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The photoemission experiment
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The “three step model
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energy is changed by the difference in
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Schematial representation of the & et !.imuum
three step model. The numbers & T
denote: g @ T
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electromagnetic wave at the A N |
surface ' |
2) penetration of the photon into : |
the solid ® |
3) photoexcitation E,, ' | from
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photoelectron to the surface, Va|ence ba% ///Z
5) diffraction of the electron wave 7%

=T




The total photoemission intensity from species i is obtained by integrating:

incoming flux
& absorption

dN; « (no. of atoms of species i at xy=z) !
coefficient
relevant for (photon flux at x,y,z) <— Clectron mean
the choice | x(differential cross-section of relevant level of species ) free path
of photon
energy! ‘

(
x(acceptance solid angle of electron analyzer)
(

x(detection efficiency)

species i at xyz




The incoming photons

UV to soft x-rays ( hv ~10 to ~1500 eV
or A~1240to~5A)

- Laboratory sources (relatively cheap) use characteristic
transition lines:

— noble gas discharge (e.g. Hel _=21.22 eV)

— LASER sources (few tens eV)
— solid target emission lines (Al K_=1428 eV; Mg K_=1253 eV

- Synchrotron radiation (expensive!) gives tunable,
polarized and bright radiation



The spherical electron energy analyser
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Position sensitive detection




State-of-the-art
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Parallel multi-angle recording

e Improved energy resolution

e Improved momentum resolution Z /
e Improved data-acquisition efficiency g,
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Peak Brilliance (Photons/s/mmz/mrad2/0-1 %bw)
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Cross Section (Mb)
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Photoemission atomic cross section
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Step 1: photoexcitation

The single particle Hamiltonian of an electron in an external electromagnetic field is:

H=—1/|p+e —e¢(7,t)+V(?)

where the electric and magnetic fields are given by:

— 104

E=-V¢-———"—

c Ot



Step 1: photoexcitation

When no external charges or currents are present, is is customary to define vector and
scalar potentials in the so called “transverse gauge”:

V-A=0
qﬁ:

O}l

which, inserted into Maxwell’s equations give that the vector potential satisfies the
equation:

—

c2 012



Step 1: photoexcitation

By expanding the hamiltonian, we can write the Schrdodinger equation:

2m 2mc 2mc?
~0

1 ) e e S SN e ) N
—p~+ <p-A+A-p) A+V(r) w = Ey

The square term in the vector potential can be neglected

Moreover because of the transverse gauge we have that

So: [% L <13’.X+X- )+ € +V(7)]l//=E1//




Step 1: photoexcitation

Which means that we can write the hamiltonian in the form

in which H, is the perturbation due to the external electromagnetic field, given by:
e — _ ieh - —
H=—A p=——A"
mc mc

Since the vector potential satisfies the wave equation, it can be expressed as a
superposition of plane waves:

A = ZZ’we-i@'?-wt) +c.c.
w



Step 1: photoexcitation

From the expression for the vector potential

A = Z A e i@ T-o) 4o ¢
0]
and reminding that in our gauge
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we get immediately



Step 1: photoexcitation

The Fermi golden rule gives the transition probability per unit time from a the initial
state / to the final state fas:
W =—

S <f‘H1‘ i>

2
e —
=2ah | — A,-
mc
The oscillating term is in the second order approximation

@)

——+o(@7)

The modulus of the wave vector, Igl is given by 2r/A . For example at 100 eV its value
iS Iql(hw=1OOeV)zO.05A-1: the scalar product is negligible in the region where the wave

2
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Step 1: photoexcitation

We can therefore write the transition probability in the dipole approximation as:




Step 1: photoexcitation

Since |f) and |i) are eigenstates of the unperturbed hamiltonian and:

p.Hy| = —in VV(7)

we can write

dipole velocity

dipole acceleration

dipole length




We define the photoionization cross section:

P (ha))

a(ha)) - I(ha))

where P(hw) is the number of photons absorbed by one atom per unit time at photon energy

hw (photss1) and /(hw) is the incident photon flux (photss1xcm-2)

For a medium with n atoms per unit volume and photons traveling a distance dx

dl

= —nodx

or

I(X) — ]Oe—I’ZGX

O is generally measured in Megabarn (Mb, 1Mb=10-18cm2)



