
Introduction to MQTT
Rytis Paškauskas and Marco Rainone

PLAN

1. Introduction
2. Understanding MQTT Basics
3. The MQTT Architecture
4. MQTT Workflow
5. Hands-On Demonstration

CONSTRAINTS

2 hours

Introduction to MQTT

What is MQTT?

MQTT is is a lightweight, publish/subscribe messaging protocol designed for
constrained devices and unreliable networks.

Pop quiz – “MQTT” stands for:

1. Message Queuing Telemetry Transport?
2. MQ Telemetry Transport?
3. MQTT?

What does “MQTT” stand for?

While it formerly stood for MQ Telemetry Transport, where MQ referred to the
MQ Series, a product IBM developed to support MQ telemetry transport, MQTT is
no longer an acronym.

MQTT is now simply the name of the protocol.

Although many sources label MQTT as a Message Queue Telemetry Transport
protocol, this is not entirely accurate. While it is possible to queue messages in
certain cases, MQTT is not a traditional message queuing solution. (from HiveMQ
book).

History and Evolution
Originally designed for SCADA systems.
Supervisory Control and Data Acquisition (SCADA)
systems are used for controlling, monitoring, and
analyzing industrial devices and processes. The
system consists of both software and hardware
components and enables remote and on-site
gathering of data from the industrial equipment.

Becoming an open standard helped to increase the
visibility and adoption of MQTT among the
developer community.

Popular (and open source) implementations are
Paho (client in Python) and Mosquitto (broker and
client in C). Both by Eclipse.

Mosquitto supports MQTT protocol versions 5.0,
3.1.1 and 3.1

MQTT invented
Developed in 1999 by Andy Stanford-Clark and Arlen Nipper at IBM. First use cases
in oil-pipeline monitoring. Over the next ten years, IBM used the protocol internally
until they

1999

MQTT 3.1 opened as royalty-free protocol
In 2011, IBM contributed MQTT client implementations to the newly founded Paho
project of the Eclipse Foundation.

2010

Mosquitto 1.0 released
Mosquitto is part of the Eclipse Foundation, and is an iot.eclipse.org project. The
development is driven by Cedalo.

2012

OASIS TC formed
the OASIS MQTT Technical Committee (TC), which was formed in 2013 to work on
the standardization of the MQTT protocol.

2013

MQTT 5.0 officially released
MQTT 5.0 improves error handling, adds session/message expiration, and
supports topic aliases to reduce bandwidth. It introduces shared subscriptions for
load balancing and user properties for metadata. These updates enhance flexibility,
scalability, and security for IoT applications.

2018

Why Use MQTT?

MQTT is used because it’s simple, efficient, and works well even when the internet
connection is slow or unstable.

Asynchronous communication: Clients can publish data without worrying about
whether subscribers are available, as the broker handles message routing. It
allows devices to send and receive messages without waiting for an immediate
response.

Low overhead and reduced power consumption: With a small packet size and
a lightweight control mechanism, MQTT is efficient for transmitting data.

Support for Intermittent Connections: Devices in constrained environments
often lose network connectivity. MQTT supports persistent sessions to handle this
gracefully.

Feature/Pr
otocol

MQTT HTTP CoAP AMQP

Communic
ation
Model

Publish/Subscri
be
(asynchronous)

Request/Respon
se (synchronous)

Request/Respon
se
(synchronous),
Observe

Publish/Subscrib
e, Message
Queue
(asynchronous)

Transport
Protocol

TCP TCP (HTTP/3
uses UDP)

UDP (TCP is
possible)

TCP

Overhead Low High Very Low Moderate to High

Message
Delivery

QoS 0, 1, 2
(reliable with
options)

TCP-level
reliability, no QoS

Basic reliability
with UDP

Highly reliable
(transactional
messaging)

Security TLS HTTPS (TLS) DTLS TLS, SASL

Feature/
Protocol

MQTT HTTP CoAP AMQP

Statefulness Session
persistence for
reconnecting
clients

Stateless by
design

Stateless, with
optional
Observe feature

Stateful

Scalability High, designed
for IoT
environments

High, but
overhead
increases

Very High,
designed for
constrained
devices

High, for large
enterprise
applications

Use Cases IoT, remote
sensors,
constrained
devices

Web
applications,
REST APIs,
document
exchange

Low-power IoT
(smart grids,
home
automation)

