
Compute Big, Think Bigger: An Intro to
High-Performance Computing (HPC)

Sameh Abdulah
Senior Research Scientist

Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE),
King Abdullah University of Science and Technology

Thuwal, Jeddah 23955, Saudi Arabia.

Do it while you wait.

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 1 / 58

Sameh’s Background

B.S. in Computer Science, Egypt, 2005

M.S. in Computer Science, Egypt, 2009

M.S. in Computer Science and Engineering, The Ohio State University
(OSU), Columbus, Ohio, USA, 2014

Ph.D. in Computer Science and Engineering, The Ohio State University
(OSU), Columbus, Ohio, USA, 2016

Postdoc at the Extreme Computing Research Center (ECRC), KAUST,
Saudi Arabia, 2016-2019

Research Scientist at the Extreme Computing Research Center (ECRC),
KAUST, Saudi Arabia, 2019-2024

Senior Research Scientist at the Extreme Computing Research Center
(ECRC), KAUST, Saudi Arabia, 2025-now

Research Interests: HPC - Large-Scale Statistical Computing - Parallelization of
Data-intensive and Compute-intensive Applications - Extreme Scale Machine
Learning and Data Mining (MLDM) Algorithms

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 2 / 58

Table of Contents

1 Foundations of Parallel/Distributed Computing

2 High-Performance Computing (HPC) Overview

3 Performance & Benchmarks

4 Energy Efficiency in HPC

5 Distributed Computing Deep Dive

6 High-Performance Statistical Computing (HPSC)

7 Conclusion

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 3 / 58

Table of Contents

1 Foundations of Parallel/Distributed Computing

2 High-Performance Computing (HPC) Overview

3 Performance & Benchmarks

4 Energy Efficiency in HPC

5 Distributed Computing Deep Dive

6 High-Performance Statistical Computing (HPSC)

7 Conclusion

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 4 / 58

Parallel Computing

Simultaneous execution of multiple calculations or processes

Large problems are divided into smaller sub-problems, solved concur-
rently

Types of Parallel Computing:

Data Parallelism: Distributes data across computing nodes, performing
the same operation on each
Task Parallelism: Distributes different tasks across computing nodes

Architectures of Parallel Computing:

Multicore Computing: Multiple processing units (cores) on a single
chip, sharing memory and peripherals
Distributed Computing: Multiple autonomous computers connected
through a network, each having its own memory and processors
Supercomputing: High-performance computing systems designed to
perform complex and large-scale computations

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 5 / 58

Achieving Parallelism

Implicit Parallelism (Compiler/Runtime-managed)

Automatically detects opportunities for parallelism
Assigns tasks for parallel execution
Manages execution and synchronization

Explicit Parallelism (Programmer-managed)

Annotates tasks for parallel execution
Assigns tasks to specific processors
Manually controls execution and synchronization

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 6 / 58

MultiCore Computing (Shared Memory)

Multiple CPU cores on one chip share
main memory

Private caches (L1/L2) per core; shared
L3 lowers latency for inter-core sharing

Best for threads (OpenMP/TBB): par-
allel loops, reductions, task graphs

Watch for:

Memory bandwidth effects: If
memory bandwidth is saturated,
adding cores will not help
NUMA effects: Accessing “local”
memory is faster than“remote”
memory on another socket

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 7 / 58

Distributed Computing

Multiple system processors can communicate
with each other using messages sent over the
network

Cluster: Interconnected computers
acting as one system

Supercomputer: A single, extremely
powerful machine designed for highly
complex and intensive computational
tasks

With a sufficiently fast network, it is theo-
retically possible to scale to millions of CPU
cores (and beyond)

Benefits: Scalability, reliability, fault toler-
ance, and performance

Challenges: Complex architecture, construc-
tion, and debugging processes

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 8 / 58

Table of Contents

1 Foundations of Parallel/Distributed Computing

2 High-Performance Computing (HPC) Overview

3 Performance & Benchmarks

4 Energy Efficiency in HPC

5 Distributed Computing Deep Dive

6 High-Performance Statistical Computing (HPSC)

7 Conclusion

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 9 / 58

Computer Food Chain

© late ’90s Berkeley’s Network of Workstations (NOW) project.

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 10 / 58

High-Performance Computing (HPC)

There is no clear definition!