Cross Section (Mb)
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For a spherically symmetric system (isolated atom) the initial and final states can
be expressed as product of a radial and angular part:

P, () = R (N Yy (7)

W, (F) =4z ), v (k) i7le™R] () ¥, (7)
L

The ¥:can also be written as

-

e lkf’ r

PV (F) = e 4 f (Ef’ %f>

r



For spherically symmetric systems (free atoms) the well known selection rules (Al=+/)

apply.
One can write the intensity for emission at a given angle y from the polarization of the
beam in the following form

do, (hw) o, (hw)

1+ P, (cos >>]

dQ 4
5 This term controls the weight
p _ 3 cos (7’> — 1 of Al =+1 and Al =-1 channels
»(cos (7)) =
2 -1=sp =2

At y=54.7" (magic angle) P,=0: the measurement is independent of f3
For [=0 (s levels) p=2



For =0 (s levels) =2 107

do,—o (hw C,—0 (A 2
= (o0

05T
The angular pattern of photoelectrons

emitted from an s level is peaked along
the polarisation direction and has a p
level like shape

-1.0 —



Example: the Ag 4d level

(from J.J. Yeh: “Atomic calculation of photoionization cross sections and asymmetry parameters”,Gordon Breach)

” I I 1 T T I —— 2.0

10 1.5

T 1] IIITIISI
|

]

o (Mb)

IIIII]I

0.1

LI}

T

Ll
b —

Cooper minimum

1

| | | | | | | 1.0
200 400 600 800 1000 1200 1400

Photon energy (eV)



The Cooper minimum
is due to a node in the initial state
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https://doi.org/10.1103/PhysRev.128.681

Example: the Ag 4d level

Ag4d
— intensity at y=90"
— intensity at the magic angle
— ratio
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Left: series of normal emission spectra from a freshly cleaved i-Al-Pd—Mn sample recorded at normal emission for photon energies
from 70 to 195 eV. The peak which is strongly suppressed at higher photon energies is attributed to emission form the Pd 4d level.

Right: atomic photoionization cross sections o(” hw) or the Al, Pd and Mn states, calculated within the Hartree—Fock—Slater scheme
by Yeh and Lindau showing the strong Cooper minimum in the Pd 4d line
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Valence band angle resolved
photoemission (ARUPS)

- Bulk and surface states
» Band mapping



WAVE FUNCTIONS AT THE SURFACE
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Schematic representation of the wave
functions of initial states (a), (b) and (c),
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optical transitions giving rise to
photoelectron emission. States (c) and (f)
correspond to bulk Bloch states hardly
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and the case of band-gap emission.
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Photoexcitation process: Momentum conservation

Photon Momentum pP=hq=h/A

Photon Energy E=hv=hc/A
Typical photon _ 27r£ — Y E[eV]
wavenumber e~ 7712400 [eV - A]

=.01to.05 A" (for £ =20to 100 eV)

= The photons impart very little
momentum in the photoemission
} 20-100 eV process,i.e. vertical transitions

= Therefore photon-stimulated
transitions are not allowed for

free electrons (energy and momentum
k conservation laws cannot be satisfied

at the same time).




In order to satisfy both energy and momentum conservation
The role of crystal translational symmetry is crucial
— i.e. no photoemission is allowed from truly free electrons.

E

G=2m/a

E=E+hv & k=k+G



Direct transitions

Electron energy




At the surface the crystal symmetry is conserved in the surface plane but
is broken perpendicularly to the surface: the component of the electron
momentum parallel to the surface plane (k) is conserved, but k | is not

The potential barrier at the surface slows the electron
in the direction normal to the surface.

