

The Abdus Salam International Centre for Theoretical Physics School on Synchrotron Light Sources and their Applications

(1) Fundamentals of **Synchrotron Radiation** from Storage Rings (2) Fundamentals of X-ray **Interaction with Matter** (3) Bonus: X-ray Free Electron Lasers

Giorgio Margaritondo Ecole Polytechnique Fédérale de Lausanne (EPFL) and Istituto Italiano di Tecnologia (IIT)

Synchrotron radiation: the biggest research network in the world!

France

Tens of thousands of researchers Over 60 active centers, more underway Research articles: over 225,000 Expenditures of over 100 billion dollars A production factory of Nobel prizes: Agre, Baker, Boyer, Kornberg, Mackinnon, Ramakrishnan, Steitz, Yonath, Walker...

ALS, USA

Synchrotrons notably emit <u>x-rays</u>, very important because of what their wavelengths and photon energies can investigate

...where radiation is emitted by electrons that circulate in an <u>accelerator</u> (a "storage ring") at almost the speed light

Our discovery of how relativity produces xrays starts at a leading synchrotron facility: Elettra in Trieste, Italy Before seeing how, <u>A REASONABLE QUESTION</u>: why do we use big, costly accelerators instead of getting x-rays, as radio waves, from electrons oscillating in an antenna?

...indeed, oscillating electrons are <u>accelerated electric</u> <u>charges</u>, thus they do <u>emit electromagnetic waves</u>

...and the electron mass is small: this enhances the acceleration and the emission

acceleration and the emission however, antennas are good for producing <u>long-wavelength</u> radio waves, but not <u>short-wavelength</u> x-rays! inducing the oscillations cannot reach the required high frequencies (say, 10¹⁸ hertz) To get x-rays, we use another strategy, combining oscillating electrons with two relativistic effects that shorten the wavelengths!

...great! But how can e get that complex electron motion?

the undulator causes transverse oscillations that enable the electron to emit radiation

....whose

wavelength is related to the

period *L*, but

is not equal to L

Then add an "undulator": a periodic series of magnets, period L

relativistic electron,

A good $v \approx c$ solution: for the longitudinal relativistic motion, we can use a storage ring, with a system (not shown) of magnets and electric devices that forces electrons to circulate in vacuum at almost the speed of light

Why not? To understand, you must think like an electron!

From its own point of view, the electron "sees" the undulator arriving with velocity $-v \approx -c$

...so, the electron "sees" the undulator period L shrunk to $\approx L/\gamma$

...and in relativity a moving object is subject to the famous "Lorentz contraction": as we have seen, its length appears shortened by $\approx \gamma$

this equals the emitted wavelength as "seen" by the electron, $\lambda_e = L/\gamma$

...but λ_e is <u>not</u> the wavelength seen in the laboratory! Why not? We already know the answer: the electron motion also causes the <u>Doppler shift</u>, further reducing the wavelength by $\approx 2\gamma$

So, short wavelengths are produced by <u>two</u> combined relativistic effects:

 $\leftarrow L \rightarrow \qquad \text{large}$ $\leftarrow L \rightarrow \qquad \text{First effect:} \\ \text{Lorentz contraction} \\ \approx (L/\gamma)/(2\gamma) - M - \\ \text{Second: Doppler shift} \qquad \qquad \mathcal{X} \approx L/(2\gamma^2)$

Let $2\gamma^2 \rightarrow \text{short } \lambda$ Example: $L = 1 \text{ cm}, \gamma = 5000$ $\lambda \approx 2 \times 10^{-10} \text{ m}$ <u>x-rays!!!</u>

high energy \rightarrow

NOTE: in relativity,

 $\gamma = \text{energy}/(m_0 c^2)$:

large flux, small area, small divergence

Do synchrotron sources reach <u>high brightness</u>? YES INDEED: over one million billion times more than conventional x-ray sources! How? Thanks to four factors:

We shall see that <u>relativity</u> sharply reduces the <u>angular divergence</u>
 And that <u>relativity</u> also boosts the <u>emitted power</u>

