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Parallel Computing

@ Simultaneous execution of multiple calculations or processes

@ Large problems are divided into smaller sub-problems, solved concur-
rently
@ Types of Parallel Computing:
o Data Parallelism: Distributes data across computing nodes, performing

the same operation on each
e Task Parallelism: Distributes different tasks across computing nodes

@ Architectures of Parallel Computing:
e Multicore Computing: Multiple processing units (cores) on a single
chip, sharing memory and peripherals
e Distributed Computing: Multiple autonomous computers connected
through a network, each having its own memory and processors
e Supercomputing: High-performance computing systems designed to
perform complex and large-scale computations

D KAUST
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Achieving Parallelism

@ Implicit Parallelism (Compiler/Runtime-managed)
e Automatically detects opportunities for parallelism
o Assigns tasks for parallel execution
o Manages execution and synchronization

e Explicit Parallelism (Programmer-managed)
e Annotates tasks for parallel execution
e Assigns tasks to specific processors
e Manually controls execution and synchronization

1D KAUST
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MultiCore Computing (Shared Memory)

@ Multiple CPU cores on one chip share
main memory

@ Private caches (L1/L2) per core; shared
L3 lowers latency for inter-core sharing

@ Best for threads (OpenMP/TBB): par-
allel loops, reductions, task graphs

@ Watch for:

e Memory bandwidth effects: If
memory bandwidth is saturated,
adding cores will not help

o NUMA effects: Accessing “local”
memory is faster than“remote”
memory on another socket

Shared memory
Single address space
All processes have access
to the pool of shared

memory

-

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

RAM - Main Memory

Hard Disk/ SSD

Network Card
(NC)
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Distributed Computing

@ Multiple system processors can communicate
with each other using messages sent over the
network

Distributed memory

Each processor has its own
local memory

e Supercomputer: A single, extremely Message-passing is used to
. . . exchange data between
powerful machme d_e5|gned for h!ghly Processors
complex and intensive computational
tasks

o Cluster: Interconnected computers
acting as one system

@ With a sufficiently fast network, it is theo-
retically possible to scale to millions of CPU
cores (and beyond)

@ Benefits: Scalability, reliability, fault toler-
ance, and performance

@ Challenges: Complex architecture, construc- =D kAuST
tion, and debugging processes
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High-Performance Computing (HPC)

@ There is no clear definition!

@ My preference: High-Performance Computing (HPC) refers to aggre-
gating computing power to deliver much higher performance than one
could get out of a typical desktop computer or workstation

@ HPC is essential for several reasons, particularly in fields where complex
and large-scale computing tasks are routine

e Handling Large-scale Computations

e Speeding Up Research and Development

e Advanced Simulation Capabilities

e Big Data Analytics

o Atrtificial Intelligence and Machine Learning
o Competitive Advantage in Industry

o National Security and Defense

<'/D KAUST
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o Parallel processing and distributed computing

o Matured over the past decades
o Emerged as a well-developed field in computer science
o Still a lot of innovation, e.g., hardware/software

@ Scientific computing with Matlab, R, etc.

e Performed on small computing machines
e Increasing number of cores enables better scientific computing today
o Good for small/less complex applications, quick reach memory limits

@ Advanced scientific computing

o Used with computational simulations and large-scale machines

o Performed on large parallel computers; often, scientific domain-specific
approaches

o Uses orders of magnitude multi-core chips, large memory, and many
specific many-core chips

e Enables simulations of reality, often based on known physical laws and

numerical methods
D KAUST
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Why HPC?

@ Massive growth in data across all fields
and industries, for example, genomic
data, electronic health records, and real-
time patient monitoring in healthcare,
creating unprecedented challenges and
opportunities

@ Urgent need for scalable computing so-
lutions to handle large, complex datasets

. . . Big Cloud
and computationally intensive tasks

Data Computing
@ Cloud democratizes access to computa-

tional resources

@ HPC accelerates scientific discovery
through large-scale simulations and data
analysis g%ﬂf‘) KAUST
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When HPC?