@—» k,
V,=Surface
—> potential step
ceoe “inner potential”

Free-electron final state model

We match the free-electron
parabolas inside and outside
out the solid to obtain the

V, wavevector k inside the solid




Momentum conservation

The surface breaks the translational symmetry along'\ n

n h2 :ZCZ Outaoi
Conserved (i.e. = k., in the sample) 4 N Ek = —— utgoing
k 2m electron
§ .—— NOT Conserved
¢_~<8

Oriented single
crystal




Band mapping: GaAs
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At the surface the crystal symmetry is conserved in the surface plane but
is broken perpendicularly to the surface: the component of the electron
momentum parallel to the surface plane (k) is conserved, but k, is not

Kinematic relations

kout hQ Ekzn
2m*
kzn — \/ 72 (Ekzn + %)
kout| = kin|| = K|
“Snell’s law”
. 2m* _ 2m*
k) = sin 0y ?Ekm = sin 6;, 2 (Erin + Vo)

Critical angle for emission from bulk states

Ek:in
sin 6;,, =
( Jmaa \/Ek:zn + Vo



State-of-the-art
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Parallel multi-angle recording

e Improved energy resolution

e Improved momentum resolution Z /
e Improved data-acquisition efficiency g,
AE (meV) A6 §
past 20-40 2°
now 2-10 e ‘

Binding Energy

courtesy of A. Damascelli
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Angle-resolved photoemission from (quasi) 2D systems: a simple picture

electron
analyzer

* measure Eyj, O, ®.

2m .

k, =]f? sm@cosd)‘[ Eiin
2m . .

ky =]’? sin @smd)‘[Ek,-n

obtain Epjn(ky,ky), i.e. the occupied
band structure

Example: Cu(111) surface state
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Shockley Surface States of Noble Metal (111) Surfaces
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Figure 1| Observation of a gap opening in hydrogenated graphene. a-c, Photoemission intensity along the A-K-A' direction of the Brillouin zone

(see inset) for clean graphene on Ir(111) (a), graphene exposed to a 30 s dose of atomic hydrogen (b) and graphene exposed to a 50 s dose of atomic
hydrogen (c).
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structures for graphane-like islands with medium and high hydrogen coverage. Filled and empty bands are shown in red and green, respectively. For
comparison, the band structure of intact graphene is shown in grey (dashed). ¢, Bandgap opening as a function of hydrogen coverage. A maximum of
0.77 eV is reached with 54% coverage (corresponding to 27% top site coverage). d, Adsorbate structures composed of increasing amounts of hydrogen
pairs in para and ortho dimer configurations. e, Band structures with and without ortho-hydrogen dimers. f, Bandgap opening as a function of hydrogen
coverage. At 23% coverage a bandgap opening as large as 0.73 eV is obtained. In b,c,e and f, numbers 1-5 refer to absorbate structures formed by
hydrogen atomes at all the positions marked by the corresponding numbers in a and d respectively.
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Core level photoemission (XPS or ESCA)

» Element specificity

- Sensitivity to chemical environment
— the core level shift

* Photoelectron diffraction
- Examples
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Each element has a specific set of accessible core levels

K L-1I L-11 L-111 M-I M-11 M-111 M-IV M-V
1s 2s 2pl/2 2p3/2 3s 3pl1/2 3p3/2 3d3/2 3d5/2

1 H 13.6

2 He 24.6*

3 Li 54.7*

4 Be 111.5%

5 B 188*

6 C 284.2%

7 N 409.9* 37.3*

8 0 543.1* 41.6*

9 F  696.7*

10 Ne 870.2% 48.5* 21.7* 21.6*
11 Na 1070.8+ 63.5+ 30.4+ 30.5*
12 Mg 1303.0+ 88.6* 49.6+ 49.21

13 Al 1559 117.8* 72.9* 72.5*
14 Si 1839 149.7*b  99.8* 99.2*
15 P 2145.5 189* 136* 135*
16 S 2472 230.9 163.6* 162.5*
17 Cl 2822 270* 202* 200*

18 Ar 3205.9* 326.3* 250.6+ 248.4* 29.3* 15.9* 15.7*
19 K 3608.4* 378.6* 297.3* 294.6* 34.8* 18.3* 18.3*
20 Ca 4038.5* 438.4+ 349.7+ 346.2+ 44 3+ 25.4+ 25.4+

