
A Spatiotemporal Water Vapor–Deep Convection Correlation Metric Derived
from the Amazon Dense GNSS Meteorological Network

DAVID K. ADAMS

Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

HENRIQUE M. J. BARBOSA

Instituto de Fı́sica, Universidade de São Paulo, São Paulo, Brazil

KAREN PATRICIA GAITÁN DE LOS RÍOS

Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

(Manuscript received 12 April 2016, in final form 26 August 2016)

ABSTRACT

Deep atmospheric convection, which covers a large range of spatial scales during its evolution, continues to

be a challenge for models to replicate, particularly over land in the tropics. Specifically, the shallow-to-deep

convective transition and organization on the mesoscale are often not properly represented in coarse-

resolution models. High-resolution models offer insights on physical mechanisms responsible for the shallow-

to-deep transition. Model verification, however, at both coarse and high resolution requires validation and,

hence, observational metrics, which are lacking in the tropics. Here a straightforward metric derived from the

Amazon Dense GNSS Meteorological Network (;100 km 3 100 km) is presented based on a spatial corre-

lation decay time scale during convective evolution on the mesoscale. For the shallow-to-deep transition, the

correlation decay time scale is shown to be around 3.5 h. This novel result provides amuch neededmetric from

the deep tropics for numerical models to replicate.

1. Introduction

Deep precipitating convection dominates tropical me-

teorology and climate. Given the spatial and temporal

scales over which convection evolves and complex in-

teractions with dynamic and thermodynamic fields, it is a

challenging phenomenon to reproduce in numerical

models of all resolutions. Coarse-resolution models,

where convection is parameterized, have had difficulties

replicating the continental diurnal convective cycle as

well as convective organization on the mesoscale

(Bechtold et al. 2004; Grabowski et al. 2006; Folkins et al.

2014). Oftentimes, high-resolution models have been

utilized with the goal of ameliorating the continental

(tropics or midlatitudes) diurnal cycle or convective

organization deficiencies through improvements in

model parameterizations (Rio et al. 2009; Rieck et al.

2014).However, high-resolutionmodeling studies [cloud-

resolvingmodels (CRM) to large-eddy simulation (LES)]

have also been employed to infer the actual physical

mechanisms responsible for convective development/

organization (e.g., cold pools). The shallow-to-deep

convective transition (STD transition), which coarser-

resolution models often fail to replicate, has received

special attention. For example, modeling studies have

indicated that cold pool formation (Kuang and

Bretherton 2006; Khairoutdinov and Randall 2006;

Schlemmer and Hohenegger 2016), increasing cloud

buoyancy (Wuet al. 2009), cumulus congestusmoistening

(Waite and Khouider 2010), or large-scale vertical mo-

tions (Hohenegger and Stevens 2013) control the STD

transition. Nevertheless, these mechanistic deductions

from high-resolution models also require validation with

high spatial–temporal resolution observations.

Ascertaining the physical realism of models with do-

main sizes on the order of 100 km 3 100km requires
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corresponding mesoscale observations, which are typi-

cally lacking in the continental tropics. The Amazon

Dense GNSS Meteorological Network (ADGMN)

(Adams et al. 2015) was created precisely to investigate

mesoscale water vapor–convection interactions, specif-

ically, to examine the STD transition and to test for

responsible mechanisms. The ADGMN’s high temporal

and spatial meteorological data lend themselves to

metric creation to validate models, which motivates this

present study.

Although cloud-top temperature (CTT) from satel-

lite platforms can be used to evaluate cloud evolution (e.g.,

Hohenegger and Stevens 2013), metrics based onGlobal

Navigational Satellite Systems (GNSS)/global position-

ing system (GPS) precipitable water vapor (PWV) are

advantageous for several reasons. First, GNSS PWV

frequency (’5min) provides sufficient temporal reso-

lution for rapidly developing cumulus fields. Moreover,

GNSS PWV is all-weather accurate, including cloudy

and rainy conditions associated with deep convection.

Furthermore, PWV has a strong relationship with

tropical convective precipitation and has served as the

critical variable in numerous studies relating tropical

convection to thermodynamics (Raymond 2000;

Bretherton et al. 2004; Lintner et al. 2011; Hottovy and

Stechmann 2015; Schiro et al. 2016). Finally, in models,

PWV is a trivial variable to calculate unlike variables

derived from cloud microphysical parameterizations.