My preference: High-Performance Computing (HPC) refers to aggre-
gating computing power to deliver much higher performance than one
could get out of a typical desktop computer or workstation

HPC is essential for several reasons, particularly in fields where complex
and large-scale computing tasks are routine

Handling Large-scale Computations

Speeding Up Research and Development

Advanced Simulation Capabilities

Big Data Analytics

Artificial Intelligence and Machine Learning

Competitive Advantage in Industry

National Security and Defense

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 11 / 58

Cont.

Parallel processing and distributed computing

Matured over the past decades
Emerged as a well-developed field in computer science
Still a lot of innovation, e.g., hardware/software

Scientific computing with Matlab, R, etc.

Performed on small computing machines
Increasing number of cores enables better scientific computing today
Good for small/less complex applications, quick reach memory limits

Advanced scientific computing

Used with computational simulations and large-scale machines
Performed on large parallel computers; often, scientific domain-specific
approaches
Uses orders of magnitude multi-core chips, large memory, and many
specific many-core chips
Enables simulations of reality, often based on known physical laws and
numerical methods

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 12 / 58

Why HPC?

Massive growth in data across all fields
and industries, for example, genomic
data, electronic health records, and real-
time patient monitoring in healthcare,
creating unprecedented challenges and
opportunities

Urgent need for scalable computing so-
lutions to handle large, complex datasets
and computationally intensive tasks

Cloud democratizes access to computa-
tional resources

HPC accelerates scientific discovery
through large-scale simulations and data
analysis

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 13 / 58

When HPC?

Complete a time-consuming operation in less time

Perform a high number of operations per second

Process datasets that exceed a single machine’s memory

Run large ensembles or many independent tasks

Meet tight deadlines or real-time constraints (streaming/nowcasting)

High-fidelity simulation and digital twins

Train or serve large ML models efficiently (GPU/accelerators)

Federated or cross-site analysis with privacy/security requirements

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 14 / 58

What does HPC include? 1/2

Hardware stack

Parallel execution across many compute elements (CPUs, GPUs, and
other accelerators)

High-speed interconnects between nodes (e.g., InfiniBand, HPE
Slingshot)

Deep memory hierarchies (HBM + DDR; NUMA-aware node designs)

Software stack

Programming models: MPI, OpenMP, CUDA/HIP/SYCL)

Math & domain libraries: BLAS/LAPACK/ScaLAPACK, FFTW,
PETSc/Trilinos, MAGMA, oneMKL, cuBLAS/cuDNN

I/O & data formats: MPI-IO, HDF5, NetCDF

Compilers & build tooling: GCC/Clang/Intel/NVHPC/Cray; CMake,
Spack, EasyBuild, environment modules

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 15 / 58

What does HPC include? 2/2

Software stack

Schedulers & orchestration: Slurm, PBS Pro, LSF; workflows
(Snakemake, Nextflow, Pegasus)

Profiling & debugging: perf/gprof, Valgrind, VTune, Arm MAP/Forge,
Nsight/rocprof, TAU.

Containers & reproducibility: Apptainer/Singularity (runtime), Docker
(build), CI/versioning

Data & storage

Parallel filesystems (Lustre, GPFS/Spectrum Scale, BeeGFS), burst
buffers, object stores

Checkpoint/restart and data management strategies

Operations

Resource management, monitoring, and security; facility concerns
(power, cooling, reliability)

User support, documentation, and training

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 16 / 58

How does HPC work?

Three main components:

Compute (CPU/GPU nodes) Network (high-speed interconnect)

Storage (parallel/distributed file systems)

Programs and algorithms run simultaneously across servers (parallel jobs)

Shared storage for reading inputs and capturing outputs

A scheduler (e.g., Slurm/PBS) brokers user jobs, resources, and data flow so
the system operates seamlessly to complete diverse tasks

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 17 / 58

HPC Myths (and Realities)

A niche for researchers, geeks, and “eggheads.”
Reality: Used widely in oil & gas, automotive, aero, manufacturing, pharma,
finance, and more

It’s not for the cloud / not needed in the cloud.
Reality: Cloud offers HPC instances and high-speed interconnects

HPC means one giant mainframe/supercomputer only.
Reality: Modern HPC spans clusters, accelerators, and even edge

HPC is only MPI/Fortran
Reality: Ecosystem includes Python/R/C++, CUDA/HIP, OpenMP, SYCL,
and task runtimes/workflows.