- 3. Electrons in a storage ring under vacuum can handle more emitted power than those in a solid, since the solid can be damaged
- 4. The electrons travel in the ring in bunches (we shall see why), along slightly different paths; the source <u>size</u> is the transverse <u>cross section</u> of the bunch, determined by all the paths and kept small by very effective controls

Relativity at work: extreme angular collimation

... but in \mathcal{R}_{ℓ} it shrinks to a small forward cone, as the sound of a moving train but much narrower

... in the electron frame \mathcal{R}_{e} , extreme case the angular range of the emission is broad, They rade emitted in rection in \mathcal{R}_{ρ} waves from an antenna

V≈ Č

 \mathcal{R}_{o}

In \mathcal{R}_{c} , the electron motion with relativistic speed v "projects ahead" the emission: the forward wave velocity is $\approx v$ and, since θ is small: $\theta \approx \sin \theta = \sqrt{c^2 - v^2}/c = \sqrt{1 - v^2/c^2}$

wave velocity in \mathcal{R}_{e} : magnitude c, zero longitudinal component so, from \mathcal{R}_e to $\mathcal{R}_{\mathcal{L}}$ the velocity vector <u>rotates</u>

Relativity requires the magnitude c to be invariant

 $\theta \approx 1/\gamma$ Spread $\approx 1/\gamma$: milliradians!!!

Relativity at work again: huge <u>emitted power</u>

<u>"Larmor law"</u>: the emitted power is proportional to a_e^2 , the square of the transverse acceleration in \mathcal{R}_e

If v = zero, $a_e = a_L$, the transverse acceleration in $\mathcal{R}_{\mathcal{L}}$ – and the power is proportional to a_L^2 electron a_e emission

oscillating

but, if $v \neq zero$: going from \mathcal{R}_e to $\mathcal{R}_{\mathcal{L}}$ the time is multiplied by γ while the <u>transverse</u> coordinate is invariant; the acceleration = coordinate/time² is divided by γ^2 : $a_{\rm L} = a_{\rm e}/\gamma^2$, and $a_{\rm e} = \gamma^2 a_{\rm L}$

> ...the power is proportional to $a_e^2 = (\gamma^2 a_L)^2$, thus to $\gamma^4 = (\text{energy})^4 / (m_o c^2)^4$

The emission increases as the 4th power of the electron energy, to <u>very high levels</u>

...and decreases as $1/m_0^4$: electrons emit a lot, protons much less

Let us find more about relativistic electrons in an undulator: they behave as very collimated flashlights, causing their emitted wavelength spectrum

Bandwidth: going through the *N* undulator periods, the electron emits a wave with *N* wavelengths, of length $N\lambda_L$. Pulse duration: $\Delta t_L = N\lambda_L/c$. Fourier: $\Delta v_L = 1/\Delta t_L = c/(N\lambda_L)$. $\lambda_L = c/v_L$ so $\Delta \lambda_L/\lambda_L = I\Delta v_L/v_L I = [c/(N\lambda_L)]/(c/\lambda_L) = 1/N$

Other wonderful properties of undulators:

(1) They can emit different wavelengths; (2) their angular spread is very small;
(3) they have very high brightness -- all such properties that can be explained with simple approaches, for example:

what happens if we increase the magnetic field strength *B* by changing the magnet gaps?

A stronger magnetic field *B* increases the transverse electron oscillations and their transverse speed, proportional to *B*

The magnetic (Lorentz) force of the undulator *B*-field on the electrons does not do work and cannot change the kinetic energy, so the longitudinal speed *v* decreases

This changes the γ -factor in the Doppler shift, modifying λ_{L} from $L/(2\gamma^{2})$ to $\lambda_{L} = [L/(2\gamma^{2})](1 + \text{constant} \times B^{2})$ We can <u>tune</u> the wavelength!

A <u>wiggler</u>, as an undulator, is a periodic magnet array -- but its magnetic field is <u>stronger</u> and causes <u>larger transverse</u> <u>oscillations</u> of the electrons:

The third type of synchrotron sources: <u>bending</u> <u>magnets</u>, the dipoles that force the electrons to circulate in the storage ring

1E+12

Photon Energy (KeV)

This explains the famous synchrotron radiation spectrum of bending magnets: the log-log plot of a peak!