Enterprise
message
brokering,
financial systems

Feature/
Protocol

MQTT HTTP CoAP AMQP

QoS/
Delivery
Guarantees

QoS levels
ensure
message
delivery
guarantees

No built-in QoS
beyond TCP
reliability

Basic
retransmissions
(confirmable
messages)

Guarantees
through
transactional
messaging

Message
Size

Small Large Small Large

Latency Low (ideal for
low-latency
environments)

High for IoT
(due to
overhead)

Low Moderate

MQTT Publish/Subscribe Paradigm vs HTTP Request/Response

Feature MQTT (Publish/Subscribe) HTTP (Request/Response)

Communication Model Decoupled: many-to-many
communication with a broker

Direct: one-to-one communication

Message Flow messages sent to topics, received by
subscribers via broker

client requests data from a server,
receives a response

Statefulness Long-lived connections, maintains state Stateless, each request is independent

When to Choose Each Protocol

MQTT: Ideal for low-bandwidth, high-latency environments where devices need to conserve power, such
as IoT devices (sensors, actuators, smart home systems). Suitable when asynchronous, decoupled
communication is needed, such as in telemetry or distributed control systems.

HTTP: Best for web applications and REST-based APIs where resource exchange and direct
request-response interactions are required (e.g., file sharing, data retrieval from a server). Inefficient for
IoT scenarios due to its high overhead and statelessness.

CoAP: Designed for constrained IoT devices that need efficient, low-overhead communication. Ideal for
sensor networks, smart energy management, and low-power wireless communication.

AMQP: Preferred in enterprise-level applications where reliable, secure, and transactional messaging is
required (e.g., financial institutions, message queuing systems, distributed systems). Suitable for complex
routing and store-and-forward messaging scenarios where full delivery guarantees and reliability are
crucial.

MQTT in the Modern IoT and Cloud Ecosystem

Use cases: Home automation, industrial IoT, autonomous vehicles, smart cities.

Supported by cloud services: like AWS IoT, Azure IoT Hub, Google Cloud IoT
Core, IBM Watson, Oracle IoT

Commercial brokers: HiveMQ, …

MQTT-like protocols: Apache Kafka (LinkedIn), Pulsar, ActiveMQ, …

2. MQTT Protocol Overview

Core MQTT Concepts
Publish: The action of sending a message to a specific topic on the broker.

Subscribe: The action of a client registering to receive messages from a specific topic.

Topic: A string used to organize and categorize messages, acting as a routing key for message distribution.

Broker: Central server that manages communication between clients by routing messages from publishers to subscribers.

Client: Any device or application that connects to the broker to publish or subscribe to topics.

QoS (Quality of Service): Defines the level of guarantee for message delivery (0, 1, or 2).

Retain Flag: Option to store the last message sent to a topic for future subscribers.

Will Message: A message defined by a client that the broker will send if the client unexpectedly disconnects.

Clean Session: An option to specify whether a client’s subscription and message queue should be cleared when it
disconnects.

Session Persistence: The broker can retain client subscriptions and undelivered messages between disconnections.

MQTT Packet Structure

● Key components: Fixed
header, variable header, and
payload.

● Common packet types:
CONNECT, PUBLISH,
SUBSCRIBE, PINGREQ,
DISCONNECT.

SUBSCRIBE subscribe (client)

PUBLISH publish (client and broker)

DISCONNECT disconnect

PINGREQ ping request

PINGRESP ping response

CONNACK connection acknowledged

SUBACK subscribe acknowledged

PUBACK publish acknowledged

PUBREC publish request

PUBREL publish release

PUBCOMP publish completed

MQTT minimum packet

MQTT Client and Broker “talking”

