝑛0𝜇𝐵
2

∈𝐹𝑒
𝛻 × 𝐵1 𝑧

Ԧ𝐽𝑧 = −𝑒𝑛0 Ԧ𝑣𝑒𝑧 −
3

2

𝑛0𝜇𝐵
2

∈𝐹
𝛻⊥

2𝐴𝑧

∇ × B1 𝑧
= 𝜇0

Ԧ𝐽 = 𝜇0
Ԧ𝐽𝑧

−𝛻⊥
2𝐴𝑧 = −𝜇0𝑒𝑛0 Ԧ𝑣𝑒𝑧 −

3

2

𝑛0𝜇𝐵
2 𝜇0

∈𝐹
𝛻⊥

2𝐴𝑧

𝜇0𝑒𝑛0 Ԧ𝑣𝑒𝑧 = 𝛻⊥
2𝐴𝑧 1 −

3

2

𝑛0𝜇𝐵
2𝜇0

∈𝐹

Ԧ𝑣𝑒𝑧 =
𝛻⊥

2𝐴𝑧 1 − 𝜒𝑒

𝜇0𝑒𝑛0

Ԧ𝑣𝑒 = Ԧ𝑣𝑒⊥ + Ԧ𝑣𝑒𝑧                    ……………..      2

𝐵1 = ∇𝐴𝑧 × Ƹ𝑧

𝜒𝑒 =
3

2

𝑛0𝜇𝐵
2𝜇0

∈𝐹
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Electron Continuity Equation
We linearize the continuity equation for electrons, focusing on first-order perturbations and 
omitting second-order and background multiplications. 