Since mesoscale observationally based metrics are in

short supply in the tropics, we propose a novel metric

based on spatial cross correlations for gauging the me-

soscale spatiotemporal evolution of Amazonian con-

vection. Similar to Adams et al. (2013), who used 3.5 yr

of GPS PWV from the Instituto Nacional de Pesquisas

da Amazônia (INPA) (see Fig. 1) to derive a ‘‘water

vapor convergence’’ time scale, we also focus on the

STD transition. Adams et al. (2013) inferred, based on

the observed joint evolution of cloud fields and PWV, a

characteristic STD transition time scale of ;4 h. Here,

the temporal evolution of the spatial correlation of

PWV fields is described with an exponential function,

providing a spatial correlation decay time scale; a useful

diagnostic for models. In what follows, we describe the

ADGMN, bring to light some ambiguities associated

with the definition of the STD transition, and present the

methodology for analyzing spatial correlation decay

time scales. Results focused on the seasonal and, par-

ticularly, the diurnal cycle are presented. Remarks on

FIG. 1. Map of the Manaus Dense GNSS Meteorological Network from April 2011 to April

2012. The color scheme represents the frequency of PWVdata (11 256 total data values) for the

67 convective events used in this study.GOAMdatawere not utilized. PDAQ failed inOctober

and was not utilized in the PWV anomaly plot (Fig. 4), but was used in correlation vs distance

statistics to better assess the data-denial tests.
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future studies with ADGMN data and expanding GNSS

meteorological networks in the tropics conclude

the paper.

2. Context and motivation, study site, data, and
methodology

a. Context and motivation

In its most generic form, the STD transition can be

idealized as the process of shallow cumulus, growing

into cumulus congestus, perhaps with showers, and fi-

nally morphing into deep precipitating convective

towers on typical time scales of 2–4 h (Wu et al. 2009;

Hohenegger and Stevens 2013; Adams et al. 2013).

However, perusal of the literature reveals rather varied,

and somewhat ambiguous, usage of the STD transition

concept, potentially leading to confusion. To contextu-

alize the present study and clarify the intended usage of

our derived metric, we divide STD transition studies

into three categories. These categories are neither ex-

haustive nor necessarily mutually exclusive, though

certainly nearly all studies could fit comfortably within

one. The first category, under which our study falls,

follows Zehnder et al. (2006), Zhang and Klein (2010),

and Adams et al. (2013), all observationally based

studies of continental convection. Here, a fixed geo-

graphical area (,50km) is observed instrumentally, an

Eulerian and decidedly mesoscale perspective, as ‘‘in-

dividual’’ convective events develop over it. The tem-

poral evolution of these convective events is typically

composited to derive transition time scales (Adams et al.

2013) or evaluate thermodynamic or environmental

conditions during the transition (Zehnder et al. 2006;

Zhang and Klein 2010). A second category, for which

our metric is intended, involves high-resolution models.

These CRM and LES modeling studies (;100 km 3
100km) probe the complete temporal evolution of

deepening cumulus cloud fields over an entire spatial

domain. Convective cloud ensembles, during their dif-

ferent phases, provide domain-averaged variables for

time-scale analysis and/or for inferring physical controls

on the STD transition (e.g., cold pools, a critical lapse

rate, congestus moistening, and dynamical lifting)

(Khairoutdinov andRandall 2006;Wu et al. 2009;Waite

and Khouider 2010; Hohenegger and Stevens 2013).

Oftentimes, a single criterion such as domain/ensemble-

averaged cloud growth rate (Wu et al. 2009) is employed

to signify that the transition has occurred. A third cat-

egory, often couched or framed in the language of the

STD transition, could more accurately be described as

suppressed versus convectively active conditions

(Sahany et al. 2012; Hagos et al. 2014; Powell and Houze

2015). This category of studies, both modeling (Kuang

and Bretherton 2006) and observational (Xu and

Rutledge 2016), are representative of much larger-scale

circulations and their dynamic and thermodynamic

conditions in which cumulus fields transition to deep

convection. Their ‘‘shallow-to-deep transition’’ takes

place on the order of days to greater than one week.

It should also be noted, however, that even the generic

definition of three well-defined cumulusmodes and their

evolution may be overly idealized (Kumar et al. 2013).

Consequently, we reserve some flexibility in defining the

STD transition, reflecting our approach and intent to

create an easily reproduciblemetric. As noted above, we

consider the time evolution of deep convective events

at a single site concomitantly with surrounding water

vapor fields. We do not discern the thermodynamic or

dynamic conditions leading to the transition nor

whether the convective event is associated with an al-

ready mature propagating mesoscale convective system.