1729511061: New connection from 127.0.0.1:44770 on port 1883.
1729511061: New client connected from 127.0.0.1:44770 as
auto-75A73584-46A3-85F6-BB86-F63D49823F2B (p2, c1, k60).
1729511061: No will message specified.
1729511061: Sending CONNACK to auto-75A73584-46A3-85F6-BB86-F63D49823F2B (0, 0)
1729511061: Received SUBSCRIBE from auto-75A73584-46A3-85F6-BB86-F63D49823F2B
1729511061: # (QoS 0)
1729511061: auto-75A73584-46A3-85F6-BB86-F63D49823F2B 0 #
1729511061: Sending SUBACK to auto-75A73584-46A3-85F6-BB86-F63D49823F2B
1729511121: Received PINGREQ from auto-75A73584-46A3-85F6-BB86-F63D49823F2B
1729511121: Sending PINGRESP to auto-75A73584-46A3-85F6-BB86-F63D49823F2B
…

> mosquitto_sub -h localhost -p 1883 -t '#'

Case study: Basic usage example

1729511519: New client connected from 127.0.0.1:60848 as
auto-791F0260-5704-A25C-7820-3CAD54656FEB (p2, c1, k60).
1729511519: No will message specified.
1729511519: Sending CONNACK to auto-791F0260-5704-A25C-7820-3CAD54656FEB (0, 0)
1729511519: Received PUBLISH from auto-791F0260-5704-A25C-7820-3CAD54656FEB (d0, q0, r0,
m0, 'hello', ... (5 bytes))
1729511519: Sending PUBLISH to auto-75A73584-46A3-85F6-BB86-F63D49823F2B (d0, q0, r0,
m0, 'hello', ... (5 bytes))
1729511519: Received DISCONNECT from auto-791F0260-5704-A25C-7820-3CAD54656FEB
1729511519: Client auto-791F0260-5704-A25C-7820-3CAD54656FEB disconnected.
1729511541: Received PINGREQ from auto-75A73584-46A3-85F6-BB86-F63D49823F2B
1729511541: Sending PINGRESP to auto-75A73584-46A3-85F6-BB86-F63D49823F2B
…

> mosquitto_pub -h localhost -p 1883 -t 'hello' -m 'world'

$ mosquitto_sub -h localhost -p 1883 -t '#'
world

Quality of Service (QoS) Levels

QoS Level It’s like… When to Use

QoS 0 (At most once) Sending a postcard: no guarantee it
will arrive, and no follow-up.

For non-critical data, such as sensor updates

QoS 1 (At least once) Sending a registered letter: guaranteed
delivery, but might arrive multiple
times.

Guarantees message delivery but may result
in duplicates

QoS 2 (Exactly once) Sending a package with a signature:
delivered once, and only once, no
duplicates.

For critical messages, like financial
transactions, where no loss or duplication is
acceptable.

1729512609: New connection from 127.0.0.1:36906 on port 1883.
1729512609: New client connected from 127.0.0.1:36906 as
auto-ED3A5FED-675B-366D-EC69-0B6BD83796F4 (p2, c1, k60).
1729512609: No will message specified.
1729512609: Sending CONNACK to auto-ED3A5FED-675B-366D-EC69-0B6BD83796F4 (0, 0)
1729512609: Received SUBSCRIBE from auto-ED3A5FED-675B-366D-EC69-0B6BD83796F4
1729512609: # (QoS 1)
1729512609: auto-ED3A5FED-675B-366D-EC69-0B6BD83796F4 1 #
1729512609: Sending SUBACK to auto-ED3A5FED-675B-366D-EC69-0B6BD83796F4
…

> mosquitto_sub -q 1 -h localhost -p 1883 -t '#'

QoS 1 case study

1729512717: New connection from 127.0.0.1:46972 on port 1883.
1729512717: New client connected from 127.0.0.1:46972 as
auto-35FE21EB-AE06-DF79-5138-A11159EAEA94 (p2, c1, k60).
1729512717: No will message specified.
1729512717: Sending CONNACK to auto-35FE21EB-AE06-DF79-5138-A11159EAEA94 (0, 0)
1729512717: Received PUBLISH from auto-35FE21EB-AE06-DF79-5138-A11159EAEA94 (d0, q1, r0,
m1, 'hello', ... (5 bytes))
1729512717: Sending PUBLISH to auto-ED3A5FED-675B-366D-EC69-0B6BD83796F4 (d0, q1, r0,
m1, 'hello', ... (5 bytes))
1729512717: Sending PUBACK to auto-35FE21EB-AE06-DF79-5138-A11159EAEA94 (m1, rc0)
1729512717: Received PUBACK from auto-ED3A5FED-675B-366D-EC69-0B6BD83796F4 (Mid: 1,
RC:0)
1729512717: Received DISCONNECT from auto-35FE21EB-AE06-DF79-5138-A11159EAEA94
1729512717: Client auto-35FE21EB-AE06-DF79-5138-A11159EAEA94 disconnected.