Complete a time-consuming operation in less time

@ Perform a high number of operations per second

Process datasets that exceed a single machine’s memory

Run large ensembles or many independent tasks

Meet tight deadlines or real-time constraints (streaming/nowcasting)

High-fidelity simulation and digital twins

@ Train or serve large ML models efficiently (GPU/accelerators)

Federated or cross-site analysis with privacy/security requirements

D KAUST
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What does HPC include? 1/2

@ Hardware stack
o Parallel execution across many compute elements (CPUs, GPUs, and
other accelerators)

o High-speed interconnects between nodes (e.g., InfiniBand, HPE
Slingshot)
o Deep memory hierarchies (HBM + DDR; NUMA-aware node designs)

@ Software stack
o Programming models: MPI, OpenMP, CUDA/HIP/SYCL)

o Math & domain libraries: BLAS/LAPACK/ScalLAPACK, FFTW,
PETSc/Trilinos, MAGMA, oneMKL, cuBLAS/cuDNN

o 1/0 & data formats: MPI-IO, HDF5, NetCDF

o Compilers & build tooling: GCC/Clang/Intel/NVHPC/Cray; CMake,

Spack, EasyBuild, environment modules ‘
=) kAUST
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What does HPC include? 2/2

@ Software stack

o Schedulers & orchestration: Slurm, PBS Pro, LSF; workflows
(Snakemake, Nextflow, Pegasus)

o Profiling & debugging: perf/gprof, Valgrind, VTune, Arm MAP /Forge,
Nsight/rocprof, TAU.

o Containers & reproducibility: Apptainer/Singularity (runtime), Docker
(build), Cl/versioning

@ Data & storage

o Parallel filesystems (Lustre, GPFS/Spectrum Scale, BeeGFS), burst
buffers, object stores

o Checkpoint/restart and data management strategies
@ Operations

e Resource management, monitoring, and security; facility concerns

(power, cooling, reliability) 0D KAUST
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o User support, documentation, and training
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How does HPC work?

@ Three main components:

o Compute (CPU/GPU nodes) o Network (high-speed interconnect)

o Storage (parallel/distributed file systems)

Network

= = ¢

Login Node

Storage Server

Node 0501 Node ... Node 0538

@ Programs and algorithms run simultaneously across servers (parallel jobs)
@ Shared storage for reading inputs and capturing outputs

@ A scheduler (e.g., Slurm/PBS) brokers user jqbs, resources, and daté&mmT
the system operates seamlessly to complete diverse tasks
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HPC Myths (and Realities)

@ A niche for researchers, geeks, and “eggheads.”
Reality: Used widely in oil & gas, automotive, aero, manufacturing, pharma,
finance, and more

@ It's not for the cloud / not needed in the cloud.
Reality: Cloud offers HPC instances and high-speed interconnects

@ HPC means one giant mainframe/supercomputer only.
Reality: Modern HPC spans clusters, accelerators, and even edge

@ HPC is only MPI/Fortran
Reality: Ecosystem includes Python/R/C++, CUDA/HIP, OpenMP, SYCL,
and task runtimes/workflows.

@ HPC is only about FLOPS
Reality: Memory BW, storage /O, and latency often bottleneck

@ HPC adoption is too costly
Reality: Shared facilities and cloud cut costs; pay-as-you-go available

@ HPC isn't reproducible =D KAUST
Reality: Containers, modules, and workflow managers enable portabﬁy
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FLOPS: The Speed of HPC (kilo — yotta)

HPC term often applies to systems that function above a TFLOPS or
O(10%?) floating-point operations per second (Flops/s)

Name Unit Value
kiloFLOPS kFLOPS 103
megaFLOPS MFLOPS 10°
gigaFLOPS ~ GFLOPS  10°
teraFLOPS  TFLOPS  10%2
petaFLOPS ~ PFLOPS 1015
exaFLOPS EFLOPS 10'8
zettaFLOPS ZFLOPS  10%
yottaFLOPS  YFLOPS  10%*

D KAUST
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TOP500 at a Glance

@ What it is? Biannual ranking of the world's fastest supercomputers (released
at ISC in June and SC in November)