HPC is only about FLOPS
Reality: Memory BW, storage I/O, and latency often bottleneck

HPC adoption is too costly
Reality: Shared facilities and cloud cut costs; pay-as-you-go available

HPC isn’t reproducible
Reality: Containers, modules, and workflow managers enable portability

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 18 / 58

Table of Contents

1 Foundations of Parallel/Distributed Computing

2 High-Performance Computing (HPC) Overview

3 Performance & Benchmarks

4 Energy Efficiency in HPC

5 Distributed Computing Deep Dive

6 High-Performance Statistical Computing (HPSC)

7 Conclusion

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 19 / 58

FLOPS: The Speed of HPC (kilo → yotta)

HPC term often applies to systems that function above a TFLOPS or
O(1012) floating-point operations per second (Flops/s)

Name Unit Value
kiloFLOPS kFLOPS 103

megaFLOPS MFLOPS 106

gigaFLOPS GFLOPS 109

teraFLOPS TFLOPS 1012

petaFLOPS PFLOPS 1015

exaFLOPS EFLOPS 1018

zettaFLOPS ZFLOPS 1021

yottaFLOPS YFLOPS 1024

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 20 / 58

TOP500 at a Glance

What it is? Biannual ranking of the world’s fastest supercomputers (released
at ISC in June and SC in November)

Benchmark: HPL (LINPACK) in double precision; key numbers:

Rmax (measured),
Rpeak (theoretical),
system power (MW), and
efficiency (GF/W)

Companion views: Green500 (energy efficiency) and HPCG
(memory/communication intensive performance)

Trends: Heterogeneous (CPU+GPU) designs dominate; high-speed
interconnects (e.g., InfiniBand/Slingshot); rising focus on perf/W

Caveat: HPL is compute-bound; it may overestimate performance for
memory/communication-bound workloads – use HPCG/application results
for balance

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 21 / 58

LINPACK (HPL): TOP500 Performance Benchmark

What it is? Solves a dense FP64 linear system via LU factorization; reports
sustained PFLOP/s (Rmax). Basis of the TOP500

How it runs? MPI + threads (often OpenMP), 2D block-cyclic data layout;
tuned by problem size N, process grid P×Q, block size, panel
factorization/lookahead, GPU BLAS, pinned memory

Strengths: Portable, comparable across systems; good proxy for peak
floating-point throughput; exposes node/GPU capability and interconnect
broadcast performance

Caveats: Not representative of memory-bound or irregular apps; that’s why
other benchmarks (e.g., HPCG) exist

Related: HPL-AI / HPL-MxP (mixed precision, tensor cores) and HPCG
(memory/communication intensive) provide complementary views; energy
tracked via GF/W (Green500)

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 22 / 58

Top 10 Supercomputers (HPL)

System Site Country
Rmax

(PFLOP/s)

Rpeak

(PFLOP/s)
Power
(kW)

1 El Capitan
Lawrence Livermore
National Lab. (LLNL) United States 1,742.00 2,746.38 29,581

2 Frontier

Oak Ridge National

Laboratory (ORNL) United States 1,353.00 2,055.72 24,607

3 Aurora

Argonne National

Laboratory (ANL) United States 1,012.00 1,980.01 38,698

4 JUPITER

Jülich Supercomputer

Center (JSC) Germany 793.40 930.00 13,088
5 Eagle Microsoft Azure United States 561.20 846.84 N/A
6 HPC6 Eni S.p.A. Italy 477.90 606.97 8,461
7 Fugaku RIKEN R-CCS Japan 442.01 537.21 29,899

8 Alps
Swiss National
Supercomputing Centre (CSCS) Switzerland 434.90 574.84 7,124

9 LUMI EuroHPC/CSC Finland 379.70 531.51 7,107
10 Leonardo EuroHPC/CINECA Italy 241.20 306.31 7,494

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 23 / 58

Top Systems: HPL (Rmax) and HPCG

Rank System Country Cores Rmax [PF/s] Rpeak [PF/s] Power [kW]