> mosquitto_pub -q 1 -h localhost -p 1883 -t 'hello' -m
'world'

$ mosquitto_sub -q 1 -h localhost -p 1883 -t '#'
world

1729513207: New connection from 127.0.0.1:49236 on port 1883.
1729513207: New client connected from 127.0.0.1:49236 as
auto-E41AFA10-1E5D-E733-F44E-5750B87AF619 (p2, c1, k60).
1729513207: No will message specified.
1729513207: Sending CONNACK to auto-E41AFA10-1E5D-E733-F44E-5750B87AF619 (0, 0)
1729513207: Received SUBSCRIBE from auto-E41AFA10-1E5D-E733-F44E-5750B87AF619
1729513207: # (QoS 2)
1729513207: auto-E41AFA10-1E5D-E733-F44E-5750B87AF619 2 #
1729513207: Sending SUBACK to auto-E41AFA10-1E5D-E733-F44E-5750B87AF619
…

> mosquitto_sub -q 2 -h localhost -p 1883 -t '#'

Qos 2 case study

1729513374: New connection from 127.0.0.1:50520 on port 1883.
1729513374: New client connected from 127.0.0.1:50520 as
auto-125DDDBC-DB9D-905F-78EF-87F602FFEE20 (p2, c1, k60).
1729513374: No will message specified.
1729513374: Sending CONNACK to auto-125DDDBC-DB9D-905F-78EF-87F602FFEE20 (0, 0)
1729513374: Received PUBLISH from auto-125DDDBC-DB9D-905F-78EF-87F602FFEE20 (d0, q2, r0,
m1, 'hello', ... (5 bytes))
1729513374: Sending PUBREC to auto-125DDDBC-DB9D-905F-78EF-87F602FFEE20 (m1, rc0)
1729513374: Received PUBREL from auto-125DDDBC-DB9D-905F-78EF-87F602FFEE20 (Mid: 1)
1729513374: Sending PUBLISH to auto-E41AFA10-1E5D-E733-F44E-5750B87AF619 (d0, q2, r0,
m1, 'hello', ... (5 bytes))
1729513374: Sending PUBCOMP to auto-125DDDBC-DB9D-905F-78EF-87F602FFEE20 (m1)
1729513374: Received DISCONNECT from auto-125DDDBC-DB9D-905F-78EF-87F602FFEE20
1729513374: Client auto-125DDDBC-DB9D-905F-78EF-87F602FFEE20 disconnected.
1729513374: Received PUBREC from auto-E41AFA10-1E5D-E733-F44E-5750B87AF619 (Mid: 1)
1729513374: Sending PUBREL to auto-E41AFA10-1E5D-E733-F44E-5750B87AF619 (m1)
1729513374: Received PUBCOMP from auto-E41AFA10-1E5D-E733-F44E-5750B87AF619 (Mid: 1,
RC:0)

> mosquitto_pub -q 2 -h localhost -p 1883 -t 'hello' -m
'world'

Advanced MQTT Features

Last Will and Testament (LWT)

The Last Will and Testament (LWT) in MQTT is like a backup plan for when a
device unexpectedly goes offline.

● Imagine a smart device that suddenly loses its connection without warning.
The LWT is a special message the device prepares in advance. If the device
disconnects without saying goodbye properly, the MQTT broker automatically
sends this message to let other devices know something went wrong.

● For example, in a smart home, if a sensor stops working, the LWT could notify
the system to alert the user or switch to a backup sensor. It helps keep
everything running smoothly even when a device fails

Retained Messages

Retained Messages ensure that the latest message is always available to new
subscribers, even if they weren’t connected when it was first sent.

It’s like leaving a sticky note with the most recent information for anyone who checks
later.

