Precipitable Water Vapor: The Critical
Variable in Tropical Deep Convection

David K. Adams
CCA/UNAM

and Many Colleagues/Students in Mexico, Brazil, Germany, Portugal
and the U.S.




Structure of Presentation

- How does GPSmet Work?
- Basic Science Questions Motivating Our Research
- Applications to Challenge Models&Theory
1) Large-Scale/Convection Interaction
2) Shallow-to-Deep Transition
3) Propagating Convection and Sea Breeze Convection

4) North American Monsoon WV Sources
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GPS-IPW Measurements
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The tropospheric path delay Is
mapped to zenith by elevation (8)
dependent function(s)

Signal delays caused by the neutral atmosphere
have a wet and dry component.

The dry delay is caused by the mass of the
atmosphere, and can be estimated with high
accuracy from a surface pressure measurement.

The wet delay is simply the difference between
the total delay and the dry delay.

The ratio of the wet delay to the dry delay is
the integrated mixing ratio.

The wet signal delay is nearly proportional to
the total quantity of precipitable water vapor in
the atmosphere directly above the GPS site.



Transformations of GPS Meteorology
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Dense Network Research (Minimum

Separation Distance)
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Science Themes and Motivations (over last 15 years or so)

Understanding Large-scale and Convective Scale Interactions
Motivated by Convective Parameterizations and QE-type theories
Data: Long-term GPSmet Observations Central Amazon

Mesoscale Evolution of Convective Events

Motivated by Difficulties in Understanding and Modeling
the Shallow-to-Deep Convective Transition

Data: Dense GPSmet Networks Central and Coastal Amazon

Atmospheric Hydrological Cycle
Motivated by Water Vapor Transport and Moisture Recycling
Data: NAM GPS Hydromet Network 2017 NW Mexico/SW US




PWV-Precipitation Relationship
Large-scale/Convective Scale Interactions in the Tropics

Quasi-Equilibrium (QE) Theory (Arakawa and Schubert 1974)
timescale separation (Large-scale (Slow) and Convective (Fast))
(But see Mapes 1997; Adams and Renno6 2003; Yano 2003)

QE sets Tropical Atmosphere to Moist Adiabat tied to “sub-cloud
layer parcel” (Emanuel et al. 1994; But see Williams and Rennd
1993)

Theory is silent on water vapor vertical structure and quantity in QE.




Modelling Convective Cloud populations




Convective quasi-equilibrium (Arakawa & Schubert 1974)
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Troposph. Temp. Rel. to Boundary Layer

» Convection acts to reduce buoyancy (cloud work function A) on
fast time scale, vs. slow drive from large-scale forcing (cooling
troposphere, warming & moistening boundary layer, ...)

» M65= Manabe et al 1965; BM86=Betts&Miller 1986 parameterizns



Cloud Work Function

* Cloud work function A(A) represents the kinetic energy
generation per unit subcloud mass flux of cloud-type A

 For undiluted plume (A=0), A(A) is exactly CAPE
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Deep convection in models depends on assumptions regarding
interactions between convection and larger-scale environment

Nearly all convective parameterizations are buoyancy-based:

B = g f (Tv,plume_Tv,env)/ Tv,env dz

T, = virtual temperature | g = acceleration due to gravity
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Arakawa-Schubert’s Picture of
Curpulus Convection

* An ensemble of cumuli that detrain at different levels

* Cumulus affects the environment by compensating
subsidence and detrainment (and radiation)
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* Closure is needed for the
cumulus mass flux M_

I16. 1. A unit horizontal area at some level between cloud base and the highest
cloud top. The taller clouds are shown penetrating this level and entraining environ-

mental air. A cloud which has lost buoyancy is shown detraining cloud air into the
environment,




PWV-Precipitation Relationship in the Tropics
(A Look At Two Theories)

Self-Organized Criticality (SOC) (Peters et al. 2002, 2006,2010;
Neelin et al. 2009; Holloway et al. 2009)

Thermodynamic Control (Raymond 2000; Raymond et al. 2009)

SOC is more purely “thermodynamic” whereas Raymond’s theories
are more “complete” mechanistically.