𝜕𝑛𝑒

𝜕𝑡
+ ∇𝑛𝑒 ∙ Ԧ𝑣 + 𝑛𝑒∇ ∙ Ԧ𝑣 = 0

𝜕𝑛𝑒1

𝜕𝑡
+ ∇⊥𝑛𝑒0 ∙ Ԧ𝑣𝑒1⊥ + ∇𝑛𝑒1 ∙ Ԧ𝑣𝑒1⊥ + 𝑛0 ∇⊥ Ԧ𝑣⊥ + ∇‖ Ԧ𝑣‖ = 0

𝜕𝑛𝑒1

𝜕𝑡
+ ∇⊥𝑛𝑒0 ∙ Ԧ𝑣𝑒1⊥ + 𝑛0

𝜕

𝜕𝑧
Ԧ𝑣𝑒𝑧 = 0

𝜕𝑛𝑒1

𝜕𝑡
+ ∇⊥𝑛0 ⋅ −𝑣𝐸 ො𝑥 + 𝑛0

𝜕

𝜕𝑧

𝛻⊥
2𝐴𝑧 1 − 𝜒𝑒

𝜇0𝑒𝑛0
= 0

𝜕𝑛𝑒1

𝜕𝑡
+

𝜕𝑛0

𝜕𝑥

1

𝐵0

𝜕𝜑

𝜕𝑦
+

1−𝜒𝑒

𝜇0𝑒

𝜕

𝜕𝑧
𝛻⊥

2𝐴𝑧 = 0 

𝜕𝑛𝑒1

𝜕𝑡
+

𝑛0

𝑛0

𝑘𝐵𝑇𝐹𝑒

𝑒𝐵0

𝜕𝑛0

𝜕𝑥

𝜕𝜑

𝜕𝑦

𝑒

𝑘𝐵𝑇𝐹𝑒
+

𝑘𝐵𝑇𝐹𝑒

𝑒2𝜇0
1 − 𝜒𝑒

𝜕

𝜕𝑧
𝛻⊥

2 𝐴𝑧𝑒

𝑘𝐵𝑇𝐹𝑒
= 0

𝜕𝑛𝑒1

𝜕𝑡
+ 𝑛0 Ԧ𝑣𝑒

∗ 𝜕

𝜕𝑦
𝛷𝑒 +

𝑘𝐵𝑇𝑒

𝑒2𝜇0
1 − 𝜒𝑒

𝜕

𝜕𝑧
𝛻⊥

2 𝐴𝑒 = 0

𝜕𝑛𝑒1

𝜕𝑡
+ 𝑛0 Ԧ𝑣𝑒

∗ 𝜕𝛷𝑒

𝜕𝑦
+

𝑘𝐵𝑇𝐹𝑒

𝑚𝑖

𝑚𝑖
2

𝑒2𝐵0
2

𝐵0
2

𝜇0𝑛0𝑚𝑖
𝑛0 1 − 𝜒𝑒

𝜕

𝜕𝑧
𝛻⊥

2 𝐴𝑒 = 0 

𝜕𝑛𝑒1

𝜕𝑡
+ 𝑛0 Ԧ𝑣𝑒

∗
𝜕𝛷𝑒

𝜕𝑦
+

𝑐𝑠𝑖
2

𝜔𝑐𝑖
2 Ԧ𝑣𝐴𝑀

2 𝑛0

𝜕

𝜕𝑧
𝛻⊥

2𝐴𝑒 = 0

𝑛0
−1 𝜕𝑛𝑒1

𝜕𝑡
+ Ԧ𝑣𝑒

∗ 𝜕𝛷𝑒

𝜕𝑦
+ 𝜌𝑠

2 Ԧ𝑣𝐴𝑀
2 𝜕

𝜕𝑧
𝛻⊥

2𝐴𝑒 = 0     ……….     3

Ԧ𝑣𝑒
∗ = −

𝑘𝑠𝑇𝐹𝑒

𝑒𝑛0𝐵0

𝜕𝑛0

𝜕𝑥

Ԧ𝑣𝐴𝑀
2 =

𝐵0
2

𝜇0𝑛0𝑚𝑖
1 − 𝜒𝑒

𝑣𝐸 =
1

𝐵0
−∇𝜑

𝑐𝑠𝑖
2 =

𝑘𝐵𝑇𝐹𝑒

𝑚𝑖

𝜔𝑐𝑖
2 =

𝑚𝑖
2

𝑒2𝐵0
2
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Electron Parallel Motion
In the parallel direction, we focus solely on Fermi pressure and exclude other pressures like Bohm 
potential and spin terms for simplicity. Linearized form of parallel motion is:

0 = 𝑒
𝜕𝜑1

𝜕𝑧
+

𝜕 Ԧ𝐴𝑧1

𝜕𝑡
− 𝑒 Ԧ𝑣 × 𝐵

‖1
−

𝑘𝐵𝑇𝐹𝑒

𝑛0
∇‖𝑛𝑒1 

Ԧ𝑣 × 𝐵
‖1

= Ԧ𝑣𝑒0 × 𝐵1 + Ԧ𝑣𝑒1 × 𝐵1 ‖

Ԧ𝑣 × 𝐵
‖1

= Ԧ𝑣eꞱ × 𝐵1 ‖

Ԧ𝑣 × 𝐵
‖1

= Ԧ𝑣𝐸 × 𝐵1 ‖
+ Ԧ𝑣𝑒𝐷 × 𝐵1

‖

Ԧ𝑣 × 𝐵
‖1

= Ԧ𝑣𝑒𝐷 × 𝐵1 𝑧

Ԧ𝑣𝑒𝐷 = −
𝑘𝐵𝑇𝐹𝑒

𝑒𝐵0𝑛0
Ƹ𝑧 × 𝛻⊥𝑛0 +

ℎ2

2𝑚𝑒𝑒𝐵0
Ƹ𝑧 × ∇⊥𝛹0 −

∈0

𝑒𝐵0𝑛0
Ƹ𝑧 × ∇𝑛0

Ԧ𝑣 × 𝐵
‖1

= −
𝑘𝐵𝑇𝐹𝑒

𝑒𝐵0𝑛0

𝜕𝑛0

𝜕𝑥
Ƹ𝑧 × ො𝑥 × 𝐵1 𝑧

+
ℎ2

2𝑚𝑒𝑒𝐵0

𝜕𝛹0

𝜕𝑥
Ƹ𝑧 × ො𝑥 × 𝐵1 𝑧

−
∈𝑧

𝑒𝐵0𝑛0

𝜕𝑛0

𝜕𝑥
Ƹ𝑧 × ො𝑥 × 𝐵1 𝑧

Ԧ𝑣 × 𝐵
‖1

= Ԧ𝑣𝑒
∗ ො𝑦 × 𝐵1 𝑧

+ Ԧ𝑣𝑒𝐵
∗ ො𝑦 × 𝐵1 − Ԧ𝑣𝑒𝑠

∗ ො𝑦 × 𝐵1

Ԧ𝑣 × 𝐵
‖1

= − Ԧ𝑣𝑒
∗ + Ԧ𝑣𝑒𝐵

∗ − Ԧ𝑣𝑒𝑠
∗ ∇ꞱAz

0 = 𝑒
𝜕𝜑1

𝜕𝑧
+

𝜕 Ԧ𝐴𝑧1

𝜕𝑡
− 𝑒 Ԧ𝑣𝑒𝐷𝑀∇ꞱAz − 𝑘𝐵𝑇𝐹𝑒

𝜕

𝜕𝑧

𝑛𝑒1

𝑛0

𝜕𝛷𝑒

𝜕𝑧
+

𝜕𝐴𝑒

𝜕𝑡
+ Ԧ𝑣𝑒𝐷𝑀

𝜕𝐴𝑒

𝜕𝑦
−

𝜕

𝜕𝑧

𝑛𝑒1

𝑛0
= 0         ……….     4

𝐵1 = ∇𝐴𝑧 × Ƹ𝑧
Ԧ𝑣𝑒

∗ + Ԧ𝑣𝑒𝐵
∗ − Ԧ𝑣𝑒𝑠

∗ = Ԧ𝑣𝑒𝐷𝑀
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Ions Continuity equation
In deriving the ion continuity equation, we include only the (E×B) drift in first term, and focus on 
the polarization drift in the third term. 

