Study of Linear and Nonlinear Optical Properties of Graphene Based on the Dirac Equation

Bahram Parsa

Supervisor: Dr. Ehsan koushki Dr. Javad Baedi

Relativistic wave equation or Klein-Gordon equation

$$\checkmark i\hbar \frac{\partial \psi}{\partial t} = \left[-\frac{\hbar^2}{2m_0} \nabla^2 + V(x) \right] \psi(x, t)$$

$$\checkmark \hat{E} = \frac{\hat{p}^2}{2m_0} + V(x)$$

$$\checkmark p^{\mu} p_{\mu} = \frac{E^2}{c^2} - p \cdot p = m_0^2 c^2$$

$$\checkmark \hat{p}^{\mu} \hat{p}_{\mu} \psi = m_0^2 c^2 \psi$$

$$\checkmark \rho = \frac{i\hbar}{2m_0 c^2} \left(\psi^* \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^*}{\partial t} \right)$$
Probability density

Dirac equation

• Dirac Equation an Overview:

 $\checkmark \hat{p}^{\mu}\hat{p}_{\mu} = m_0^2 c^2$

$$\checkmark \hat{p}^{\mu}\hat{p}_{\mu}-m^{2}c^{2}=(\beta^{k}p_{k}+mc)(\gamma^{\lambda}p_{\lambda}-mc)$$

$$\checkmark \quad (p^{0})^{2} - (p^{1})^{2} - (p^{2})^{2} - (p^{3})^{2} = (\gamma^{0})^{2}(p^{0})^{2} + (\gamma^{1})^{2}(p^{1})^{2} + (\gamma^{2})^{2}(p^{2})^{2}$$

$$+ (\gamma^{3})^{2}(p^{3})^{2} + (\gamma^{0}\gamma^{1} + \gamma^{1}\gamma^{0})p_{0}p_{1} + (\gamma^{0}\gamma^{2} + \gamma^{2}\gamma^{0})p_{0}p_{2} + (\gamma^{0}\gamma^{3} + \gamma^{3}\gamma^{0})p_{0}p_{2} + (\gamma^{1}\gamma^{2} + \gamma^{2}\gamma^{1})p_{1}p_{2} + (\gamma^{1}\gamma^{3} + \gamma^{3}\gamma^{1})p_{1}p_{3} + (\gamma^{2}\gamma^{3} + \gamma^{3}\gamma^{2})p_{2}p_{3}$$

Dirac equation

✓ Puli matrix

$$\gamma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix}$$

 \checkmark the energy and momentum factor

$$(\hat{p}^{\mu}\hat{p}_{\mu}-m^{2}c^{2})=(\beta^{k}p_{k}+mc)(\gamma^{\lambda}p_{\lambda}-mc)=0$$

 \checkmark The dirac final equation

 $i\hbar\gamma^{\mu}\partial_{\mu}\psi - mc\psi = 0$

Visual Comparision: Dirac vs. Klein-Gordon Equaion

Graphene

What is Graphene?

Relationship Between Graphene and the Dirac Equation

A single layer of carbon atoms in a hexagonal lattice.

Extraordinary properties: High electrical conductivity, strength, and optical transparency. In graphene, electrons behave like massless Dirac fermions.

The electronic structure near the Dirac points in graphene is described by the Dirac equation.

Dirac cons Graphene

Methodology Deriving the Dirac Equation for Graphene Nanoribbons Calculating Linear and Nonlinear Optical Properties Calculating the **Tight-Binding** Energy Spectrum Approximation Constructing the Hamiltonian

Equations

V Dirac equation for 2D
$$v_F = (\sigma_x k_x + \sigma_y k_y) \psi = E \psi$$

 ✓ Boundary Conditions and Hamiltonian for Zigzag and Armchair Nanoribbons

$$\psi(x=0) = \psi(x=L) = 0$$

$$\psi_A(x=0) = \psi_A(x=L) = 0$$

$$\psi_B(x=0) = \psi_B(x=L) = 0$$

$$H = -t \sum_{\langle i,j \rangle} (c_i^{\dagger} c_j + hc)$$

Density of state, energy spectrum

Liner Optical Properties

Linear Optical Properties: Zigzag Nanoribbon Linear Absorption: Zigzag vs Armchair 1e-27 1.0 Absorption (Zigzag) Absorption (Armchair) 4 0.8 2 **Optical Properties** 0.6 Absorption Absorption (Zigzag) 0 Refractive Index (Zigzag) 0.4 -2 0.2 -4 0.0 -2 -1 -3 0 1 2 3 -2 -1 -3 2 3 -4 -4 0 1 4 Energy (eV) Energy (eV)

Non Liner Optical Properties