21 Sc 4492 498.0* 403.6* 398.7* 51.1% 28.3* 28.3*
22 Ti 4966 560.9+ 460.2+ 453.8+ 58.7+ 32.6+ 32.6+
23 V 5465 626.7+ 519.8+ 512.1+ 66.3+ 37.2+ 37.2+
24 Cr 5989 696.0+ 583.8+ 574.1+ 74.1+ 42.2+ 42.2+
25 Mn 6539 769.1+ 649.9+ 638.7+ 82.3+ 47.2+ 47.2+
26 Fe 7112 844.6+ 719.9+ 706.8+ 91.3+ 52.7+ 52.7+
27 Co 7709 925.1+ 793.2+ 778.1+ 101.0+ 58.9+ 59.9+
28 Ni 8333 1008.6+ 870.0+ 852.7+ 110.8+ 68.0+ 66.2+
29 Cu 8979 1096.7+ 952.3+ 932.7 122.5+ 77.3+ 75.1+
30 Zn 9659 1196.2* 1044.9* 1021.8* 139.8* 91.4* 88.6* 10.2* 10.1*

31 Ga 10367 1299.0*b 1143.2+ 1116.4+ 159.51 103.5+ 100.0+ 18.7+ 18.7+
32 Ge 11103 1414.6*b 1248.1*b 1217.0*b 180.1* 124.9* 120.8* 29.8* 29.2*
33 As 11867 1527.0*b 1359.1*b 1323.6*b 204.7* 146.2* 141.2* 41.7% 41.7*
34 Se 12658 1652.0*b 1474.3*b 1433.9*b 229.6* 166.5* 160.7* 55.5% 54.6*
35 Br 13474 1782* 1596* 1550* 257% 189* 182* 70% 69*
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The photoemission spectrum of
a “dirty” aluminum sample is
dominated by the oxygen 1s
level. The core levels of
oxidized aluminum show a shift
with respect to the metal.
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A particular case of core level shift: the
surface core level shift

Rh 81 00) 3ds.2
T=20 K
hV=398 eV
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The Doniach-Sunijié lineshape
J. Phys. C 3, 285 (1970)

y(E) = =) % + (1 — a)arctan (EM

(B2 +72)" =" Y



The
Doniach-
Sunjié
lineshape

J. Phys. C 3, 285
(1970)
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Reactions on surfaces

1

r

2
3
TN
- Distinguish 7 (CO on top) from 2 (CO on a
bridge site) and from 3 (dissociated CO)

*Follow changes from 7 to 2 and/or to 3



Photoemission Intensity [arb. units]

The surface core level shift

Rh (100) 3ds-
T=20 K
hV=398 eV
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Identification of adsorbate bonding
by changes in the substrate Surface
Core level Shift

Evolution of the del SCLS of low Miller indices Rh surfaces
as a function of O, dose
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Rh(111): evolution of the Rh 3d., peak during exposure to O,
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Combination of XPS, NEXAFS, Raman and STM showing the
correlation of structural changes at the graphene/ Ge(110)
interface. In particular it was found that defects are formed upon
annealing and that they are due to Ge(110) surface
reconstruction upon release of Ho
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BACH (applied Surface Science 602 (2022) 154291)
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XPS spectra measured at room temperature with a photon energy of 400 eV at emission angle 60° as a function of the annealing temperatt
C 1s (upper panels) and Ge 3d core levels (lower panels). Experimental datapoints are shown as dots; green continuous lines are the fits tc
experimental data obtained with the components displayed as coloured shaded areas.
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Photoemission microscopy:
spatial+chemical information



Why Microspectroscopy and
Spectromicroscopy?

* elemental resolution:

quantify composition of sample with lateral
resolution

 chemical information:

characterize chemical environment

« further information on:

Magnetism
different type of bonding (e.g. &, o bonds)

L _ orbital alignment
* combination with other microscopy tecgig¥®snic structure



Concepts to achieve spatial resolution

a) u-spot illumination b) homogeneous illumination
+ imaging system
1) i .
optics sample