@ Benchmark: HPL (LINPACK) in double precision; key numbers:

e Rmax (measured),
e Rpeak (theoretical),

o system power (MW), and
o efficiency (GF/W)

@ Companion views: Green500 (energy efficiency) and HPCG
(memory/communication intensive performance)

@ Trends: Heterogeneous (CPU+GPU) designs dominate; high-speed
interconnects (e.g., InfiniBand/Slingshot); rising focus on perf/W

@ Caveat: HPL is compute-bound; it may overestimate performance for
memory/communication-bound workloads — use HPCG /application results
for balance <'/D KAUST
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LINPACK (HPL): TOP500 Performance Benchmark

What it is? Solves a dense FP64 linear system via LU factorization; reports
sustained PFLOP /s (Rmax). Basis of the TOP500

How it runs? MPI + threads (often OpenMP), 2D block-cyclic data layout;
tuned by problem size N, process grid Px Q, block size, panel
factorization /lookahead, GPU BLAS, pinned memory

Strengths: Portable, comparable across systems; good proxy for peak
floating-point throughput; exposes node/GPU capability and interconnect
broadcast performance

Caveats: Not representative of memory-bound or irregular apps; that's why
other benchmarks (e.g., HPCG) exist

Related: HPL-Al / HPL-MxP (mixed precision, tensor cores) and HPCG
(memory/communication intensive) provide complementary views; energy
tracked via GF/W (Green500)

=D kAuST
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Top 10 Supercomputers (HPL)

Rmax Rpeak Power

# System Site Country (PFLOP/s) (PFLOP/s) (kW)

Lawrence Livermore
1 El Capitan National Lab. (LLNL) United States 1,742.00 2,746.38 29,581

Oak Ridge National
2 Frontier Laboratory (ORNL) United States 1,353.00 2,055.72 24,607

Argonne National
3 Aurora Laboratory (ANL) United States 1,012.00 1,980.01 38,698

JUlich Supercomputer
4 JUPITER Center (JSC) Germany 793.40 930.00 13,088
5 Eagle Microsoft Azure United States 561.20 846.84 N/A
6 HPC6 Eni S.p.A. Italy 477.90 606.97 8,461
7 Fugaku RIKEN R-CCS Japan 442.01 537.21 29,899

Swiss National
8 Alps Supercomputing Centre (CSCS) Switzerland 434.90 574.84 7,124
9 LUMI EuroHPC/CSC Finland 379.70 531.51 7,107
10 Leonardo EuroHPC/CINECA Italy 241.20 306.31 7,494

J) ,
% KAUST
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Top Systems: HPL (Ryax) and HPCG

Rank System Country Cores Rmax [PF/s] Rpeak [PF/s] Power [kW]
1 El Capitan United States 11,039,616 1,742.00 2,746.38 29,581
2 Frontier United States 9,066,176 1,353.00 2,055.72 24,607
3 Aurora United States 9,264,128 1,012.00 1,980.01 38,698
4 JUPITER Booster Germany 4,801,344 793.40 930.00 13,088
5 Eagle United States 2,073,600 561.20 846.84 —
6 HPC6 Italy 3,143,520 477.90 606.97 8,461
7 Supercomputer Fugaku Japan 7,630,848 442.01 537.21 29,899
8 Alps Switzerland 2,121,600 434.90 574.84 7,124
9 LUMI Finland 2,752,704 379.70 531.51 7,107

10 Leonardo Italy 1,824,768 241.20 306.31 7,494

\%Mi‘) KAUST
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Top 10 Supercomputers (Green500)