Nevertheless, since our metric is derived from CTT

temporal evolution (‘‘warm’’ .280-K shallow cumulus

to ‘‘cold’’ ,235-K deep cumulonimbus), this ensures

some form of STD transition is captured during our

convective events (see section 2d).

b. Study site

The central Amazon, in and around Manaus (3.058S,
60.218W), represents a tropical rain forest climate with

rainfall throughout the year, but with a notable mini-

mum during July and August (Machado et al. 2004).

There is a marked diurnal cycle; however, larger-scale

synoptic forcing and/or long-lived mesoscale squall lines

modulate the convective timing and intensity (Williams

et al. 2002). Topographic relief is small (;150m). Nev-

ertheless, land surface heterogeneity due to river-forest

contrast generates favored zones of water vapor con-

vergence (Adams et al. 2015) influencing precipitation

timing and intensity (Fitzjarrald et al. 2008).

To derive metrics, long-term mesoscale observational

studies of tropical convection are necessary. The meso-

scale ADGMN (;100 km 3 100km) was created to

study the complex interactions between water vapor and

deep convection in a continental equatorial setting

(Adams et al. 2015). The ADGMN (Fig. 1) originally

consisted of 10 sites, expanding to 21 sites during the last

8months of the experiment.1 Because of the inaccessible

rain forest or seasonally flooded terrain surrounding

Manaus, sites were concentrated in the urban zone.

1 TheGOAmazon (GOAM) site created in anticipation ofARM

Mobile Facility deployment (2014–15) had only 4 months of data

and was excluded from the present analysis.
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Nevertheless, the network spanned the subtle topo-

graphic effects, including elevated forest transition sites

(EMBP, RDCK, RPDE, TRM3), low-lying rivers sites

(CTLO, CMP1, CHR5, EMIR, HORT, MNCP, MNQI,

PDAQ, TMB7), as well as a pristine rain forest station

(ZF29). Mean station separation is 41 km, the largest

(MNCP-RPDE) is 131 km and the smallest (INPA-

CHR5), 3.3 km. Station concentration in Manaus im-

plies highly correlated PWV, which is considered in

section 2c.

c. Data

Tropical water vapor observations capturing convec-

tive evolution are either too infrequent (e.g., radio-

sondes, polar-orbiting satellites), invalid, or of

questionable quality under cloudy/rainy conditions (e.g.,

vertically pointing microwave radiometers, satellite IR).

Condensate and precipitation effects at GNSS micro-

wave frequencies are small (Solheim et al. 1999) and the

accuracy of GNSS PWV relative to radiosondes and

radiometers (’1–2mm) has been well established

(Bevis et al. 1992; Rocken et al. 1993). Even in the high

humidity, logistically challenging environment of the

Amazon, GNSS PWV is accurate (Sapucci et al. 2007;

Adams et al. 2011a,b, 2015). The GNSS PWV observa-

tion cone (radius ;10km) and ADGMN site distribu-

tion permit capturing PWV field evolution from the

cumulus stage to cumulonimbus lines or clusters.

For the 21 stations, GNSS PWV was estimated every

5min with GPS-Inferred Positioning System and Orbit

Analysis Simulation Software (GIPSY-OASIS), utiliz-

ing geodetic-grade receivers and antennas and surface

pressure and temperature from collocated meteorolog-

ical sensors. Where meteorological sensors failed or did

not exist (only the NAUS site) pressure, using the hyp-

sometric equation, and temperature were interpolated

from the nearest station. The region’s homogeneous

temperature fields and flat topography ensure this in-

terpolation has negligible effects on PWV.

To identify deep convective events, INPA surface

precipitation as well as GOES-12 (10.7mm) satellite

data were employed. Since INPA failed at the end of

2011, Tropical Rainfall Measuring Mission (TRMM)

3B42 (3-h precipitation rate) from the 25km 3 25km

pixel centered over CHR5, the closest station, was used.