Note -- bending magnets emit very short x-ray wavelengths: why?

...because of the same effects present for undulators (and wigglers): Lorentz contraction and Doppler shift

Intuitively, the emitted wavelengths are related to the longitudinal size D of the magnet ...which in the electron frame \mathcal{R}_e is Lorentz-contracted to $\approx D/\gamma$

And in the laboratory frame $\mathcal{R}_{\mathcal{L}}$ the wavelengths are Doppler-shifted by a factor $\approx 2\gamma$, so they are related to $\approx (D/\gamma)/(2\gamma) = D/(2\gamma^2)$ The $2\gamma^2$ factor again!

 $-v \approx -c$

The time structure of synchrotron radiation The cause: electrons travel around the ring in bunches -- why?

source

To keep the electrons in the ring, the energy they lose by emitting synchrotron radiation must be restored by the periodic force of an "RF cavity": but this only works for <u>bunched</u> electrons passing through the cavity in synchrony with the force

radiofrequency (RF) cavity

at every turn, each electron bunch sends a short (nanoseconds to picoseconds) pulse of radiation in each beamline

62

detector

time

Another key synchrotron property: polarization Consider an electron traveling through an undulator or a wiggler:

[SIDE VIEW]

undulator axis correspond to electric field perturbations in the <u>horizontal plane</u>: they are <u>linearly polarized</u>

...likewise, on-axis waves from bending magnets are linearly polarized in the horizontal plane and special (elliptical) wigglers/undulators can produce intense elliptically polarized radiation

The Abdus Salam International Centre for Theoretical Physics School on Synchrotron Light Sources and their Applications

(1) Fundamentals of **Synchrotron Radiation** from Storage Rings (2) Fundamentals of X-ray **Interaction with Matter** (3) Bonus: X-ray Free Electron Lasers

Giorgio Margaritondo Ecole Polytechnique Fédérale de Lausanne (EPFL) and Istituto Italiano di Tecnologia (IIT)

Using synchrotron radiation: different interactions of x-rays with matter lead to many different experimental techniques

...let us focus now on the interactions between x-rays and solids that are most important for synchrotron applications

First, the interactions used for <u>imaging</u>, the first application of x-rays, and still the most common Originally, x-ray imaging was based on <u>absorption</u>. But synchrotron sources have a property that now leads to novel and very powerful imaging techniques: let us discover it!

In everyday life, we occasionally see wave-like effects like oil-film interference... but they are rare

Why? Because to see them the radiation source must have "coherence" = "what allows radiation to produce visible wave-like effects like interference and diffraction"

X-rays from synchrotron sources have high coherence, which is now exploited for a revolutionary new radiology!

A simple description of coherence:

a point source emitting only <u>one</u> wavelength λ always produces a visible pinhole diffraction pattern: it has <u>full coherence</u>

More realistic sources reveal TWO kinds of coherence: "time" and "spatial"

different wavelengths produce different patterns...

Multiple wavelengths: longitudinal (time) coherence

superposition blurs the fringes

when is the fringe pattern still visible?

Spacing of adjacent fringes (from elementary optics):

 $= \mathbf{x} \approx (H|\delta)\lambda;$ if λ is replaced by a band $\Delta\lambda$, \mathbf{x} is "blurred" to: $\Delta \mathbf{x} \approx (H|\delta)\Delta\lambda$

Condition to see the pattern:

 \bigcirc

 $\Delta x < x \rightarrow \Delta \lambda / \lambda < 1 \text{ (time coherence)}$

 $\begin{array}{l} \mbox{defining the "coherence} \\ \underline{\mbox{length}"} \mbox{ as } L_{\rm c} = \lambda^2 / \Delta \lambda \ , \\ \mbox{time coherence} \\ \mbox{requires } L_{\rm c} > \lambda \end{array}$

Each point of an <u>extended source</u> produces a diffraction pattern \rightarrow <u>blurring</u>

when is a pattern still visible? Maximum distance between centers of patterns given by different source points $M \approx \xi H/D$ Fringe spacing $x \approx (H/\delta)\lambda$ Fringes can be seen if $M \le x$: $\xi H/D \le (H/\delta)\lambda \rightarrow \delta \le \lambda D/\xi$ condition for spatial coherence