1 El Capitan United States 11,039,616 1,742.00 2,746.38 29,581
2 Frontier United States 9,066,176 1,353.00 2,055.72 24,607
3 Aurora United States 9,264,128 1,012.00 1,980.01 38,698
4 JUPITER Booster Germany 4,801,344 793.40 930.00 13,088
5 Eagle United States 2,073,600 561.20 846.84 —
6 HPC6 Italy 3,143,520 477.90 606.97 8,461
7 Supercomputer Fugaku Japan 7,630,848 442.01 537.21 29,899
8 Alps Switzerland 2,121,600 434.90 574.84 7,124
9 LUMI Finland 2,752,704 379.70 531.51 7,107

10 Leonardo Italy 1,824,768 241.20 306.31 7,494

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 24 / 58

Top 10 Supercomputers (Green500)

#
TOP500
Rank System Country Cores

Rmax
(PFLOP/s)

Power
(kW)

Efficiency

(GFLOPS/W)

1 259 JEDI Germany 19,584 4.50 67 72.733
2 148 ROMEO-2025 France 47,328 9.86 160 70.912
3 484 Adastra 2 France 16,128 2.53 37 69.098
4 183 Isambard-AI phase 1 United Kingdom 34,272 7.42 117 68.835
5 255 Otus (GPU only) Germany 19,440 4.66 N/A 68.177
6 66 Capella Germany 85,248 24.06 445 68.053
7 304 SSC-24 Energy Module South Korea 11,200 3.82 69 67.251
8 85 Helios GPU Poland 89,760 19.14 317 66.948
9 399 AMD Duranos France 16,632 2.99 48 66.464
10 412 Henri United States 8,288 2.88 44 65.396

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 25 / 58

TOP500 List - Countries Share Over Time

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 26 / 58

TOP500 List - Performance Over Time

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 27 / 58

TOP500 List - Projected Performance Over Time

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 28 / 58

TOP500 List - Applications Share Over Time

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 29 / 58

Interconnects in Supercomputers

The network fabric that links CPUs, GPUs, and nodes so they can exchange
data fast and in parallel

Latency (µs), per-link bandwidth (GB/s), message rate (Mmsg/s)

Common fabrics: InfiniBand (HDR/NDR), HPE Slingshot, high-speed Ether-
net/RoCE; in-node NVLink/NVSwitch

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 30 / 58

Top-performing Interconnects — Top 5

Rank Interconnect Link rate Why it leads

1 InfiniBand NDR400 400 Gb/s Very low latency, high msg rate; SHARP
offload; GPUDirect RDMA — common in
exascale/AI systems.

2 InfiniBand NDR200 200 Gb/s NDR features with lower per-port rate; ma-
ture ecosystem and toolchain.

3 Slingshot-11 200 Gb/s Adaptive routing on Dragonfly+, conges-
tion control; backbone of HPE Cray exas-
cale systems.

4 InfiniBand HDR 200 Gb/s Proven across many TOP500 systems;
strong collectives and RDMA offloads.

5 InfiniBand EDR 100 Gb/s Lower latency and jitter than 100G Ether-
net/RoCE for HPC collectives.

Note: “Best” depends on workload and network design (topology/rails), but these five
typically deliver the highest sustained HPC performance.

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 31 / 58

TOP500 Interconnect System Share

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 32 / 58

Table of Contents

1 Foundations of Parallel/Distributed Computing

2 High-Performance Computing (HPC) Overview

3 Performance & Benchmarks

4 Energy Efficiency in HPC

5 Distributed Computing Deep Dive

6 High-Performance Statistical Computing (HPSC)

7 Conclusion

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 33 / 58

Energy Efficiency in HPC (1/3): Why It Matters

Scale = Power Hungry: Top supercomputers consume tens of MW
(e.g., Frontier ∼25 MW)

A typical household in Morocco uses 3,500 kWh/year (3.5 MWh).

Frontier in one hour (25 MWh) uses as much electricity as about 7
average Moroccan households consume in an entire year.

In one year, Frontier consumes about as much as 62,000 Moroccan
households combined.