2 x-ray
optics sample x-ray detector

imaging x-ray detector



Scanning versus full field imaging transmission
microscopy

Scanning Sample

OSA ‘

Monochromatic
light

Photo-emission
detector

+ versatile detectors can be run
simultaneously

+ low demands in the optics setup
+ SPEM possible
- long exposure times

- complex electronics

(scanned) Detector

Sample
@ v % Aperture
L\ )|

Full-field imaging

ZP

Monochromatic e~ |

+ short exposure times

+ access to X-ray tomography in
combination with spectro-microscopy

+ highest resolution due to static system

- complex optical alignment



Scanning Photoemission Microscope

sample
v A focussing optics monochromatized x-rays
» R N

emitted photoelectrons

«
4

hemispherical analyzer

computer

()

channeltron
or channel-plate

=

counts/sec

o

scanning control
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SPEM color-coded elemental maps of
selected areas of (a) the CHT and (b)
the DCT sample before (top) and after
(bottom) tempering. The white circles
indicate the exemplar positions probed
for point-analysis with XPS. (c)-(e) XPS
chemical spectra of the larger MC (top)
and M6C (bottom) carbides before (dark
color) and after (red color) tempering,
for (c) C1s (d) V2p and (e) Fe3p, Cr3p,
V3p and W4f. The data represents the
chemical state of both carbide types for
both CHT and DCT samples.
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Applied Surface Science 610 (2023) 155497 )
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SpectroMicroscopy
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Domain Dependent Fermi Arcs Observed in a Striped Phase

Dichalcogenide

Takashi Mizokawa,* Alexei Barinov, Viktor Kandyba, Alessio Giampietri,
Ryoya Matsumoto, Yohei Okamoto, Kou Takubo, Koji Miyamoto, Taichi Okuda,

Sunseng Pyon, Hiroyuki Ishii, Kazutaka Kudo, Minoru Nohara, and Naurang L. Saini*

Solids undergoing symmetry breaking phase transitions commonly exhibit
domains of low symmetry phases with various sizes and morphological
shapes. Usually, the shapes of these domains are not directly related to the
nature of symmetry breaking. Here, an interesting example of a layered
dichalcogenide with a triangular lattice is shown, in which symmetry breaking
of electronic charge/orbital is accompanied by formation of striped domains
and exotic surface states with peculiar spin textures. Using angle-resolved
photoemission spectromicroscopy, the mesoscopic striped domains in the
layered IrTe, are observed across the first order phase transition at ~280 K.
Under further cooling down to 47 K, the striped domains evolve into
trijunction domains with electronic anisotropy in three directions. Each
domain harbors quasi 1D surface bands forming fragmented Fermi surfaces
(Fermi arcs) with peculiar spin polarization revealed by spin-resolved
photoemission spectroscopy. The Fermi arc corresponds to an edge state of
the 2D bulk electronic bands truncated at the surface, indicating an
interesting interplay between the symmetry breaking, surface electronic
structure, and the spin state.

1. Introduction

Domain structures in bistable or polystable
electronic systems exhibit various mor-
phological shapes that have been one
of the subjects of frontier research in
fundamental science of advanced mate-
rials. Some fascinating examples include
the topological domain textures in multi-
ferroic YMnO,!"?! and antiferromagnetic
Fe,0,%! revealed by electron microscopy
and photoemission electron microscopy.
Other interesting examples are the anti-
ferromagnetic Nd, Ir,0,*l and multiferroic
BiFeO, > showing domain wall properties
discovered, respectively, by scanning mi-
crowave impedance microscopy and con-
ductive atomic force microscopy. In systems
showing Mott transitions and colossal mag-
netoresistance, metallic and insulating do-
mains have also been disclosed by photoe-
mission spectromicroscopy.’#! In general,

mesoscopic domain structures of symmetry-broken electronic
systems are not directly related to the nature of the broken sym-
metry itself but determined by the interfacial energy minimum.
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SpectroMicroscopy

20um

20um

K‘(Ay' kx(A" 0.2 0.0 ZTA" 04 06
(a) Three directions of the striped charge ordering in the IrTez layer. (b) Three directions of the Fermi arcs in the Brillouin zone corresponding to
the three directions of the striped charge ordering. The dotted curves schematically show the bulk Fermi surfaces. (c) Photoemission intensity
image of the wide area at 250 K. (d,e,f) Photoemission intensity image of the selected area at 250 K, 120 K, and 47 K. (g, h) Domain textures at
47 K visualized by different energy windows. All the images were taken at hv=27 eV with linear polarization (horizontal). (i, j, k) Domain textures
at 250 K, 120 K, and 47 K. The solid lines indicate domain boundaries. The arrows indicate the directions of charge/orbital stripes. (I, m, n)
Fermi surfaces of the three different domains at 47 K. The broken lines indicate Fermi arcs derived from the surface states.