Another way to look at this condition: the radiation contributine λo diffraction is that reaching the pinhole, emitted in the solid angle $\approx \delta^2/D^2 \leq (\lambda D/\xi)^2/D^2 = \lambda^2/\xi^2$ — which corresponds to a fraction of the total emission

 $\approx (\lambda^2 / \xi^2) / \Omega = \frac{\lambda^2 / (\xi^2 \Omega)}{\lambda^2}$ This is the "<u>coherent power factor</u>": it is large if there is spatial coherence

Are synchrotron sources spatially coherent? YES! Their small size ξ and small angular spread Ω give a large coherent power factor $\lambda^2/(\xi^2 \Omega)$ Note, however: λ^2 in this factor makes spatial coherence very difficult to obtain for the short λ 's of x-rays: synchrotron sources are required ...and λ^2 is also present in the (time) <u>coherence length</u> causing a similar problem! Also note: the brightness is proportional to $1/(\xi^2 \Omega)$ thus, the historical efforts to enhance the brightness by decreasing ξ and Ω also boosted the spatial coherence 100 µm

Synchrotron x-ray coherence is very beneficial for imaging: it notably produce p<u>hase-</u> <u>contrast radiographs</u>, with sharp features and very small details radiograph of a single neuron: world record of spatial resolution

microvasculature

10 um

body of an ant

Phase-contrast imaging: the mechanism is complex, but we can grasp key features with a simple analogy: "seeing" a glass of wine

> we see the wine because it absorbs and/or scatters certain wavelengths and looks colored

but we also see the <u>edges</u> of the (transparent) glass because they deviate the light by refraction/scattering²

likewise, phase contrast (refraction/scattering of x-rays) can cause sharp, highly visible <u>edges</u> in synchrotron radiographs

...however, to create such edges x-rays must have a well-defined direction: this is guaranteed by the <u>spatial coherence</u> of synchrotron radiation, which implies angular collimation

Note: high lateral coherence is required for phase contrast, but high longitudinal (time) coherence is not needed

An example of what can be done with phase contrast imaging: explaining the miracle of fireflies

Synchrotron microtomography of a firefly "lantern" [Y. L. Tsai, Y. Hwu et al, Phys. Rev. Letters **113**, 258103 (2014)]

...being able to detect even the smallest vessels, we could elucidate the incredibly effective light emission mechanism

Microscopy with coherent x-rays: exploring the brain, neuron by neuron

SYnchrotrons for Neuroscience – an Asia-Pacific Strategic Enterprise (SARI/SSRF-China, PAL-Korea, AS-Taiwan, RIKEN/Spring8-Japan, NUS/SSLS-Singapore, ANSTO-Australia, SLRI-Thailand, SESAME-Jordan)

Goal: mapping a human brain

Memorandum of Understanding

Synchrotrons Coordinated Imaging & High Performance Conjuding

The general formal background of the interactions of x-rays with solids:

Wave function in vacuum:

 $W_{o} \exp[i(kx - \omega t)]$

"PHASE"

In the solid: k changes to nk, where $n = n_{\rm R} + in_{\rm I}$ (complex refractive index) Wave function: $W_{\rm o} \exp[i(nkx - \omega t)]$ $= W_{\rm o} \exp[-n_{\rm I}kx] \exp[i(n_{\rm R}kx - \omega t)]$

Factor decreasing with the distance, corresponding to absorption

*n*_R*k* determines the phase and corresponds to phase effects: refraction, diffraction, interference...

The real and imaginary parts of the refractive index, n_R and n_I , are not independent 10^{-1}

- They are <u>linked</u> by the so-called <u>"Kramers-Kroenig equations"</u>
- This explains the relations between different phenomena:
 - strong reflection corresponds to strong absorption (think about a metal-coated mirror)
 - phase and absorption features occur for the same wavelengths
 ...when "somet "something" els

...when "something" happens for absorption (n_l) , "something" else also happens for refraction (n_R) What causes the x-ray core-level absorption edges?