Environmental impact: Carbon footprint of HPC centers pushes
sustainability frontiers

Metrics:

GFLOPS/W (Green500 benchmark) – efficiency measured per watt

Future exascale → zettascale computing will be constrained by watts,
not FLOPS

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 34 / 58

Energy Efficiency in HPC (2/3): Techniques

Hardware-level:

GPUs/accelerators with higher performance-per-watt than CPUs

Specialized chips (TPUs, IPUs, DPUs) designed for efficiency

High Bandwidth Memory (HBM) reduces energy per byte

Algorithmic:

Communication-avoiding and energy-aware algorithms

Mixed-precision and low-rank approximations to reduce compute load

Load balancing to avoid idle power consumption

System/Software:

Dynamic voltage/frequency scaling (DVFS)

Energy-aware scheduling in Slurm/PBS.

Containers + lightweight OS for reducing overhead

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 35 / 58

Energy Efficiency in HPC (3/3): Future & Challenges

Exascale & beyond: Must sustain ∼20–30 MW budgets for exascale,
∼100 MW infeasible

Design frontier: Co-design of algorithms, software, and hardware for
efficiency

Emerging trends:

Near-memory and in-network computing

Liquid cooling and advanced facility design for thermal efficiency

Trade-offs: Performance vs. accuracy vs. watts

Take-home: The real “race” is not only FLOPS, but FLOPS per Watt

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 36 / 58

Table of Contents

1 Foundations of Parallel/Distributed Computing

2 High-Performance Computing (HPC) Overview

3 Performance & Benchmarks

4 Energy Efficiency in HPC

5 Distributed Computing Deep Dive

6 High-Performance Statistical Computing (HPSC)

7 Conclusion

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 37 / 58

What is Distributed Computing?

Computation spread across multiple machines: Tasks are divided and
executed simultaneously on a network of interconnected computers
(nodes) to solve large or complex problems more efficiently

Coordination and communication required: Nodes must work
together, exchanging data and synchronizing operations to ensure
consistency and correctness.

Enables scalability, fault tolerance, and resource sharing across
distributed systems

Used in scientific simulations, data processing pipelines, distributed
databases, and real-time analytics applications

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 38 / 58

Distributed System Architectures (Software View)

Client-Server: A centralized server provides resources or services to
multiple client machines that request them

Example: A bank’s centralized servers handle customer authentication,
account queries, and transactions, while clients (apps, ATMs, or
browsers) send requests.

Peer-to-Peer (P2P): All nodes have equal roles as clients and servers,
sharing resources directly without centralized coordination

Master-Slave: A master node controls and delegates tasks to multiple
slave nodes, which perform the actual computations or operations

Example: Hadoop MapReduce framework, database replication

Each architecture has trade-offs in scalability, fault tolerance,
performance, and complexity

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 39 / 58

Cluster Management

Resource managers: Software systems that allocate and monitor
resources (CPU, memory, storage) across a distributed cluster

Examples: YARN (Yet Another Resource Negotiator) for Hadoop,
Mesos for multi-framework support, Kubernetes for managing
containerized applications, and SLURM for resource management and
job scheduling on high-performance computing (HPC) clusters

Scheduling jobs across nodes: Assigning tasks to available nodes
based on resource availability, workload balancing, and priority
policies to optimize performance and throughput

Fault tolerance: Detecting and recovering from node failures by
automatically rescheduling tasks or redistributing workloads

Monitoring and scaling: Tracking system health, usage metrics, and
scaling clusters up or down dynamically to match demand

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 40 / 58

Communication in Distributed Systems

Message Passing Interface (MPI): A standardized and portable
communication protocol used for parallel programming on distributed
memory systems.

Point-to-Point Communication: Enables direct message exchange
between pairs of processes

Example: MPI Send and MPI Recv

Collective Communication: Involves groups of processes to perform
operations like broadcast, scatter, gather, and reduce

Example: MPI Bcast, MPI Reduce

Synchronization and Coordination: MPI provides mechanisms like
barriers and communicators to synchronize tasks and manage groups
of processes

Example: MPI Barrier, MPI Comm split

Challenges: Scalability, deadlock avoidance, efficient communication
patterns, and portability across HPC architectures

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 41 / 58

MPI Execution Model

Programs follow the SPMD (Single Program, Multiple Data) model.

All processes execute the same program.

Each process can follow different branches depending on its rank.

Each process is assigned a unique rank in a communicator.

MPI Comm size: total number of processes.

MPI Comm rank: rank ID of the current process (0, 1, 2, ...).