TOP500 Rmax Power Efficiency
# Rank System Country Cores (PFLOP/s) (kW) (GFLOPS/W)
1 259 JEDI Germany 19,584 4.50 67 72.733
2 148 ROMEO-2025 France 47,328 9.86 160 70.912
3 484 Adastra 2 France 16,128 2.53 37 69.098
4 183 Isambard-Al phase 1 United Kingdom 34,272 7.42 117 68.835
5 255 Otus (GPU only) Germany 19,440 4.66 N/A 68.177
6 66 Capella Germany 85,248 24.06 445 68.053
7 304 SSC-24 Energy Module South Korea 11,200 3.82 69 67.251
8 85 Helios GPU Poland 89,760 19.14 317 66.948
9 399 AMD Duranos France 16,632 2.99 48 66.464
10 412 Henri United States 8,288 2.88 44 65.396

\%Mi‘) KAUST
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TOP500 List - Countries Share Over Time
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TOP500 List - Performance Over Time
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TOP500 List - Projected Performance Over Time

10 EFlop/s
1 EFlop/s
100 PFlop/s
10 PFlop/s
1 PFlop/s

100 TFlop/s

Performance

10 TFlop/s

1 TFlop/s
100 GFlop/s
10 GFlop/s

1 GFlop/s

100 MFlop/s
19! 1995 2000 2005 2010 2015 2020 2025

Lists
D KAUST
® Sum A4 #1 = #500 \,%',

meh Abdulah (KAUST Compute Big, Think Bigg



TOP500 List - Applications Share Over Time
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Interconnects in Supercomputers

@ The network fabric that links CPUs, GPUs, and nodes so they can exchange
data fast and in parallel

@ Latency (us), per-link bandwidth (GB/s), message rate (Mmsg/s)

@ Common fabrics: InfiniBand (HDR/NDR), HPE Slingshot, high-speed Ether-
net/RoCE; in-node NVLink/NVSwitch

High Performance Computing Interconnect Development

Net QsNet
(0 with Gateway to Ethernet

InfiniPath TrueScale

L Omni-Path
{InfiniBand) (InfiniBand)

Crossbar Seastar Gemini | Aries Slingshot
with Gatewy o Ethemet]

InfiniBand

SDR DDR QDR FDR EDR HDR NDR XDR
1 — (/ — )
1995 2000 2005 2010 2015 2020 2025 \,%”' KAUST
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Top-performing Interconnects — Top 5

Rank Interconnect Link rate  Why it leads

1 InfiniBand NDR400 400 Gb/s Very low latency, high msg rate; SHARP
offload; GPUDirect RDMA — common in
exascale/Al systems.

2 InfiniBand NDR200 200 Gb/s NDR features with lower per-port rate; ma-
ture ecosystem and toolchain.
3 Slingshot-11 200 Gb/s  Adaptive routing on Dragonfly+, conges-

tion control; backbone of HPE Cray exas-
cale systems.

4 InfiniBand HDR 200 Gb/s Proven across many TOP500 systems;
strong collectives and RDMA offloads.
5 InfiniBand EDR 100 Gb/s  Lower latency and jitter than 100G Ether-

net/RoCE for HPC collectives.

Note: “Best” depends on workload and network design (topology/rails), but these five
typically deliver the highest sustained HPC performance.

<=/ KAUST
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TOP500 Interconnect System Share

@ 1006 Ethernet

@ Infiniband HDR
Slingshot-11

@ Infiniband NDR200

@ Intel Omni-Path

@ Infiniband NDR400

@ Mellanox HDR Infiniband

@ Infiniband NDR

@ 25G Ethernet

@ Infiniband EDR

@ Others
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Energy Efficiency in HPC (1/3): Why It Matters

@ Scale = Power Hungry: Top supercomputers consume tens of MW
(e.g., Frontier ~25 MW)

@ A typical household in Morocco uses 3,500 kWh /year (3.5 MWh).

e Frontier in one hour (25 MWh) uses as much electricity as about 7
average Moroccan households consume in an entire year.

@ In one year, Frontier consumes about as much as 62,000 Moroccan
households combined.