The principle of photoelectron diffraction

Modulations in the intensity of
the photoemitted electron
wave are measured. For a
given arrangment of atoms, the
intensity depends on the
photon energy and on the
emission angle




Internal wave source




External plane wave source:
single crystal (long range order)

Internal spherical wave source:

1) Measure what happens at the absorber
(i.e. absorption)-» short range order

2) Measure outside the sample
(i.e. photoemission) = short range
order+same orientation at different sites
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Azimuthal scan



The basic scattering event:

emitter scatterer



Refraction at the surface




Sensitivity to structural parameters in different

modulation function

measurement conditions: clean Rh(100)
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“Fingerprinting”: CO/Pt(111)
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Probing the Atomic Arrangement of Subsurface Dopants in a Silicon
Quantum Device Platform

Hakon L Rest, Ezequiel Tosi, Frode S. Strand, Anna Cecilie Asland, Paolo Lacovig, Silvano Lizzit,
and Justin W. Wells*

Cite This: ACS Appl. Mater. Interfaces 2023, 15, 22637-22643 I: I Read Online

ACCESS | [l Metrics & More ’ Article Recommendations | @ Supporting Information

ABSTRACT: High-density structures of subsurface phosphorus dopants in silicon
continue to garner interest as a silicon-based quantum computer platform;
however, a much-needed confirmation of their dopant arrangement has been
lacking. In this work, we take advantage of the chemical specificity of X-ray
photoelectron diffraction to obtain the precise structural configuration of P
dopants in subsurface Si:P d-layers. The growth of o-layer systems with different
levels of doping is carefully studied and verified using X-ray photoelectron
spectroscopy and low-energy electron diffraction. Subsequent diffraction measure- 407 0 40 80
ments reveal that in all cases, the subsurface dopants primarily substitute with Si ©P  ©®Si  —[100] Polar angle [*]
atoms from the host material. Furthermore, no signs of carrier-inhibiting P—P

dimerization can be observed. Our observations not only settle a nearly decade-long debate about the dopant arrangement but also
demonstrate how X-ray photoelectron diffraction is surprisingly well suited for studying subsurface dopant structure. This work thus
provides valuable input for an updated understanding of the behavior of Si:P d-layers and the modeling of their derived quantum
devices.
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KEYWORDS: delta-layers, quantum electronic devices, quantum computing, photoemission, photoelectron diffraction
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SuperESCA (acs Appl. Mater. Interfaces 2023, 15, 22637-22643
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Angle-dependent photoelectron spectroscopy from a “double-dosed”, Si-encapsulated d-layer. (a) XPS of the P 2p peak, measured with
350 eV at normal (6 = 0°) and grazing (6 = 70°) emission and an integrated half-angle acceptance of <5°. P1 comes from P in the &-layer,
P2 and P3 from P near the Si surface. Both spectra have been scaled to the intensity of P2. (b—d) The measured (orange) and calculated (¢
XPD patterns for the peaks P1-P3 from the double-dosed &-layer system shown in (a). (e) The measured and calculated XPD from
corresponding Si 2p core level. (f) The measured XPD from P1 at hv = 250 eV, compared with XPD simulations of P—Si bonding
substitutional doping) within the &-layer. (g) The measured XPD of P1 at hv = 350 eV from (b), compared with XPD simulations of P—P bor

(i.e., dimerization) within the &-layer.
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________ ...____ .. Forward scattering
.. direction
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Azimuthal scan

Polar scan



Chemical shift
photoelectron diffraction



SCLS induced by CO on Pd(110)

A. Locatelli et al., Phys. Rev. Lett. 73, 90 (1994)
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- Basics
— Photoelectric effect
— Sources and electron analyzers
— A bit of quantum mechanics
— Photoemission cross section&Cooper minimum

 Valence band angle resolved photoemission
— momentum conservation
— band mapping

 Core level photoemission
— Element specificity
— Sensitivity to chemical environment
— Photoelectron diffraction
— Time evolution
— Microscopy