NOTE: Essentially All Observations for Theories over Oceans




The Relationship between PWV and Tropical Rainfall has
been well known for a while(Bretherton et al. 2004)
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Thermodynamic Control
(Raymond 2000; Raymond et al. 2009)

Two Assumptions

Precipitation a decreasing function
of mean saturation deficit,

The temperature profile of the
convective environment
is constant

Consistent with

BLQ (Raymond 1995),

drier middle troposphere
gives less updraught mass-flux
for a given surface entropy
flux.
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SOC and the Atmosphere

The atmosphere is a slowly driven, highly susceptible
system that can store energy (in the form of water vapor)
and suddenly release it (as rain showers).

A1 Atmosphere NN
/"~ (water Vapor)

scied.ucar.edu



SOC and the Atmosphere

QE refers to a balance between slow large-scale driving processes
and rapid release of buoyancy by moist convection. There is
evidence that the attractive QE state is the critical point of a
continuous phase transition (SOC). - Peters and Neelin (2006)

I Aemosphere Ny
(Water Vapor)

Graphic Souree: Energy for Keeps, Creating Clean Electicity from Renewsble Resources
by Marilyn Nemzer, Deborah Page and Anna Carter, 2010

Peters, O., J. D. Neelin, 2006: Critical Phenomena in
Atmospheric Precipitation. Nature, 2, 393-396.
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inset shows on double-logarithmic scales the precipitation rate as a function of

(’ ns et) Th € avera ge precip Itation as a reduced water vapour (see text) for western Pacific (green, 120E to 170W), eastern

fu N Cti on of th e red u ced water va por Pacific (red, 170W to 70W), Atlantic (blue, 70W to 20E), and Indian Ocean (pink, 30E
— ( _ ) / . d b | to 120E). The data are shifted by a small arbitrary factor for visual ease. The straight
w={\w-=Wwc)/wcinadaouple- lines are to guide the eye. They all have a slope of 0.215, fitting the data from all

logarithmic plot. Power laws fitted to  regonsvel.
these distributions all have the same
exponent B to within £0.02.




GPS Meteorology in the Amazon, Brazil

Long-term (3.5 years) station in Manaus

1 year Dense Network (20 stations) in Manaus

~7 weeks Dense Network (15 stations in Belem GPM-CHUVA 10P)




GPSmet Site INPA/LBA Central Amazon
(NOAA Near Real Time Site)
July 2008 to December 2011
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What does GPSmet show w.r.t. Water Vapor Criticality?
(Schiro et al. 2016 JAS)

- For comparison 3.5 years of GPS PWYV INPA Site

- Consistent with Ocean Observations
- How does this fit with Theories?
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A Critique: What holds for CWV-Precipitation for
in Tropical Continental Location?
(J.I. Yano et al 2012)

(a) SOC Precipitation Constrained
Above critical value, but CWV is not

(b) Homeostasis CWYV is constrained
at Critical value, but Precipitation
rate increases without bound.

Analogous to Raymond’s Thermodynamic

Control
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A Criticism of SOC (Gilmore 2015)

(Radiometers/Precipitation Platforms are Problematic)
Precipitation Rate-w (i.e., PWV) Relationship
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What do the 3.5 years GPS PWYV data from INPA say about SOC?

- w.r.t. Continuous Phase Transition, it is not obvious

- Continued Increase in mean P (w) and no Variance peak
Near Critical Value

- In principle, GPS PWYV is more robust in rainy conditions.
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A Particularly Challenging Problem is
the Shallow-to-Deep Convective
A Transition




Our Approach for Process Oriented Studies:
Water Conservation Equation

5, s, dp = dp
E(IWV)ﬂLa/qC?nLV-/qV?—E P

Precipitable Water Vapor is Integrated (or Column)
Water Vapor divided by the density of water

1 d IWYV
PWV = — q—p =

Pw g Pw

To first order, the time-rate-of-change of PWV is
simply moisture flux convergence:

T PwV)| ~ |V [ gV P
Pw g9



Shallow-to-Deep Convective Transition in Tropics

Models do not replicate well, often skip shallow-to-deep transition
entirely (Betts and Jakob 2002a,b) (A major theme from LBA
Experiment)

What controls shallow-to-deep transition?
Different Authors, Different Arguments

Kuang and Bretherton (2006) Dry mid-troposphere impedes
transition to deep convection, must have moist mid-troposphere

Chaboreau et al. (2004) Shallow Cumulus must moisten just
above boundary layer for transition to deep convection




Shallow-to-Deep Convective Transition in Tropics

Khairoutdinov and Randall (2006); Make clouds larger
so entrainment is less important. Congestus cold pools create
convergence zone leading to deeper convection and so on...