Execution is started by the runtime environment:

mpirun -np N ./program (launches N processes).

Typical workflow:
1 Initialize MPI: MPI Init.
2 Query communicator info: MPI Comm rank, MPI Comm size.
3 Perform communication (send/receive, collective).
4 Finalize MPI: MPI Finalize.

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 42 / 58

Basic MPI Operations

Point-to-point communication:
MPI Send, MPI Recv

Used for explicit message passing between two processes
Can be blocking (waits until completion) or non-blocking (MPI Isend,
MPI Irecv)

Collective communication:
MPI Bcast: send data from one process to all others
MPI Gather, MPI Scatter: collect data from all processes into one or
distribute data from one to all
MPI Reduce, MPI Allreduce: combine values across processes (sum,
max, min, etc.) and return the result
MPI Alltoall: every process sends data to every other process (useful
in matrix operations)

Synchronization:
MPI Barrier: all processes wait until everyone reaches this point
before continuing

Communicators and groups:
Default communicator is MPI COMM WORLD

Allows defining subgroups of processes for targeted communication
Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 43 / 58

MPI in Practice: Applications and Optimization

Applications:

Climate modeling, computational fluid dynamics, molecular dynamics
simulations.
Widely used in scientific codes like WRF, LAMMPS, GROMACS, and
PETSc

Performance Optimization:

Use non-blocking communication (MPI Isend, MPI Irecv) to overlap
computation and communication
Minimize communication volume with domain decomposition
Exploit process affinity and topology-aware communication

Scalability Considerations:

Efficient load balancing and minimizing communication bottlenecks are
key to scaling MPI applications to thousands of cores
Hybrid models (e.g., MPI+OpenMP) are often used on modern HPC
architectures

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 44 / 58

Distributed File Systems

Hadoop Distributed File System (HDFS): Designed to store very large
files across multiple machines; provides fault tolerance through data
replication

Example: Used by Hadoop for storing input and output data for
MapReduce jobs

Google File System (GFS): Proprietary file system developed by
Google to support large-scale data-intensive applications with
scalability, fault tolerance, and high throughput

Example: Basis for Google’s search indexing and data processing
pipelines.

Lustre: Open-source distributed file systems designed for
high-performance computing and enterprise storage

Lustre: Focused on high-performance parallel file access; widely used in
supercomputing environments

Key features: Data replication, fault tolerance, parallel access,
scalability, and distributed metadata management

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 45 / 58

Fault Tolerance and Recovery

Checkpointing: Periodically saving the state of an application or
system so it can be restarted from the last saved state after a failure,
rather than from the beginning

Example: Spark writes lineage and intermediate results to storage to
recover failed jobs

Replication: Storing multiple copies of data across different nodes to
ensure data availability even if some nodes fail

Example: HDFS stores each data block in three separate nodes for
redundancy

Leader election: Mechanism to dynamically choose a leader node
among distributed nodes to coordinate tasks or manage system state;
critical when leaders fail or leave the system

Example: ZooKeeper uses leader election to maintain consistency
across distributed services

Goal: Ensure system reliability, minimize downtime, and recover
quickly from failures without data loss

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 46 / 58

Scalability Considerations

Horizontal vs Vertical Scaling:
Horizontal scaling: Adding more machines or nodes to distribute the
workload
Vertical scaling: Increasing the capacity (CPU, memory) of an existing
machine
Example: Adding more servers to a cluster (horizontal) vs upgrading a
server’s RAM (vertical)

Load Balancing: Distributing incoming tasks and requests evenly
across multiple nodes to prevent overloading any single node and
ensure efficient resource utilization

Example: Using a load balancer in front of a web server cluster
Bottlenecks in Distributed Environments: Identifying and mitigating
performance bottlenecks caused by factors like network latency, disk
I/O limits, uneven data distribution, or coordination overhead

Example: A single slow node delaying the completion of a distributed
job (straggler problem in MapReduce)

Goal: Design systems that can scale efficiently with increased data
volume and user demand without compromising performance or
reliability

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 47 / 58

Strong vs Weak Scaling

Strong Scaling:
Measures how the solution time decreases with more processors for a
fixed total problem size
Ideal strong scaling: doubling processors halves the runtime
Challenge: Communication overhead may dominate as processor count
increases
Example: Solving a 1 million-point matrix with 4, 8, and 16 processors