...consider the electron energies in an (insulating) solid

A core-level edge in an x-ray absorption spectrum reveals the presence of the corresponding element, its chemical status ...and more

In particular, the "**EXAFS**" = **E**xtended **X**-ray Absorption Fine Structure above each edge yields precious information on the local microscopic environment of the x-ray absorbing atom

EXAFS mechanism:

neighbor

bsorbing

atom

The outgoing excited-electron wave and the backscattered electron wave interfere constructively or destructively depending on the distance d and backscattered on the electron wavelength, which corresponds electron wave to the electron energy and therefore to the photon energy hv

> This causes oscillations in the absorption vs. hv plots

atom wave of the excited electron

photon

From these oscillations (EXAFS), one can derive the local interatomic distance d, a very valuable piece of information

<u>Photoemission</u>, another fundamental class of <u>synchrotron techniques</u> ...photoemission explores the energies of electrons forming chemical bonds:

vacuum

The effect adds hv to the electron energy: by subtracting hv from electron energies measured in vacuum, one can derive the electron energies in the solid

Photoelectric effect

Solid-state photoemission detects valence electrons and core electrons:

captured photoelectrons

...synchrotron photoemission transformed my bookish quantum notions like core levels into tangible realities!

A key class of synchrotron techniques: <u>x-ray scattering</u> -- which reveals the electron charge distributions of microscopic structures

Electronic charge distribution, $F(\vec{r})$ incoming x-ray k-vector, \vec{k}

k' (scattered x-ray k-vector)

<u>Theory</u>: defining the scattering vector as $\vec{s} = \vec{k}' - \vec{k}$, the scattered wave $W(\vec{s})$ is proportional to $\int F(\vec{r}) \exp(i\vec{r} \cdot \vec{s}) d^3\vec{r}$, which is the <u>Fourier</u> transform of the charge distribution F

Conversely, *F* is proportional to $\int W(\vec{s}) \exp(-i\vec{r} \cdot \vec{s}) d^3 \vec{s}$, the inverse Fourier transform

elementary volume Thus, we can find the electron charge distribution of a microscopic object by performing the inverse Fourier transform of scattered x-rays

Inverse Fourier transform

detector

This strategy faces serious obstacles like the "phase problem", but leads to many powerful synchrotron techniques:

- Large-angle scattering
- Small-angle scattering
- Powder diffraction
- Crystallography
- Protein crystallography ...and more

Small-angle and large-angle scattering

In a real experiment, the detector captures only a portion of the solid angle, i.e., only part of the scattered x-rays

Fourier transform properties: if scattered x-rays are only detected at small angles, the inverse transform gives the general shape of the object but not its fine details

So, small-angle scattering is useful for a first look at microstructures

inverse Fourier transforms

The Abdus Salam International Centre for Theoretical Physics School on Synchrotron Light Sources and their Applications

(1) Fundamentals of **Synchrotron Radiation** from Storage Rings (2) Fundamentals of X-ray **Interaction with Matter** (3) Bonus: X-ray Free Electron Lasers

Giorgio Margaritondo Ecole Polytechnique Fédérale de Lausanne (EPFL) and Istituto Italiano di Tecnologia (IIT)

X-ray Free Electron Lasers (X-FELs): the New Generation of Synchrotron Radiation Sources

Storage-ring synchrotron sources have laser-like features: strong collimation, high intensity, high brightness and excellent coherence – are they lasers?

A visible/infrared laser:

Active medium, providing optical amplification

Two-mirror optical cavity, increasing the photon path and the optical amplification Storage-ring synchrotron radiation sources:

- NO optical amplification
- NO good mirrors for x-rays, thus NO optical cavities
- <u>They are NOT lasers</u>

But there is now a new class of laser-like synchrotron x-ray sources, the X-FELs, based on an <u>optical amplification process</u> due to the interaction of electron bunches with their emitted waves

Very long undulator

Why most undulators do not behave like x-FELs?

