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❑ Sources of ionizing radiation 

•   Electrons (SEM)

• Charged particles (accelerators)

•   Radioisotopes (α, γ, X-rays)

•   X-ray Tubes

• Synchrotron radiation 
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❑ Interaction of X-rays with matter

X-rays can interact with the atoms of the material in two different ways:

• Photoelectric effect: Primary X-ray radiation can ionise atoms of the 
material. The X-ray is absorbed in this process

• Scattering:

✓ Elastic/Coherent scattering (Rayleigh): no energy loss after collision 
with electrons. The Rayleigh effect is present when electrons are 
strongly bound (inner atomic electrons)

✓ Inelastic/Incoherent scattering (Compton): energy loss after collision 
with electrons. The Compton effect is present when electrons are 
loosely bound (outer, less bound electrons)
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Photoelectric effect: Primary X-ray radiation 
can ionise atoms of the material to be analysed

Cross section of the PE depends strongly on Z 
of the material and on the energy of the 
primary X-ray

To maximize the ionization probability, the 
energy of the primary X-ray should be higher 
than the binding energy but as close as 
possible to it

❑ Photoelectric effect

𝝈𝑷𝒉 ∝
𝒁𝒏

𝑬𝑿
𝟑.𝟓

n = 3÷4
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Fluorescence 
X-ray emission 
is isotropic

❑ X-Ray Fluorescence
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❑ De-excitation: Fluorescence/Auger

Emission of 
characteristic X-ray

Emission of electron 
(vacancy filled by electron 

from different shell)

Emission of electron 
(vacancy filled by electron 

from the same shell)
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The fluorescence yield is given by the ratio of the emitted fluorescence 
photons over the number of the created holes. The competing process is the 
emission of Auger electrons as the atom returns to its ground state

❑ Fluorescence yield

For low Z the Auger electron emission is dominant
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❑ Emission of characteristic X-rays

The emission of characteristic 
X-ray lines follows allowed 
electronic transitions 
between specific subshells

Each element has a unique 
set of emission lines 

Siegbahn/IUPAC notation:

Kα:  K-L2 + K-L3 

Kβ: K-M2 + K-M3

Lα: L3-M4 + L3-M5 

Lβ1:  L2-M4 

Lβ2:  L3-N5 
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Moseley’s law

❑ X-ray energies

𝑬 = 𝒉 ⋅ 𝑨 ⋅ 𝑹 ⋅ 𝒁 − 𝒃 𝟐

h = Planck constant
R = Rydberg frequency
Z = atomic number
A = 3/4 for Kα, 5/36 for Lα

b = 1 for Kα, 7.4 for Lα

Kα

Lα

EFe-Kα ≈ 6380 eV

EPb-Lα ≈ 10520 eV

E [eV] ≈ 10.20 · (Z – 1)2

E [eV] ≈ 1.89 · (Z – 7.4)2

X-ray spectroscopy within the 
energy range 1÷30 keV offers in 
principle the possibility to detect 
all the periodic table elements 
(Z > 10) through their K, L or 
even M series of emission lines
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Elastic/coherent scattering (Rayleigh):
no energy loss after collision with electrons. 
The Rayleigh effect is present when electrons 
are strongly bound.
Rayleigh is more intense for high Z (= heavy) 
matrices

Inelastic/Incoherent scattering (Compton): 
energy loss after collision with electrons. The 
Compton effect is present when electrons 
are loosely bound.
Compton is more intense for low Z (= light) 
matrices

𝝀𝑪 > 𝝀𝑹 = 𝝀𝟎

❑ X-ray scattering 
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❑ Rayleigh scattering

Κ L M
Nucleus

E0

Electrons

Incident photon 
Energy E0

E0

θ

Ei = E0 : Coherent 
(Rayleigh)
It occurs mostly 
with inner atomic 
electrons

Scattering Rayleigh 
is anisotropic
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❑ Compton scattering

Κ L M
Nucleus

E0

Electrons

Incident photon 
Energy E0

Ei < E0 Incoherent 
(Compton)
It occurs mostly 
with outer, less 
bound electrons