𝜕𝑛𝑖1

𝜕𝑡
+ ∇⊥𝑛0 ⋅ Ԧ𝑣𝑖⊥ + 𝑛0 ∇ ∙ Ԧ𝑣Ʇ = 0

 Ԧ𝑣iꞱ = Ԧ𝑣𝑖𝐸 + Ԧ𝑣𝑖𝑃 

𝜕𝑛𝑖1

𝜕𝑡
+ ∇⊥𝑛0 ⋅ Ԧ𝑣𝑖𝐸 + 𝑛0 ∇ ∙ Ԧ𝑣iP = 0

𝜕𝑛𝑖1

𝜕𝑡
+

𝜕𝑛0

𝜕𝑥
⋅

1

𝐵0
𝐸 + 𝑛0

𝜕

𝜕y
−

𝑚𝑖

𝑒𝐵0
2

𝜕2𝜑

𝜕𝑡𝜕𝑦
= 0

𝜕𝑛𝑖1

𝜕𝑡
+

𝜕𝑛0

𝜕𝑥
⋅

1

𝐵0
−∇𝜑 − 𝑛0

𝑚𝑖

𝑒𝐵0
2

𝜕

𝜕y

𝜕2𝜑

𝜕𝑡𝜕𝑦
= 0

𝜕𝑛𝑖1

𝜕𝑡
−

𝜕𝑛0

𝜕𝑥
⋅

1

𝐵0

𝜕𝜑

𝜕𝑦
− 𝑛0

𝑚𝑖
2

𝑒2𝐵0
2

𝑒

𝑚𝑖

𝜕

𝜕y

𝜕2𝜑

𝜕𝑡𝜕𝑦
= 0

𝜕𝑛𝑖1

𝜕𝑡
− 𝑛0

𝜕𝑛0

𝜕𝑥
⋅

1

𝑛0𝐵0

𝑘𝐵𝑇𝑒

𝑒

𝜕

𝜕𝑦

𝑒𝜑

𝑘𝐵𝑇𝑒
− 𝑛0

𝑚𝑖
2

𝑒2𝐵0
2

𝑘𝐵𝑇𝑒

𝑚𝑖

𝜕

𝜕t

𝜕2

𝜕𝑦2

𝑒𝜑

𝑘𝐵𝑇𝑒
= 0

𝜕𝑛𝑖1

𝜕𝑡
+ 𝑛0 Ԧ𝑣𝑒

∗ 𝜕𝜙𝑒

𝜕𝑦
− 𝑛0

𝑣𝑡ℎ
2

𝜔𝑐𝑖
2

𝜕

𝜕t

𝜕2𝜙𝑒

𝜕𝑦2 = 0

𝑛0
−1 𝜕𝑛𝑖1

𝜕𝑡
+ Ԧ𝑣𝑒

∗ 𝜕𝜙𝑒

𝜕𝑦
− 𝜌𝑠𝑖

2 𝜕

𝜕t
∇Ʇ

2 𝜙𝑒 = 0     ……….     5

Ԧ𝑣𝑒
∗ = −

𝜕𝑛0

𝜕𝑥
⋅

1

𝑛0𝐵0

𝑘𝐵𝑇𝑒

𝑒

𝑣𝑡ℎ
2 =

𝑘𝐵𝑇𝑒

𝑚𝑖

1

𝜔𝑐𝑖
2 =

𝑚𝑖
2

𝑒2𝐵0
2

𝜌𝑠𝑖
2 =

𝑣𝑡ℎ
2

𝜔𝑐𝑖
2
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DAW Dispersion Relation 

To find the Drift Alfvén Wave (DAW) dispersion relation, we subtract ions continuity equation 

from electron continuity equation.

𝑛0
−1 𝜕𝑛𝑒

𝜕𝑡
+ Ԧ𝑣𝑒

∗
𝜕𝛷𝑒

𝜕𝑦
+ 𝜌𝑠𝑖

2 Ԧ𝑣𝐴𝑀
2 𝜕

𝜕𝑧
𝛻⊥

2𝐴𝑒 = 0

𝑛0
−1 𝜕𝑛𝑖1

𝜕𝑡
+ Ԧ𝑣𝑒

∗
𝜕𝜙𝑒

𝜕𝑦
− 𝜌𝑠𝑖

2 𝜕

𝜕t
∇Ʇ

2 𝜙𝑒 = 0

𝜕

𝜕𝑡

𝑛𝑒1 − 𝑛𝑖1

𝑛0
+ 0 + 𝜌𝑠𝑖

2 Ԧ𝑣𝐴𝑀
2 𝜕

𝜕𝑧
∇⊥

2 𝐴𝑒 + 𝜌𝑠𝑖
2 𝜕

𝜕𝑡
∇⊥

2 𝛷𝑒 = 0

Ԧ𝑣𝐴𝑀
2 𝜕

𝜕𝑧
𝐴𝑒 +

𝜕

𝜕𝑡
𝛷𝑒 = 0

𝐴𝑒 =
𝜔

𝑘𝑧𝑣𝐴𝑀
2 𝛷𝑒        ……………          6

𝑛𝑒 ≅ 𝑛𝑖
𝜕

𝜕𝑧
→ 𝑖𝑘𝑧 𝑎𝑛𝑑

𝜕

𝜕𝑡
→ −𝑖𝜔
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DAW Dispersion Relation… 

By putting this value or 𝐴𝑒 in electron parallel motion equation we can get:

𝜕𝛷𝑒

𝜕𝑧
+

𝜕𝐴𝑒

𝜕𝑡
+ Ԧ𝑣𝑒𝐷𝑀

𝜕𝐴𝑒

𝜕𝑦
−

𝜕

𝜕𝑧

𝑛𝑒1

𝑛0
= 0

𝜕𝛷𝑒

𝜕𝑧
+

𝜔

𝑘𝑧 Ԧ𝑣𝐴𝑀
2

𝜕

𝜕𝑡
𝛷𝑒 +

Ԧ𝑣𝑒𝐷𝜔

𝑘𝑧 Ԧ𝑣𝐴𝑀
2

𝜕

𝜕𝑦
𝛷𝑒 −

𝜕

𝜕𝑧

𝑛𝑒1

𝑛0
= 0

𝑖𝑘𝑧 𝛷𝑒 +
𝜔

𝑘𝑧𝑣𝐴𝑀
2 −𝑖𝜔 𝛷𝑒 +

𝑣𝑒𝐷𝜔

𝑘𝑧𝑣𝐴𝑀
2 𝑖𝑘𝑦 𝛷𝑒 − 𝑖𝑘𝑧

𝑛𝑒1

𝑛0
= 0

𝑘𝑧
2 Ԧ𝑣𝐴𝑀

2 𝛷𝑒 − 𝜔2𝛷𝑒 + Ԧ𝑣𝑒𝐷𝜔𝑘𝑦𝛷𝑒 − 𝑘𝑧
2 Ԧ𝑣𝐴𝑀

2 𝑛𝑒1

𝑛0
= 0 

𝑛𝑒1

𝑛0
=

𝑣𝐴𝑀
2 𝑘𝑧

2−𝜔2+𝜔𝑀
∗ 𝜔

𝑘𝑧
2𝑣𝐴𝑀

2 𝛷𝑒       ……………..        7
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𝜔
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DAW Dispersion Relation… 

We use the value of 𝐴𝑒 and Τ𝑛𝑒1 𝑛0 in electron continuity equation.