@ Environmental impact: Carbon footprint of HPC centers pushes
sustainability frontiers

o Metrics:
o GFLOPS/W (Green500 benchmark) — efficiency measured per watt

@ Future exascale — zettascale computing will be constrained by watts,
<=/ KAUST
not FLOPS =
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Energy Efficiency in HPC (2/3): Techniques

o Hardware-level:
o GPUs/accelerators with higher performance-per-watt than CPUs
e Specialized chips (TPUs, IPUs, DPUs) designed for efficiency

e High Bandwidth Memory (HBM) reduces energy per byte
@ Algorithmic:

o Communication-avoiding and energy-aware algorithms
o Mixed-precision and low-rank approximations to reduce compute load

e Load balancing to avoid idle power consumption

@ System/Software:
o Dynamic voltage/frequency scaling (DVFS)
e Energy-aware scheduling in Slurm/PBS.

o Containers + lightweight OS for reducing overhead
D KAUST
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Energy Efficiency in HPC (3/3): Future & Challenges

@ Exascale & beyond: Must sustain ~20-30 MW budgets for exascale,
~100 MW infeasible

@ Design frontier: Co-design of algorithms, software, and hardware for
efficiency

@ Emerging trends:
e Near-memory and in-network computing
o Liquid cooling and advanced facility design for thermal efficiency

@ Trade-offs: Performance vs. accuracy vs. watts

@ Take-home: The real “race” is not only FLOPS, but FLOPS per Watt

<='JD KAUST
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What is Distributed Computing?

@ Computation spread across multiple machines: Tasks are divided and
executed simultaneously on a network of interconnected computers
(nodes) to solve large or complex problems more efficiently

@ Coordination and communication required: Nodes must work
together, exchanging data and synchronizing operations to ensure
consistency and correctness.

@ Enables scalability, fault tolerance, and resource sharing across
distributed systems

@ Used in scientific simulations, data processing pipelines, distributed
databases, and real-time analytics applications

<'/D KAUST
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Distributed System Architectures (Software View)

@ Client-Server: A centralized server provides resources or services to
multiple client machines that request them

o Example: A bank’s centralized servers handle customer authentication,
account queries, and transactions, while clients (apps, ATMs, or
browsers) send requests.

o Peer-to-Peer (P2P): All nodes have equal roles as clients and servers,
sharing resources directly without centralized coordination

@ Master-Slave: A master node controls and delegates tasks to multiple
slave nodes, which perform the actual computations or operations

o Example: Hadoop MapReduce framework, database replication
@ Each architecture has trade-offs in scalability, fault tolerance,
performance, and complexity

D KAUST
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Cluster Management

Resource managers: Software systems that allocate and monitor
resources (CPU, memory, storage) across a distributed cluster

o Examples: YARN (Yet Another Resource Negotiator) for Hadoop,
Mesos for multi-framework support, Kubernetes for managing
containerized applications, and SLURM for resource management and
job scheduling on high-performance computing (HPC) clusters

Scheduling jobs across nodes: Assigning tasks to available nodes
based on resource availability, workload balancing, and priority
policies to optimize performance and throughput

Fault tolerance: Detecting and recovering from node failures by
automatically rescheduling tasks or redistributing workloads

Monitoring and scaling: Tracking system health, usage metrics, and
scaling clusters up or down dynamically to match demand
=) kAUST
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Communication in Distributed Systems

@ Message Passing Interface (MPI): A standardized and portable
communication protocol used for parallel programming on distributed
memory systems.

@ Point-to-Point Communication: Enables direct message exchange
between pairs of processes

o Example: MPI_Send and MPI Recv

@ Collective Communication: Involves groups of processes to perform

operations like broadcast, scatter, gather, and reduce
o Example: MPI_Bcast, MPI_Reduce
@ Synchronization and Coordination: MPI provides mechanisms like

barriers and communicators to synchronize tasks and manage groups
of processes

o Example: MPI Barrier, MPI_Comm _split

@ Challenges: Scalability, deadlock avoidance, efficient communication
patterns, and portability across HPC architectures =) kAusT

G

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025



MPI| Execution Model

@ Programs follow the SPMD (Single Program, Multiple Data) model.
o All processes execute the same program.

e Each process can follow different branches depending on its rank.

@ Each process is assigned a unique rank in a communicator.
o MPI Comm_size: total number of processes.

o MPI_Comm rank: rank ID of the current process (0, 1, 2, ...).