Weak Scaling:
Measures how the solution time remains constant when the problem
size increases proportionally with the number of processors
Ideal weak scaling: adding more processors with proportional data
keeps runtime constant
Challenge: Maintaining efficiency with increased data and processor
count
Example: Each processor solves a 100k-point subproblem; as processors
increase, total size increases too

Use Case in HPC:
Strong scaling is useful for reducing time-to-solution
Weak scaling is crucial for solving increasingly large problems efficiently

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 48 / 58

Table of Contents

1 Foundations of Parallel/Distributed Computing

2 High-Performance Computing (HPC) Overview

3 Performance & Benchmarks

4 Energy Efficiency in HPC

5 Distributed Computing Deep Dive

6 High-Performance Statistical Computing (HPSC)

7 Conclusion

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 49 / 58

What is High-Performance Statistical Computing (HPSC)?

High-Performance Statistical Computing (HPSC) is the integration of
Statistical Computing (SC) with High-Performance Computing (HPC)

Enables scalable and fast statistical analysis on modern supercomputing
systems

Formalizes the intersection of statistical methods with computational
infrastructure

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 50 / 58

Historical Evolution

Statistical Computing (SC) Evolution: BMDP (1960s), SPSS, SAS,
R, Julia

HPC Evolution: Cray-1 to Frontier and El Capitan

Shift from single-core to multicore, GPUs, and hybrid architectures

Dataflow vs MPI+X paradigms

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 51 / 58

Why HPSC?

Modern data scales overwhelm
traditional statistical methods

Demand for real-time inference,
uncertainty quantification, and
large-scale simulations

Need for collaboration between
statisticians and HPC engineers

Our Efforts: Building the HPSC
community:

HPSC4Science.org – hub for
resources, events, and publications
LinkedIn HPSC Group –
networking and engagement

HPSC4Science.org LinkedIn Group

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 52 / 58

https://hpsc4science.org/
https://www.linkedin.com/groups/11805321/

Challenges in HPSC and Applications

Adapting sequential statistical algorithms to parallel systems

Efficient memory and data management at scale

Ensuring numerical stability in approximation environments (e.g.,
low-rank mixed-precision)

Portability and reproducibility across diverse HPC platforms

Applications Across Domains:

Climate Science: Scalable spatial modeling

Genomics: Phylogenetic inference, GWAS with GPU acceleration

Finance/Economics: Real-time pricing, Bayesian asset modeling

Physics: Simulations in cosmology and quantum mechanics.

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 53 / 58

Opportunities and Future Directions

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 54 / 58

Table of Contents

1 Foundations of Parallel/Distributed Computing

2 High-Performance Computing (HPC) Overview

3 Performance & Benchmarks

4 Energy Efficiency in HPC

5 Distributed Computing Deep Dive

6 High-Performance Statistical Computing (HPSC)

7 Conclusion

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 55 / 58

Take-Home Messages: HPC (1/2)

HPC = scale: aggregate many CPUs, GPUs, and accelerators to solve
problems beyond a single workstation

Performance is multidimensional: FLOPS, memory bandwidth,
latency, interconnect, I/O

Parallelism is essential: data parallelism + task parallelism across
nodes and cores

MPI+X programming model: MPI for distributed memory,
OpenMP/threads/GPU kernels for shared memory

Data movement dominates cost: optimize for locality, tiling, batching,
and communication-avoiding algorithms

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 56 / 58

Take-Home Messages: HPC (2/2)

Roofline thinking: balance compute vs. memory to reach peak
performance

Scaling strategies: strong scaling to reduce time-to-solution; weak
scaling to handle larger problems

Reproducibility matters: containers, workflow engines, and
environment modules

Future ready: heterogeneous architectures, exascale systems, energy
efficiency

Key message: HPC is no longer niche — it underpins modern science,
engineering, AI, and industry

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 57 / 58

Q & A

Do it again....

Sameh Abdulah (KAUST) Compute Big, Think Bigger September 2025 58 / 58

	Foundations of Parallel/Distributed Computing
	High-Performance Computing (HPC) Overview
	Performance & Benchmarks
	Energy Efficiency in HPC
	Distributed Computing Deep Dive
	High-Performance Statistical Computing (HPSC)
	Conclusion