GOES-12 IR brightness temperature (i.e., CCT) was

calculated as the average of the 4 3 4 pixels (16 km 3
16 km) corresponding to the GNSS cone of observation

centered over INPA (2011) and over CHR5 (2012).

d. Methodology

For calculating correlation decay time scales during

the mesoscale evolution to deep convection, the

convective events were identified essentially following

Adams et al. (2013). A deep convective event was de-

fined as reporting precipitation and, minimally, a 50-K

fall in CTT in less than 2h to 235K or below. This def-

inition results in minimizing misidentification of strati-

form and showery congestus precipitation as deep

convective precipitation as well as ensuring that a shal-

low cumulus stage is observed. Likewise, these strong

CTT drops were associated with large upswings in PWV,

the peak of which was utilized as the temporal identifier

of the convective event origin (i.e., t 5 0). The time se-

ries of the correlation versus distance slope, based on

each time bin, was then extended backward 14h prior to

time of maximum PWV, as in Adams et al. (2013). This

implies covering the entire diurnal cycle, though here we

focus solely on the last 6 h, which contains the STD

transition. Over the 1-yr period of study, 118 days

reported some form of precipitation; however, only 67

deep convective events met these more stringent

criteria.

To quantify the spatiotemporal evolution of PWV,

cross correlations between stations were calculated in

30-min and 1-h bins. Each time bin correlation was

calculated from t 5 0 h (i.e., convective event occur-

rence) every hour or every 30min. For example, in the

first hour with respect to convective event occurrence;

that is, between t 5 0 and t 5 21 h, there are 12 total

5-min PWV values for each individual event. Given 67

convective events, this would then imply a maximum of

123 675 804 data points within that 1-h time bin to be

correlated with the corresponding t5 0 to t521 h data

points from a different station. This is then carried out

for every time bin, t 521 to t 522h, . . . , up to t 5213

to t 5 214h. With up to 20 other stations available for

cross correlation in the corresponding 1-h time bin, as

many as 231 correlation coefficients enter into the cal-

culation of the separation distance versus correlation

coefficient. In this way, the slope of correlation co-

efficient versus distance, for each 1-h bin, was estimated

(significant to the 95th percentile) from the fitted re-

gression line fixed at correlation coefficient R 5 1 at

distance x 5 0 (see Fig. 2). The change in slope of these

fitted regression lines, as a function of time, is then

evaluated. The resulting temporal evolution of spatial

correlation is described by a simple functional form

from which a time decay constant is derived, thereby

providing an easily replicable metric.

Taking into account the network’s irregular geo-

graphical configuration, the time evolution of the cross

correlations was checked for sensitivity to this spatial

distribution in two ways. First, as a direct approach,

five closely spaced and centrally located stations

(PDAQ, PNT8, RDCK, INPA, and NAUS) were
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removed and the calculations repeated. The average

station separation distance rose from 41 to 53 km, di-

minishing the influence of these highly correlated

stations. Second, we implemented a Monte Carlo ap-

proach in which one station was randomly removed

and the data resampled. The correlation slope with

distance for each time bin was recalculated for 100

trials. The time constant from the fitted function and

its associated uncertainties were evaluated for the 100

trials, and this was performed as 2 through 18 stations

were removed (see section 3).

Considering that varying conditions (e.g., surface

forcing or free-tropospheric thermodynamic struc-

ture) may influence the correlation decay time scale,

drier (July–December) versus wet season (January–

April), as well as the diurnal cycle of convection, were

examined. We provide more details on the latter in

section 3, given that the continental diurnal cycle and

specifically from the Amazon region (Betts and Jakob

2002a,b; Grabowski et al. 2006, among many others)

underpins much of the original STD transition re-

search; in addition to our goal of providing an easily

replicable metric.

3. Results and discussion

The 67 convective events occurred mostly following

the diurnal cycle (55 events) with two-thirds occurring

between 1200 and 1800 local time (LT) (44 events).

‘‘Nocturnal’’ convection (2000 LT through 1200 LT the

following day) consisted of only 12 events. For the

purpose of seasonal comparison, the wet season con-

sisted of 24 events while the drier seasons consisted of 27

without consideration for the time of occurrence. The 16

events occurring between April and July 2011 were not

included in the seasonal comparison since only 10GNSS

meteorological sites existed at that time.