Ei

θ

𝝀𝒊 − 𝝀𝟎 =
𝒉

𝒎𝒆𝒄
𝟏 − 𝐜𝐨𝐬 𝝑

Scattering Compton 
is anisotropic
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Attenuation of photons by a thin layer of thickness dt is described by

𝒅𝑰 = 𝑰 ⋅ 𝝁 ⋅ 𝒅𝒕

where I is the number of photons per unit area and unit time (photon flux) of 
which dI are attenuated while penetrating the layer of a material characterized 
by the (total, linear) attenuation coefficient μ. This is equivalent to

𝑰 = 𝑰𝟎 ⋅ 𝒆−𝝁⋅𝒕

I and I0 are the photon fluxes behind and in front of the absorber, respectively, 
and t is the thickness. μ is a function not only of the material 
(atomic number Z) but also of the photon energy E

❑ Linear attenuation coefficient μ  
I0 t I
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𝝁 = 𝝁𝒎 ⋅ 𝝆

the total mass attenuation 
coefficient μm doesn’t depend 
on the density ρ of the 
material.
The coefficient μm summarizes all 
possible photon interactions

𝝁𝒎 = 𝝉𝒎 + 𝝈𝒎

where τm describes the photo 
absorption and σm = σcoh + σinc are 
the contributions by coherent and 
incoherent scattering, respectively.

Both kinds of scattering contribute 
much less than the photo 
absorption to the total μm

❑ Mass attenuation coefficient μm  
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the mass attenuation coefficient of a material that is composed of 
several elements, with weight fractions wi , is

𝝁𝒎 = ෍

𝒊

𝒘𝒊 ⋅ 𝝁𝒎
𝒊

Use of mass attenuation coefficients suggests replacing the 
thickness by the area-related mass m = M/A (mass M per unit area 
A) and rewriting the attenuation law as

𝑰 = 𝑰𝟎 ⋅ 𝒆−𝝁𝒎⋅𝒎

t · ρ = M/A, in grams/cm2

❑ Mass attenuation coefficient μm  
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❑ Penetration and information depth

E0
Ei

Ei

information 
depth

penetration 
depth

surface
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❑ Penetration and information depth

Penetration and information (analytical) depth depend on the energy of the X-
ray and on the matrix:

Low-energy X-ray

High-energy X-ray Low-Z matrix

High-Z matrix

Energy Z (Zeff)

surface

• Surface treatment is extremely important for heavy matrices
• Information thickness is essential for light matrices
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❑ Influence of sample thickness

In
te

n
si

ty
  I

thickness  d

“infinitely thick“

“infinitely thin“

Imax

no matrix effects     
I proportional to d saturation of X-rays 

that leave the sample

saturation depth 
(information depth)

Lower X-ray energy 
Higher-Z matrix

Increasing the thickness of the sample above the information depth will not 
increase the signal but only the scattering of the primary radiation
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❑ Analytical depths in different matrices

Line Energy Graphite Glass Iron Lead 
      

Cd Kα1 23,17    keV 14,46 cm 8,20 mm 0,70 mm 77,30 μm 

Mo K α1 17,48 6,06 3,60 0,31 36,70 

Cu K α1 8,05 5,51 mm 0,38 36,40 μm 20,00 

Ni K α1 7,48 4,39 0,31 29,80 16,60 

Fe K α1 6,40 2,72 0,20 *164,00 11,10 

Cr K α1 5,41 1,62 0,12 104,00 7,23 

S K α1 2,31 116,00 μm 14,80 μm 10,10 4,83 

Mg K α1 1,25 20,00 7,08 1,92 1,13 

F K α1 0,68 3,70 1,71 0,36 0,26 

N K α1 0,39 0,83 1,11 0,08 0,07 

C K α1 0,28 *13,60 0,42 0,03 0,03 

B K α1 0,18 4,19 0,13 0,01 0,01 

 

Different elements exhibit different Information thicknesses (99%), 
depending on their characteristic X-ray energy and on the overall matrix

EKC = 0.2842 EKFe = 7.112
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• Proportional Counters

• Scintillation Detectors

• Si(Li)

• LEGe 

• PIN Diode

• SDD

• CCD, CMOS cameras

• CZT, other

❑ Detectors
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❑ Semiconductor detectors 