𝑛0
−1 𝜕𝑛𝑒

𝜕𝑡
+ Ԧ𝑣𝑒

∗
𝜕𝛷𝑒

𝜕𝑦
+ 𝜌𝑠

2 Ԧ𝑣𝐴𝑀
2 𝜕

𝜕𝑧
𝛻⊥

2𝐴𝑒 = 0

𝑣𝐴𝑀
2 𝑘𝑧

2−𝜔2−𝜔𝑀
∗ 𝜔

𝑘𝑧
2𝑣𝐴𝑀

2

𝜕𝛷𝑒

𝜕𝑡
+ Ԧ𝑣𝑒

∗ 𝜕𝛷𝑒

𝜕𝑦
+ 𝜌𝑠

2 Ԧ𝑣𝐴𝑀
2 𝜕

𝜕𝑧
∇⊥

2 𝜔

𝑘𝑧𝑣𝐴𝑀
2 𝛷𝑒 = 0 

𝑣𝐴𝑀
2 𝑘𝑧

2−𝜔2−𝜔𝑀
∗ 𝜔

𝑘𝑧
2𝑣𝐴𝑀

2 −𝑖𝜔 𝛷𝑒 + Ԧ𝑣𝑒
∗ 𝑖𝑘𝑦 𝛷𝑒 + 𝜌𝑠

2 Ԧ𝑣𝐴𝑀
2 𝑖𝑘𝑧 −𝑘𝑦

2 𝜔

𝑘𝑧𝑣𝐴𝑀
2 𝛷𝑒 = 0 

 −𝜔
𝑣𝐴𝑀

2 𝑘𝑧
2−𝜔2−𝜔𝑀

∗ 𝜔

𝑘𝑧
2𝑣𝐴𝑀

2 + Ԧ𝑣𝑒
∗𝑘𝑦 − 𝜌𝑠

2 Ԧ𝑣𝐴𝑀
2 𝑘𝑧𝑘𝑦

2 𝜔

𝑘𝑧𝑣𝐴𝑀
2 = 0 

 −𝜔 Ԧ𝑣𝐴𝑀
2 𝑘𝑧

2 − 𝜔2 − 𝜔𝑀
∗ 𝜔 + Ԧ𝑣𝑒

∗𝑘𝑦𝑘𝑧
2 Ԧ𝑣𝐴𝑀

2 − 𝜌𝑠
2𝑘𝑧

2 Ԧ𝑣𝐴𝑀
2 𝑘𝑦

2𝜔 = 0 

 −𝜔 Ԧ𝑣𝐴𝑀
2 𝑘𝑧

2 + 𝜔3 + 𝜔2𝜔𝑀
∗ + 𝜔∗𝑘𝑧

2 Ԧ𝑣𝐴𝑀
2 − 𝜌𝑠

2𝑘𝑧
2 Ԧ𝑣𝐴𝑀

2 𝑘𝑦
2𝜔 = 0 

 𝜔3 + 𝜔2𝜔𝑀
∗ − 𝜔 Ԧ𝑣𝐴𝑀

2 𝑘𝑧
2 − 𝜌𝑠

2𝑘𝑧
2 Ԧ𝑣𝐴𝑀

2 𝑘𝑦
2𝜔 + 𝜔∗𝑘𝑧

2 Ԧ𝑣𝐴𝑀
2 = 0 

𝜔3 + 𝜔2𝜔𝑀
∗ − 𝜔 1 + 𝜌𝑠

2𝑘𝑦
2 𝑘𝑧

2 Ԧ𝑣𝐴𝑀
2 + 𝜔∗𝑘𝑧

2 Ԧ𝑣𝐴𝑀
2 = 0          …………       8

𝜔∗ = Ԧ𝑣𝑒
∗𝑘𝑦

𝑣𝐴𝑀 = 𝐵0

1 − 𝜒𝑒

𝜇0𝑚𝑖𝑛0

𝜌𝑠𝑖 =
𝐶𝑠𝑖

𝜔𝑐𝑖
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Where: 
𝜔𝑀

∗ = 𝑘𝑦𝑣𝑒𝐷

𝜔∗ = 𝑘𝑦𝑣𝑒
∗

𝑣𝑒
∗ = −

Κ𝑛𝐶𝑠𝑖
2

𝜔𝑐𝑖

𝜌𝑠𝑖 =
𝐶𝑠𝑖

𝜔𝑐𝑖

𝑣𝐴𝑀 = 𝐵0

1 − 𝜒𝑒

𝜇0𝑚𝑖𝑛0

𝜇0 =
1

𝑐2𝜀0

𝜒𝑒 =
3

2

𝑛0𝜇𝐵
2 𝜇0

∈𝐹

𝑣𝑒𝐷 = 𝑣𝑒
∗ + 𝑣𝑒𝐵

∗ + 𝑣𝑒𝑠
∗

𝑣𝑒𝐵
∗ =

𝐶𝑠𝐵
2 Κ𝑛

𝜔𝑐𝑖

𝑣𝑒𝑆
∗ =

𝐶𝑠𝑆
2 Κ𝑛

𝜔𝑐𝑖

𝐶𝑆𝑖 =
∈𝐹

𝑚𝑖

𝐶𝑆𝑠 =
∈𝑧

𝑚𝑖

 𝑘𝑦 = 2000 𝑐𝑚−1                                      

 𝛫𝑛 = 100 𝑐𝑚−1
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𝜔3 + 𝜔2𝜔𝑀
∗ − 𝜔 1 + 𝜌𝑠

2𝑘𝑦
2 𝑘𝑧

2 Ԧ𝑣𝐴𝑀
2 + 𝜔∗𝑘𝑧

2 Ԧ𝑣𝐴𝑀
2 = 0

𝜔3 − 𝜔2𝑎 − 𝜔𝑏 + 𝑑 = 0          ……….         9

Where: 

𝑎 = 𝜔𝑀
2

𝑏 = (1 + 𝑘𝑦
2𝜌𝑠𝑖

2 )𝑘𝑧
2𝑣𝐴𝑀

2

𝑑 = 𝜔∗𝑣𝐴𝑀
2 𝑘𝑧

2

We're using Mathematica to solve this cubic equation and find its roots.
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Graphical Results 
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