Figure 2 displays the correlation coefficient as a

function of distance for 1-h time bins over the 67 con-

vective events. For visual clarity, and to focus on the

STD transition, only the 6h prior (t 5 26 to t 5 0 h) to

the convective event are displayed. This figure repre-

sents the time evolution of spatial correlations; that is,

the change in angle between the slopes for each time bin

represents the temporal evolution of spatial decorrela-

tion. The lines fitted to the correlation versus station

separation distance are fixed toR5 1 at x5 0. Although

scatter is large, the slopes calculated are all statistically

significant (95th percentile). As one considers pro-

gressively earlier times before the development of

convective activity (prior to t 5 26 h), the fitted lines

fall closely one upon the other (not shown), and cor-

relation decays only slightly (;0.15) over the maximum

separation distance of the network. Within t 5 0 h,

correlation decays rapidly to ;0.5 at the limit of sep-

aration distance (;150 km). When these slopes are

expressed as a function of time, the functional form

becomes apparent (Fig. 3). From the analysis of these

67 events, there is a nonlinear decay in correlation

beginning around t 5 24 h and only a weaker quasi-

linear decay back to t 5 212 h (Fig. 3). In this figure,

both 1-h and 30-min bins data are plotted making clear

that this temporal binning is unimportant. The error

FIG. 3. Temporal evolution of correlation vs separation distance

slope with exponential fit and error bars for 67 convective events.

Both 1-h (blue lines and circles) and 30-min (red line and 3
symbols) time bins are included for comparison purposes. Functional

form, average decay time scale, t, and 95th percentile confidence

intervals are shown.

FIG. 2. Scatterplot of correlation vs separation distance as

a function of different 1-h time bins, between t5 0 and t526 h for

the 67 events. The slope of the fitted lines is statistically significant

at the 95th percentile.
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bars represent the 95th percentile range for the corre-

lation versus distance coefficients used to derive the

slope (i.e., the lines in Fig. 2). Fitted with an expo-

nential function, a correlation decay time scale of

;3.5 h is revealed.

Solely for visualization purposes, PWV anomaly fields

from t 5 25 to t 5 0 h are shown in Fig. 4. Anomalies

were calculated by subtracting the average (over all

stations and all times) from the 1-h bin average of the 67

events at each site. Cressman interpolation analysis was

utilized for plotting; the plots being fairly insensitive to

the radius of influence chosen. The PWV anomaly fields

are fairly flat from t 5 25 to t 5 24 h. Commencing at

t523 h, the water vapor fields becomemore structured,

maximizing the PWV anomaly gradient, and concen-

trating the positive PWV anomalies (i.e., a proxy for

water vapor convergence) in the central portion of the

network. Given that the initiation of deep convection is

associated with the largest positive PWV anomalies at

INPA (2011) and CHR5 (2012), a maximum positive

PWV anomaly centered near INPA, or nearby, should be

expected. Similar results are obtained, not surprisingly,

for CTT (as shown in the example for the 55 diurnal

convective events in Fig. 7).

To test the decay time-scale robustness, data denial

analyses were carried out. In the first case, the five

clustered stations noted in section 2c were removed

directly and statistics recalculated. The results are es-

sentially identical with mean t 5 3.45 h and s 5 0.362 h.

For the Monte Carlo random data denial analysis, the

elimination of 10 sites produces a mean difference

of 20.1 h and an increase in s of 0.21 to s 5 0.57 h, in-

dicating minimal influence of the station distribution.

Decay time-scale sensitivity to environmental condi-

tions was gauged through analysis of wet season versus

the dry and dry-to-wet transition season as well as di-

urnal versus nocturnal convective events (Figs. 5 and 6).

Thermodynamic conditions, in particular stability mea-

sures, (e.g., CAPE, CIN) as well as the water vapor

distribution vary seasonally in the Amazon, influencing

FIG. 4. Plot of PWV anomalies (mm) fields calculated from the average of 67 convective events for the 5 h before convective events.
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the intensity and frequency of convection (Fu et al. 1999;

Li and Fu 2004). The dry and dry-to-wet transition ex-

perience less frequent, but often more intense convec-

tion (Williams et al. 2002). During the wet season,

precipitating convection is frequent and the free tropo-

sphere approaches a moist adiabat tied to the subcloud

layer, thereby limiting both CAPE and CIN, but in-

creasing precipitation efficiency (Machado et al. 2004).

Figure 5 contains a comparison of decay time scales

associated with the 24 wet and 27 dry/dry-to-wet season

convective events. The wet season demonstrates much

greater heterogeneity, with larger decreases in spatial

correlations compared to dry/dry-to-wet seasons. Visual

inspection of GOES CTT animations also shows wider-

spread cumulus convection typically deepening and or-

ganizing over different portions of the network during

the wet season. Though wet season spatial correlation

scales are much smaller, the decay time scale are es-

sentially the same; t 5 2.72 h (wet) and t 5 3.02 h (dry/

dry to wet).