• X-rays produce electron-hole pairs, 
whose number is proportional to the 
energy of the radiation (average 
energy to produce an electron/hole 
pair is 3.6eV for Si and 2.9eV for Ge)

• Electrons and holes are collected from 
the depleted active region to the 
electrodes, where they result in a 
pulse that can be further amplified 
and finally measured

• This pulse carries information about 
the energy of the original incident 
radiation. The number of such pulses 
per unit time also gives information 
about the intensity of the radiation
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• Energy resolution ~ 125 – 140 eV (Mn-Ka)
• Input capability ~ 106 photons/sec

The charge is drifted from a large area into a small read-out node with low capacitance, 
independent of the active area of the sensor. Thus, the serial noise decreases, and 
shorter shaping time can be used. For SDDs faster counting is enabled and higher 
leakage current can be accepted, drastically reducing the need for cooling.

❑ Silicon Drift Detectors - SDD

https://tools.thermofisher.com/content/sfs/bro
chures/TN52342_E_0512M_SiliconDrift_H.pdf

Detector photograph reproduced from 
https://www.rayspec.co.uk/x-ray-detectors/silicon-
drift-detectors/xrf/

School on Synchrotron Light Sources and their Applications, 13-24 January 2025



❑ Efficiencies of different detectors

Comparison of different detector’s efficiency from AMPTEK
https://www.amptek.com/products/x-ray-detectors/fastsdd-x-ray-detectorsfor-xrf-eds/fastsdd-silicon-drift-detector
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❑ “Light” elements (Na, Mg, Al, Si) 
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The improvement in the intensity of Al-K 
and Si-K characteristic X-ray lines is 
significant, 22 and 7.3 times respectively

Vacuum atmosphere or He flushing 
is required in the x-rays path 
between sample and detector
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• Characteristic radiation 

✓K, L or M-lines

• Continuum radiation 

• Scatter 
✓Coherent
✓Incoherent

• Escape peaks (Ca-Ka – 1.74 keV = 1.95 keV) 

• Sum peaks 

 Fe-Ka + Fe-Ka= 12.8 keV

❑ Typical EDXRF spectrum 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Energy (keV)
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❑ Resolution of EDXRF spectrometers 

222

DetElecPeak FWHMFWHMFWHM +=

Full Width at Half Maximum (FWHM) of a peak

Electronic noise: 
~100 eV

Mn K @ 5.895 keV

FWHMDet = 120 eV

FWHMElec = 100 eV

=> FWHMPeak = 156 eV
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Mn K, 5.895 keV

Energy, keV

EF 3548.2

Intrinsic contribution:

    Energy to create e-h pair (3.85 eV)

 F   Fano factor (~0.114)

 E  x-ray energy in eV
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❑ Cr-Mn-Fe overlap at ~160 eV
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Overlapping of As-Kα (about 10.54 keV) and Pb-Lα lines (about 10.55 keV)

Binding energies:

As-K = 11.87keV

Pb-L3 = 13.04keV
Pb-L2 = 15.20keV
Pb-L1 = 15.86keV
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❑ Case of strong overlapping

Arsenic can be easily quantified at synchrotron using an energy
11.87 keV < E < 13.04 keV
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Considers the enhancement of x-ray production of element i by the 
characteristic of other major elements j present in the sample and 
having characteristic energies larger than absorption edge of 
element i

( )00 EI Is the probability distribution by energies of the excitation radiation

Is the efficiency of the detector for energy Ei
( )iE

G Is the overall effective solid angle for excitation and detection

❑ The Shermann-Nikina formulae 
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𝐾𝑖 =
𝐽𝐾

𝑖 − 1

𝐽𝐾
𝑖

𝜔𝐾
𝑖 𝑓𝐾𝛼

𝑖 𝜏𝑖 𝐸0
Contains all the fundamental parameters for specific k-line of element i

𝐴𝑆 𝐸0, 𝐸𝑖 =
1 − 𝑒−𝜒𝑆 𝐸0,𝐸𝑖 𝜌𝑥

𝜒𝑆 𝐸0, 𝐸𝑖

Takes into account the attenuation of both excitation and fluorescent radiation
in the sample
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Refractive index: 𝒏 =
𝒄