@ Execution is started by the runtime environment:
o mpirun -np N ./program (launches N processes).

o Typical workflow:

© Initialize MPI: MPI_Init.
@ Query communicator info: MPI_Comm_rank, MPI_Comm_size.
© Perform communication (send/receive, collective).

© Finalize MPI: MPI Finalize. =) KAUST
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Basic MPI Operations

@ Point-to-point communication:
e MPI_Send, MPI_Recv
o Used for explicit message passing between two processes
o Can be blocking (waits until completion) or non-blocking (MPI_Isend,
MPI_Irecv)
@ Collective communication:
e MPI_Bcast: send data from one process to all others
o MPI Gather, MPI_Scatter: collect data from all processes into one or
distribute data from one to all
o MPI Reduce, MPI_Allreduce: combine values across processes (sum,
max, min, etc.) and return the result
e MPI_Alltoall: every process sends data to every other process (useful
in matrix operations)
@ Synchronization:
e MPI Barrier: all processes wait until everyone reaches this point
before continuing
@ Communicators and groups: ‘
o Default communicator is MPI_COMM_WORLD g%“ KAUST
o Allows defining subgroups of processes for targeted communication
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MPI in Practice: Applications and Optimization

@ Applications:

o Climate modeling, computational fluid dynamics, molecular dynamics
simulations.

e Widely used in scientific codes like WRF, LAMMPS, GROMACS, and
PETSc

@ Performance Optimization:

o Use non-blocking communication (MPI_Isend, MPI_Irecv) to overlap
computation and communication

e Minimize communication volume with domain decomposition

e Exploit process affinity and topology-aware communication

@ Scalability Considerations:

e Efficient load balancing and minimizing communication bottlenecks are
key to scaling MPI applications to thousands of cores
o Hybrid models (e.g., MPI+OpenMP) are often used on modern HPC

architectures D KAUST
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Distributed File Systems

Hadoop Distributed File System (HDFS): Designed to store very large
files across multiple machines; provides fault tolerance through data
replication
e Example: Used by Hadoop for storing input and output data for
MapReduce jobs

Google File System (GFS): Proprietary file system developed by
Google to support large-scale data-intensive applications with
scalability, fault tolerance, and high throughput

e Example: Basis for Google's search indexing and data processing
pipelines.
Lustre: Open-source distributed file systems designed for
high-performance computing and enterprise storage
o Lustre: Focused on high-performance parallel file access; widely used in
supercomputing environments

Key features: Data replication, fault tolerance, parallel access,

scalability, and distributed metadata management g"l xaust
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Fault Tolerance and Recovery

@ Checkpointing: Periodically saving the state of an application or
system so it can be restarted from the last saved state after a failure,
rather than from the beginning

o Example: Spark writes lineage and intermediate results to storage to
recover failed jobs

@ Replication: Storing multiple copies of data across different nodes to
ensure data availability even if some nodes fail

o Example: HDFS stores each data block in three separate nodes for
redundancy

@ Leader election: Mechanism to dynamically choose a leader node
among distributed nodes to coordinate tasks or manage system state;
critical when leaders fail or leave the system

o Example: ZooKeeper uses leader election to maintain consistency
across distributed services

@ Goal: Ensure system reliability, minimize downtime, and recover
quickly from failures without data loss g"l xaust
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Scalability Considerations

@ Horizontal vs Vertical Scaling:

e Horizontal scaling: Adding more machines or nodes to distribute the
workload

o Vertical scaling: Increasing the capacity (CPU, memory) of an existing
machine

o Example: Adding more servers to a cluster (horizontal) vs upgrading a
server's RAM (vertical)

@ Load Balancing: Distributing incoming tasks and requests evenly
across multiple nodes to prevent overloading any single node and
ensure efficient resource utilization

e Example: Using a load balancer in front of a web server cluster

@ Bottlenecks in Distributed Environments: Identifying and mitigating
performance bottlenecks caused by factors like network latency, disk
I/O limits, uneven data distribution, or coordination overhead

e Example: A single slow node delaying the completion of a distributed
job (straggler problem in MapReduce)