Considering that the continental tropical diurnal cycle

has strongly motivated the research of the STD transi-

tion, we have examined diurnal versus nocturnal con-

vection. From Fig. 6, the decay time scale increases by

approximately 1 h, t 5 2.83 h (diurnal), and t 5 3.96 h

(nocturnal). The nocturnal evolution deviates strongly

from the exponential fit around t 5 28 to t 5 26 h, but

still displays the correlation drop off during the STD

transition; that is, the last 4 h prior to deep convection

(Adams et al. 2013). Examination of GOES CTT ani-

mations reveals no obvious deviating behavior 8–6h

prior to t 5 0 for these nocturnal events. Nonetheless,

with only 12 events, these statistics are certainly less

reliable. To confirm that the STD transition, as most

commonly studied, is occurring, composites of CTT

were also created for the diurnal convective events. In

Fig. 7, the composite CTT fields of the 55 diurnal events

are presented. Prior to t 5 23h, the CTT fields are

homogeneous. Between t 5 23 h and the convective

event (t 5 0), cloud fields begin to deepen rapidly (i.e.,

the STD transition).

The decay time scale derived from the above analysis

is consistent with the 4-h water vapor convergence time

scale for the Amazon STD transition (Adams et al.

2013). This provides for a physical interpretation. Con-

sider the simplest case of the 55 diurnal convective

events. The 10-km-radius GPS cone of view observes

cumulus clouds interspersed with clear sky during

the shallow phase. With solar insolation, convective

boundary layer deepening and cumulus cloud growth

result in d(PWV)/dt. 0 (a proxy for water vapor con-

vergence in the atmospheric column). At this stage, all

sites in the network essentially behave the same and

PWV time evolution is correlated over greater dis-

tances. As congestus clouds grow, convergence zones

begin to narrow. Figures 5 and 6 of Khairoutdinov and

Randall (2006) provide a nice visualization of this pro-

cess (which they attribute to cold pool collisions). Si-

multaneously, water vapor convergence weakens over

the ‘‘noncongestus regions’’ and spatial decorrelation

increases. Finally, growth into deep cumulonimbus

towers, lines, and clusters with stronger vertical accel-

erations confines the zones of augmenting d(PWV)/

dt. 0 even more so, and the rest of the network expe-

riences much weaker, zero water vapor convergence or

FIG. 5. Temporal evolution of correlation vs separation distance

slope with exponential fit and error bars for wet (red, 24 events)

and dry and dry-to-wet season (blue, 27 events). The 16 events

occurring during the wet-to-dry transition are not included.

FIG. 6. Temporal evolution of correlation vs separation distance

slope with exponential fit and error bars for diurnal (55 events, red)

and nighttime (12 events, blue).
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perhaps even divergence. This deep convective stage

further accelerates the decorrelation. Examining Figs. 4

and 7, one can idealize the decorrelation length scale as

the inverse of the probability of a station lying within the

same contours as other stations. This probability de-

creases as t approaches 0h (i.e., more contours on the

figures). The spatial structuring (i.e., decreased correla-

tion length) and intensity of water vapor convergence are

thus intrinsically tied together and, hence, is a useful

gauge of the STD transition. One could certainly specu-

late that growth into mesoscale convective systems again

increases PWV correlation length given induced meso-

scale circulations and associated water vapor conver-

gence fields, but this will be investigated in another study.

4. Conclusions and future work

This derived correlation decay time scale is agnostic

with respect to any of the putative physical mechanisms

responsible for the STD transition. Nevertheless, for at

least the case of continental tropical convection, high-

resolution models making mechanistic deductions with

respect to convective evolution can now attempt to

replicate this metric. In future work,ADGMNdata will be

employed to examine the possible role of cold pools in the

STD transition, correlating their occurrence with the in-

crease in water vapor convergence and observed cloud

growth. Fortunately, in recent years, GNSS/GPS meteo-

rology has expanded into tropical regions, Continuously

Operating Caribbean GPS Observational Network

(COCONet) in the Caribbean and Trans-boundary, Land

and Atmosphere Long-term Observational and Collabo-

rativeNetwork (TLALOCNet) inMexico. The large-scale

networks provide many anchor sites around which meso-

scale dense network can be created in varying topographic

and climatic settings.
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