𝒖𝒑

β = Attenuation term

δ = Phase term
𝑛 = 1 − 𝛿 + 𝑖𝛽

X-ray optics
❑ X-ray optics
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Snell Law

𝜗𝑐𝑟𝑖𝑡(𝑑𝑒𝑔) ≈
1.651

𝐸(𝑘𝑒𝑉)

𝑍

𝐴
𝜌(

𝑔

𝑐𝑚3) 

𝑛 ≈ 1 − 𝛿 

𝜗𝑐𝑟𝑖𝑡 = 2𝛿 
Z: Atomic number
A: Atomic mass
ρ: Density

sin 𝜙2

sin 𝜙1
=

1

𝑛
 ⇒  sin 𝜙2 =

sin 𝜙1

𝑛
 ⇒ 𝜙2> 𝜙1

❑ X-ray total reflection

θ < θc

φ1

φ2

φc

Reflectivity  1

Glass

θc
φ2=90ο

θ
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Formation of X-ray Standing Wave 
(XSW) at grazing incident/exit angle

Electric Field Modulations above 
the surface

❑ X-ray Standing Wave

The X-ray fluorescence intensity 

from the sample depends on the 

varying field intensity of the XSW 

field within the sample

Incident beam Reflected beam
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❑ GIXRF and XRR

A more accurate and robust reconstruction of these thin film properties 

requires the synergy or even the simultaneous fitting of GI-XRF with X-ray 

reflectometry (XRR) data

By varying continuously the grazing 

incident angle through and few times 

above the critical angle for TR, the 

recorded XRF intensity profiles (Grazing 

Incidence-XRF analysis) have the 

potential to provide information on 

structural and compositional properties 

of thin films, such as the layer 

composition, sequence, thicknesses 

and densities, interface roughness, in 

depth elemental gradients of matrix 

elements or dopants in semiconductors, 

characterization of nano-particles 

deposited on flat surfaces, etc 
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TXRF is essentially an energy 
dispersive XRF technique 
arranged in a special geometry.

Due to this configuration, the 
measured spectral background in 
TXRF is less than in conventional 
XRF. This reduction results in 
increased signal to noise ratio.

TXRF is a surface elemental 
analysis technique often used for 
the ultra-trace analysis of 
particles, residues, and 
impurities on smooth surfaces.

❑ Total reflection X-ray Fluorescence
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The joint IAEA-Elettra
XRF beamline
at Elettra Sincrotrone Trieste
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Source Bending magnet

Flux 1010ph/s (at 5 keV for 2.0 GeV, at 10 keV for 2.4 GeV) (Si 111)

Spot size 250 x 100 (H x V) μm2

Beam divergence < 0.15 mrad (at exit slits)

Werner Jark, Diane Eichert, Lars Luehl, Alessandro Gambitta, Optimisation of a compact optical system for the beam transport at the x-ray fluorescence beamline 
at Elettra for experiments with small spots, Proc. SPIE 9207, Advances in X-Ray/EUV Optics and Components IX, 92070G, 2014; doi: 10.1117/12.2063009

❑ Optical layout
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Optics type E range (keV) E resolution (DE)

Si(111) 3.6 - 14 ~ 1 eV at 7 keV

InSb(111) 2.0 – 3.8 ~ 1eV at 2.2 keV

ML: High E (RuB4C) 4.0 – 14.0
~ 55 eV at 1 keV
~ 180 eV at 14 keV

ML: Medium E (NiC) 1.5 – 8.0

ML: Low E (RuB4C) 0.7 – 1.8

Werner Jark et al., Proc. SPIE 9207, Advances in X-Ray/EUV Optics and Components IX, 92070G, 2014; doi: 10.1117/12.2063009

❑ The monochromator at XRF
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Andreas G. Karydas et al., J. Synchrotron Rad. (2018). 25, 189–203

Available detectors:
• Diamond detector for I0

• SDD detector for XRF (different variants) and XAS (in 
fluorescence geometry)

• Photodiodes for XAS in transmission geometry
• Photodiodes with 100 and 200µm slits and SDD for XRR 

The IAEA end-station is based on a prototype design by Physikalisch - Technische 
Bundesanstalt (PTB, Berlin) and Technical  University of Berlin (TUB)

❑ IAEAXspe endstation
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❑ 7-Axis Manipulator

Sample arm
• 3 linear stages (X, Y, Z)
• 2 goniometers (Theta, Phi)
Photodiodes arm: 
• 1 linear stages (diode)
• 1 goniometer (2Theta)

• Sample can be moved in various directions/ 
orientations with respect to the exciting X-
ray beam or with respect to the detectors. 