...to emit x-rays, high-energy electrons with large γ -values are required, whose relativistic "longitudinal mass" $\gamma^3 m_0$ is very heavy: it takes a (relatively) long time to shift them to the "slices", so a very long undulator is required for microbunching

...plus, the microbunching period is very short (x-ray wavelengths) -- the structure is delicate, easily destroyed: the undulator and the electron beam must be extremely accurate

NOTE: for infrared FELs the γ -factor is smaller, the longitudinal γ mass much lighter and the wavelength much longer, so the above problems do not exist: that is why infrared FELs arrived several decades before the x-FELs

General scheme of an X-FEL:

Electron bunches, progressively microbunched

ery long

undulato

LINAC (linear accelerator of electrons) Note: contrary to a visible laser, a two-mirror optical cavity cannot be used to increase the optical path and the amplification: mirrors <u>do not exist</u> for x-rays

X-ray pulses

High optical amplification must occur in <u>a single pass</u>: this requires electron bunches with very high density

Duration and cross section of an x-FEL pulse:

A high electron density requires a very short electron bunch length *H*

Microbunched electron bunch

Plus, a high electron density also requires a very small cross section *A* of the electron bunch and therefore of the photon pulse, producing high brightness

...causing a <u>very short</u> photon pulse $H/v \approx H/c$ (femtoseconds or less, shorter than the synchrotron radiation pulses from storage rings)

[Note: most x-FELs are not based on storage rings but on LINACs, which can produce smaller cross sections *A*] COHERENCE of x-FELs: <u>spatial</u> excellent, <u>time</u> problematic

Why problematic? Because the waves that are amplified are emitted <u>at random</u> when the electron bunch enters the undulator (SASE = Self-Amplified Spontaneous Emission)

External source

Possible solution: "seeding" -- i.e., using the x-FEL undulator to amplify waves with high time coherence produced by an external source A complicated technology, recently realized X-ray Free Electron Lasers are now a fantastic reality, notably at ELETTRA

> **The seeded x-FEL "FERMI" (Free Electron Radiation for Multidisciplinary Investigations)**

Note: x-FELs emit femtosecond pulses of tens of gigawatts: how can we handle this tremendous concentrated power, and how can we use it?

...sent into a molecule or a nanoparticle, causes its explosion:

...but, with the ultrafast x-ray FEL pulses one can analyze the structure <u>during the explosion</u> and try to retrieve from the data the initial structure Some examples of what happens at the femtosecond time scale of an x-FEL pulse:

Fast chemical reactions

Novel micromachining techniques, etc...

A fascinating final aspect: X-ray FELs and the quantum foundations of physics

What causes the interference and diffraction of photons?

First-order Quantum Electrodynamics (QED):

 Wave effects like interference and diffraction are caused by interactions of each photon <u>only with itself</u> (indeed, they happen even when, on the average, there is only one photon in the apparatus)
 Multiple-photon effects <u>are negligible</u>
 BUT: with ultrabright "seeded" x-FELs, multi-photon <u>higher-order</u> QED effects are detected, leading to new techniques! [J. Stöhr, Synchrotron Radiation News **32**, 48 (2019)]

Thanks to the school organizers for inviting me!and thank you for your attention: your future looks brighter than ever!

For further reading:

- Y. Hwu and G. Margaritondo: "Synchrotron Radiation and X-ray Free Electron Lasers (X-FELs) Explained to all Users, Active and Potential", J. Synchrotron Radiation 28, 1014 (2021)
- G. Margaritondo: "An Enlightening Procedure to Explain the Extreme Power of Synchrotron Radiation", J. Synchrotron Radiation **26**, 2094 (2019)
- G. Margaritondo: "The Simple Physics of the Bending Magnet Spectrum", J. Synchrotron Radiation 25, 1271 (2018)
- G. Margaritondo: "Synchrotron Light: a Success Story over Six Decades", Rivista Nuovo Cimento 40, 411 (2017)
- G. Margaritondo and J. Rafelski: "The Relativistic Fundations of Synchrotron Radiation", J. Synchrotron Radiation 24, 898 (2017)
- G. Margaritondo: "Who Were the Founders of Synchrotron Radiation? Historical Facts and Misconceptions", J. Vacuum Sci. Technol. A40, 033204 (2022)
- G. Margaritondo: "Teaching about the Birth of Synchrotron Light: the Role of Frascati and a Missed Opportunity", J. Synchrotron Radiation **31**, 987 (2024)