Wau et al. (2009) Critical lapse rate above boundary layer
needed for transition to deep convection to occur




(a) Isolated Cold Pools

Precipitation

(b) Intersecting Cold Pools
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Cold Pools may play a dominant role in organization of convection in
the central Amazon (Khairoutdinov and Randall 2006)




Precipitable Water (mm)

Precipitable Water (mm)

GPS Met at INPA (Central Amazon)
Observation ofConvective Event with Downdraft
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PWV (cm)

Timescale Analysis for the Shallow-to-Deep Transition
Composite of 320 Convective Events

~4hr WV Convergence Timescale
(Adams et al. 2013 GRL)
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Dense GNSS Meteorological Network in Manaus (2011-2012)
Adams et al. 2015 (BAMS)

DENSE NETWORK
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But what spatial scale of CWV should we expect during the STD Transition?
Adams et al. 2017 (MWR)

A spatial decorrelation timescale was calculated for 67 convective events
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Decorrelation Timescale of 3.5 hours during Shallow-to-
Deep Convective Transition

At Max. Station separation distance of 150km CWYV correlation
_3 falls to 0.5
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Amazon Dense GNSS Meteorological Network

(Belem Global Precipitation Measurement CHUVA)
(Adams et al. 2015 BAMS, Machado et al. 2014 BAMS)

Tropical Sea Breeze Reaime Convection
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(PWV cm)

Sea-Breeze Convection Belem
“A gente se encontra antes ou depois da chuva?”

Belem CHUVA PWYV data
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A Squall Line Entering Belem from the Atlantic Coast
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North American Monsoon GPS Transect Experiment 2013
Serra et al. 2016 BAMS

- High Resolution Model Comparison and Data Assimilation

- Strongly Forced Days vs Weakly Forced Data

- MCS formation and Propagation
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Water Vapor Transport and Land-Atmosphere Interactions
The North American Monsoon GPS Hydromet Network 2017




Traditional View of GofC and Eastern Pacific
as Dominant Moisture Sources (Maddox et al 1995)
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Hu and Dominguez (2015) and Dominguez et al (2016)
have re-elevated the status of the GoM,Moisture Recycling
and Atlantic (Water Vapor Flux Models,WRF, Isotope Analysis)
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Green up near Tesopaco, Sonora
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NAM GPS Hydromet Network 2017
(11 Experimental GPS Met Sites, 8 TLALOCNet
sites,Suominet GPSmet Sites (Real time), Triangular Flux
Array, 1 week Sondes
GOES IR
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ASU and UNISON
Triangular Network of Water Vapor, Heat and Carbon Flux Stations

Mesquite Trees in Valley Oak Savanna at Subtropical Scrubland in
Bottom Mountain Top Alluvial Fan

Eddy Covariance Method for Turbulent Flux Measurements in Ecosystems
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At Higher Temporal Resolution (LH Flux and PWV),

Rayon PWV
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An Aside: Criticism of Reanalysis in a Topographically Complex Region
(How to Make Friends and Influence People)

Errors in PWV are quite large over the Complex Topograpy of NW Mexico
NARR and ERA-Interim
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NARR Reanalysis vs GPS PWV 2013
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PWYV ERA Interim vs KINO GPS Hydromet 2017
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More Recent ERA 5 Performs Better in NAM Region
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Summary/Conclusions

- CWV-Precipitation relationship shows criticality (in general
sense) for Tropical Continental Regime.

- SOC for Tropical Continental Regime (Jury is still out). More
consistent with Thermodynamic Control (from Yano 2012)

- The STD Transition is a robust 4 hours (based on temporal
or spatio-temporal evolution).

- GPS met Sites in Transects/Networks allow for estimating
Propagation Speed of Convective Events and Advection of
WV

- From NAM, Preliminary Results suggests little (local) wv
flux contribution to PWV (for NAM region)



CONvection and water Vapor
Exchange in Complex Terrain
(July - Aug 2027)



Southwest Terrain
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Thank you
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