@ Goal: Design systems that can scale efficiently with increased. data
volume and user demand without compromising performance G%’KAUST
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g vs Weak Scaling

@ Strong Scaling:
o Measures how the solution time decreases with more processors for a
fixed total problem size
o ldeal strong scaling: doubling processors halves the runtime
o Challenge: Communication overhead may dominate as processor count
increases
e Example: Solving a 1 million-point matrix with 4, 8, and 16 processors
@ Weak Scaling:
e Measures how the solution time remains constant when the problem
size increases proportionally with the number of processors
o Ideal weak scaling: adding more processors with proportional data
keeps runtime constant
o Challenge: Maintaining efficiency with increased data and processor
count
e Example: Each processor solves a 100k-point subproblem; as processors
increase, total size increases too
@ Use Case in HPC:
e Strong scaling is useful for reducing time-to-solution
e Weak scaling is crucial for solving increasingly large problems efficiently
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What is High-Performance Statistical Computing (HPSC)?

e High-Performance Statistical Computing (HPSC) is the integration of
Statistical Computing (SC) with High-Performance Computing (HPC)

@ Enables scalable and fast statistical analysis on modern supercomputing

systems
o Formalizes the intersection of statistical methods with computational
infrastructure
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Historical Evolution

e Statistical Computing (SC) Evolution: BMDP (1960s), SPSS, SAS,
R, Julia

@ HPC Evolution: Cray-1 to Frontier and El Capitan
@ Shift from single-core to multicore, GPUs, and hybrid architectures
o Dataflow vs MPI+X paradigms

— HPC

= Statistical Computing i i
cray-1 GPU Revolution Exascale Era
(1976) (2000s) (2020s)

High-Performance Statistical Computing (HPSC)

[l Convergence Zone

0 0 0 0
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Why HPSC?

@ Modern data scales overwhelm
traditional statistical methods

@ Demand for real-time inference,

uncertainty quantification, and E -—ﬁ
large-scale simulations

: HPSC4Sci , Linkedln G
@ Need for collaboration between cience.org  LinkedIn Group

statisticians and HPC engineers

@ Our Efforts: Building the HPSC
community:
e HPSC4Science.org — hub for
resources, events, and publications
o LinkedIn HPSC Group -

networking and engagement
I kAUST
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https://hpsc4science.org/
https://www.linkedin.com/groups/11805321/

Challenges in HPSC and Applications

Adapting sequential statistical algorithms to parallel systems

Efficient memory and data management at scale

Ensuring numerical stability in approximation environments (e.g.,
low-rank mixed-precision)

Portability and reproducibility across diverse HPC platforms

Applications Across Domains:
e Climate Science: Scalable spatial modeling

e Genomics: Phylogenetic inference, GWAS with GPU acceleration

Finance/Economics: Real-time pricing, Bayesian asset modeling

Physics: Simulations in cosmology and quantum mechanics.
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Opportunities and Future Directions
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Take-Home Messages: HPC (1/2)

@ HPC = scale: aggregate many CPUs, GPUs, and accelerators to solve
problems beyond a single workstation

@ Performance is multidimensional: FLOPS, memory bandwidth,
latency, interconnect, 1/0O

@ Parallelism is essential: data parallelism + task parallelism across
nodes and cores

@ MPI+X programming model: MPI for distributed memory,
OpenMP /threads/GPU kernels for shared memory

@ Data movement dominates cost: optimize for locality, tiling, batching,
and communication-avoiding algorithms

<='JD KAUST
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Take-Home Messages: HPC (2/2)

@ Roofline thinking: balance compute vs. memory to reach peak
performance

@ Scaling strategies: strong scaling to reduce time-to-solution; weak
scaling to handle larger problems

@ Reproducibility matters: containers, workflow engines, and
environment modules

@ Future ready: heterogeneous architectures, exascale systems, energy
efficiency

o Key message: HPC is no longer niche — it underpins modern science,
engineering, Al, and industry
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Do it agaln....
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