• Ultra Thin Window (UTW) Bruker Silicon 
Drift detector (30 mm2, FWHM 131 eV @ 
Mn-Ka), Si photodiodes

Full step resolution
Linear axes: Diode, X, Y, Z  (0.005mm, 0.005mm, 0.0005mm, 0.01mm)
Goniometers: Theta, 2theta, phi (0.001°, 0.001°, 0.005°)
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• Materials Science: Structured materials for 
energy storage and conversion technologies

• Nanomedicine - Biosensing technologies 

• Environmental monitoring (air particulate 
matter, water)

• Biological: Elemental distribution/ 
speciation on plant organ (leaves, roots, 
shoots, seeds, etc.) 

• Cultural Heritage –preventive conservation

• Food products security – Authenticity

• Determination of X-Ray Fundamental 
Parameters

❑ IAEA Coordinated Research Project
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©Schematic by Alessandro 
Gambitta and Elettra

20μm IF-1 Beryllium 
Luxel Corporation 

❑ non-UHV compatible samples
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❑ Geometries and techniques

Elemental characterization Mapping

X-ray Absorption Spectroscopy 
(on hot spots)
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45

Trace element analysis
Surface contamination

Depth profiling 
measurements

❑ Grazing angle geometries

X-ray Absorption Spectroscopy 
(in TXRF geometry)
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C. Streli, P. Wobrauschek, F. Meirer and G. Pepponi, 
Synchrotron radiation induced TXRF, J. Anal. At. Spectrom., 
2008, 23, 792–798, DOI: 10.1039/b719508g

❑ Detector geometry for TXRF

Good excitation
No scattering
Poor detection

Poor excitation
No scattering
Good detection

Good excitation
Scattering
Good detection

The beam is naturally vertically collimated (0.1-0.2 
mrad) and has linear polarization in the orbit plane 
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Prepared and 
characterized by 
AXO Dresden
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Fit Nominal

Ti (nm) 7.0 6.4

C (nm) 51.5 48.9

❑ GIXRF: C/Ti double layer
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Multilayered 
sample, 
prepared by 
the Ramanna 
Center for 
Advanced 
Technology, 
Indore, India
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'B4C'/'W' multilayer

Layer 
Material

Periodicity
Thickness 

(nm)
Roughness 

(nm)
Density 
(g/cm3)

B4C

W
14

1.9 ± 0.1

2.4 ± 0.2

0.2 ± 0.1

0.3 ± 0.1

2.10 ± 0.2

16.0 ± 0.2

B4C

W
1

2.1 ± 0.6

3.6 ± 0.3

0.45 ± 0.2

0.55 ± 0.2

2.3 ± 0.2

15.5 ± 1.0

SiO2 1 2.0 ± 0.3 0.5 ± 0.2 2.0 ± 0.3

Electric Field Intensity (Normalized) 

❑ W/B4C multilayered (x15) thin film 

good agreement with previous analyses performed at the BL-16 beamline 
of Indus II
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Sampling of size 
fractionated
aerosol, down 
to 0.07um size 
20-3200 L of air

Deposited particles form a 
stripe of 200-500 µm width 
on  the 20x20 mm2 Si wafer

9-stage May-
type cascade 
impactor

Sample geometry well suited to 

SR-TXRF-XANES investigations!