Example:

Imagine you have a weather station that publishes temperature data.

If a new device (like a phone or dashboard) subscribes to the weather topic,
without retained messages, it would only get new updates and miss the latest
temperature.

With a retained message, the MQTT broker keeps the most recent temperature data and
immediately sends it to any new subscriber.

MQTT Security: protecting data and devices during communication

1. Username and Password: Devices can use a username and password to
connect, like logging into an account. This helps ensure that only authorized
devices can communicate.

2. Encryption (TLS/SSL): MQTT can use encryption (like HTTPS on websites)
to keep data safe while it’s being sent, so no one can read or change the
messages during transmission.

3. Access Control: The broker can control who can publish or subscribe to
topics, making sure only the right devices can send or receive specific
messages.

Scalability Considerations

In technology, scalability ensures that a system can grow and manage increased demand efficiently.

It means how well a system can handle growth: as more users, devices, or data are added, a scalable
system can continue to work smoothly without slowing down or breaking.

Here are some simple considerations for MQTT:

1. Broker Capacity: As more devices connect, the broker needs to handle more messages. You may
need a more powerful broker or multiple brokers working together to keep things running smoothly.

2. Network Traffic: More devices mean more messages flying around. To avoid slowdowns, it’s
important to optimize how often devices send data and keep messages as small as possible.

3. Shared Subscriptions: To balance the load, MQTT can use shared subscriptions where multiple
devices share the responsibility of processing incoming messages.

4. Efficient Use of Resources: As your system grows, it’s important to manage how devices use
resources like bandwidth, power, and processing, so everything runs efficiently even with more
devices connected.

To improve scalability in MQTT

You can focus on several key areas:

1. Increase server capacity: Upgrade or add more powerful servers (brokers)
to handle more traffic.

2. Horizontal scaling: Add more servers (brokers) and use clustering and load
balancing to distribute the load evenly.

3. Optimize network traffic: Reduce message sizes and control how often
devices send data to prevent bottlenecks.

4. Efficient resource management: Ensure that devices and systems use
bandwidth, processing power, and memory efficiently.

5. Multiple brokers for high availability: Use multiple brokers for fault
tolerance, ensuring that if one broker fails, others can take over.

Challenges and Considerations
in Real-World MQTT

Deployments

Scalability and Performance
Handling Unreliable Networks

Security Concerns

Scalability: As the number of connected devices increases,
brokers need to handle higher traffic. This may involve horizontal
scaling, clustering, and load balancing.

Fault Tolerance: Multiple brokers may be used for high
availability, so if one fails, others can take over without downtime.

Security: Brokers must ensure secure communication (encryption,
authentication) to protect data and control who can publish or
subscribe to topics.

Message Management: The broker must efficiently store and
forward messages to ensure they reach their intended devices,
even after temporary disconnects (retained messages, Last Will,
and Testament).

Network:
● Network Reliability: In real-world environments, network

connections may be unreliable. The system must be designed to
handle disconnects and reconnects without losing data.

● Bandwidth Management: With many devices communicating,
it’s important to optimize how much data is sent to avoid
overloading the network.

● Latency: The network should be optimized to reduce delays in
communication, especially for real-time applications.

● Data Traffic: Managing large amounts of data from many
devices requires network capacity planning to ensure smooth
communication and avoid bottlenecks.

Devices:
● Power Consumption: Many IoT devices run on batteries, so

communication must be efficient to conserve power.
● Message Delivery Guarantees: Devices need to use the right QoS

(Quality of Service) to ensure important messages are delivered
reliably.

● Efficient Resource Usage: Devices should use bandwidth, memory,
and processing power efficiently to avoid performance issues.

● Handling Disconnects: Devices must be able to reconnect and
continue communication after losing the network connection without
data loss.

Demonstration
Implementing a Simple MQTT Communication

Setup Environment

Broker: Use Mosquitto MQTT broker.

Clients: Use Python paho-mqtt library for client implementation.

Code Walkthrough

Implement a simple Python script for

- Publishing messages to a topic.
- Subscribing to a topic and receiving real-time updates.

Exploring QoS Levels

Experiment with QoS 0, 1, and 2.

Observe how message delivery changes based on QoS settings.

Thanks!