❑ Zn speciation in fractionated APM

J. Osan, Environmental Physics Department, 
Centre for Energy Research, Budapest, Hungary

Sample: Paks (Hungary), 0.3–0.6 µm, 
Zn content: 74 ng/m3  (28.5 ng on 20 mm 
strip)

38% ZnSO4, 40% ZnS, 23% Zn in glass*

Main source: Iron smelter
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Sample: Budapest (Hungary), 0.15–0.3 µm, 
Zn content: 239 ng/m3  (84 ng on 20 mm 
strip)

47% ZnCO3, 32% ZnS, 22% Zn in glass*

Main source: Burning of painted wood*Self-absorption correction as described in: Osán J et al., 
Spectrochim Acta Part B 65 (2010) 1008-1013
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❑ Aerosols from 3D metal printing

Figure courtesy: Attila Nagy, Wigner FK, Budapest, Hungary

Additive manufacturing
using laser cladding

Most of emitted aerosol
particles are in the
ultrafine range
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 Cr aerosol

 Cr steel

 Cr6+

 Mn aerosol

 Mn metal

 Fe aerosol

 Fe steel

 Ni aerosol

 Ni steel

Cr oxidized – oxidation number ~+1.0
No significant amount of Cr6+ detected

Mn mostly oxidized –
oxidation number ~+2.3

Fe slightly oxidized –
oxidation number ~+0.7

Ni mostly metallic –
oxidation number ~+0.1

XANES: Elettra XRF and XAFS beamlines

S. Kugler et al., Spectrochim. Acta Part B 2021, 177, 106110

Oxidation number increases with 
decreasing particle diameter – important 
for estimation of health effects  
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stipe

K. Vogel-Mikuš 1,  P. Kump2, I. Arčon3

1 Biotechnical faculty, University of 
Ljubljana, 2Jozef Stefan Institute, 
3 University of Nova Gorica

Hg is bound to tetra-cysteine proteins (metallothioneins). These proteins are digested by enzyms in 
the stomach and Hg is released and absorbed in our body. 

❑ Se and Hg in edible mushrooms
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thickness ca. 10-40 μm

Taranto Archeological 
Museum Apulo f.r.  
Anonymous (Half IV 
cent. b.C.)

Taranto 
Archeological
Museum
Meidias (420-
400 b.C.)

Centroid1
 (eV)

Centroid2 
(eV) Fe+3

Attic
(0.995) 7111,45 7113,20 0.43

Imitation
(0.998) 7111,42 7113,12 0.47

7113,42 eV

Red Clay

P. Romano, C. Caliri
INFN-LNS, Catania, Italy

Pre-peak analysis Fe XANES

❑ GI-XANES on Black Glaze
Fe-based decorations of Ancient ceramics manufactured in South Italy

Fe(II)   Fe(III)
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Absorption edges of Pt and Au
Pt Au

Z 78 79

L1 (keV) 13.88 14.353

L2 (keV) 13.273 13.734

L3 (keV) 11.564 11.919

❑ Analysis of gold samples

Incident energies employed: 11600, 11650, 11700, 11800 eV

Synchrotron XRF spectra of pure (99.99%) 
thick (thickness 25 μm) gold samples

Courtesy of A.G.Karydas, (National Center for Scientific Research "Demokritos", Greece)

11800eV11650eV

11600eV
11700eV

RRS-L3M4,5=Eo-M4,M5

RRS-L3M1

Eo-3424.9eV

RRS-L3N5

Eo-333.9 eV

Eo elastic 

scattering
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Pt La: 9.44 keV

Au alloy with Pt
Au alloy without Pt
99.99% Au

Eo=11600 eV @Elettra
Pure gold spectrum vs. Gold alloy with 0.15% Pt
(Au:65.56%, Cu:25.21%, Ag:9.08%) and vs. 
a different certified alloy of similar composition 
without Pt
11600 eV > Pt(U_L3)=11564 eV



❑ Joint IAEA-Elettra training

School on Synchrotron Light Sources and their Applications, 13-24 January 2025

The next training will be announced soon and will be held in the period
26-30 May 2025
SISSI beamline (FTIR microscopy) will replace MCX beamline (X-ray diffraction)



Thanks for your attention!

Alessandro Migliori

a.migliori@iaea.org

https://nucleus-new.iaea.org/sites/nuclear-instrumentation/Pages/Home.aspx

https://www.elettra.trieste.it/lightsources/elettra/elettra-beamlines/microfluorescence/x-ray-fluorescence.html

mailto:a.migliori@iaea.org
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