Thinking
Parallel

» i i ) { Eu
In 'r t I t “§>§




Concurrency

The first step in developing a parallel algorithm is to decompose the problem into tasks that can
be executed concurrently

problem instructions

i -
TIREE=
TIREE=
i | -5

* Aproblem is broken into discrete parts that can be solved concurrently
 Each part is further broken down to a series of instructions

* Instructions from each part execute simultaneously on different processors
* An overall control / coordination mechanism is employed




Serial Programming

A problem is broken into a discrete series of
instructions.

Instructions are executed one after another.

Only one instruction may execute at any
moment in time.

problem
Program Data _

Load/Store

instructions

N 13 2 1




Parallel Programming

()

Message




What is a Parallel Program

0

@

A 4

N

A

Read and Distribute Data .

A 4

»| Compute on Sub

Domain A

l

Reduce data

comm.

A 4

Read and Distribute Data

A 4

Compute on Sub

Domain B

l

Reduce data

A

update Sub Domain

l
(Tiee )

comm.

update Sub Domain

l
(i)




Fundamental Steps of Parallel Design

ldentify portions of the work that can be performed
concurrently

Mapping the concurrent pieces of work onto multiple
processes running in parallel

Distributing the input, output and intermediate data
associated within the program

Managing accesses to data shared by multiple processors

Synchronizing the processors at various stages of the
parallel program execution




Type of Parallelism

* Functional (or task) parallelism:
different people are performing
different task at the same time

* Data Parallelism: different
people are performing the same
task, but on different equivalent and
independent objects




Process Interactions

* The effective speed-up obtained by the parallelization depend by the
amount of overhead we introduce making the algorithm parallel

 There are mainly two key sources of overhead:

1. Time spent in inter-process interactions (communication)
2. Time some process may spent being idle (synchronization)




Load Balancing

* Equally divide the work among the available

resource: processors, memory, network
bandwidth, 1/0, ...

* This is usually a simple task for the problem
decomposition model

e |tis a difficult task for the functional
decomposition model




Effect of Load Unbalancing

o/ 1o &
}}lj A}J %/4 I'here?_ -

0

_
PRV




Minimizing Communication

* When possible reduce the communication
events:

— group lots of small communications into large one

— eliminate synchronizations as much as possible.
Each synchronization level off the performance to
that of the slowest process




Static Data Partitioning

The simplest data decomposition schemes for dense matrices are
1-D block distribution schemes.

row-wise distribution column-wise distribution




Distributed Data Vs Replicated Data

* Replicated data distribution is useful if it helps to
reduce the communication among process at the
cost of bounding scalability

 Distributed data is the ideal data distribution but
not always applicable for all data-sets

* Usually complex application are a mix of those
techniques => distribute large data sets; replicate
small data




Global Vs Local Indexes

* In sequential code you always refer to global indexes

 With distributed data you must handle the distinction
between global and local indexes (and possibly
implementing utilities for transparent conversion)

Local Idx 123 1123 123

Global Idx 123 4 5|6 7,819




Block Array Distribution Schemes

Block distribution schemes can be generalized to higher dimensions as well.

Po| P1| P>| P3| Py| Ps| Ps| P

(a) (b)

Degree to which tasks/data can be subdivided is limit to concurrency and parallel execution!!




Parallel Efficiency: Jacoby example

T T
ution dat'

Rank0

Rank1l

Rank2

Local portion of the matrix the
process must take care of

T T
‘solution.dat'

Figure 1: A diagram of the Jacobi Relaxation for Solving the Laplace's Equation on
an evenly spaced 9x9 grid with the boundary conditions outlined in the text
above.




Parallel Efficiency: Jacoby example

Matrix 12,000 x 12,000, 10 iterations

Matrix 1,200 x 1,200, 10 iterations computation on CPU

computation on CPU

4.0
Thing Measured Thing Measured
Em computation BN computation
W matrix-initialization W matrix-initialization
0.12 = mpi-send-rec 3.5 A mmm mpi-send-rec
010 3.0 1
a 2.5
0.08 1 —_
H 3
- E
@ =]
4 o 2.0
s )
g 0.06 1 E
= S
<
1.5 A
0.04 1
1.0 4
0.02 4
0.5
0.00 -
1 2 4 8 16
Number of nodes 0.0 -

1 2 a 8 16
Number of nodes



Overlap Communication and Computation

 When possible code your program in such a

way that processes continue to do useful work
while communicating

* This is usually a non trivial task and is afforded
in the very last phase of parallelization

* |f you succeed, you have done. Benefits are
enormous




Granularity

Granularity is determined by the decomposition level
(number of task) on which we want divide the problem

The degree to which task/data can be subdivided is limit to
concurrency and parallel execution

Parallelization has to become “topology aware”

" coarse grain and fine grained parallelization has to be mapped
to the topology to reduce memory and I/O contention

" make your code modularized to enhance different levels of
granularity and consequently to become more “platform
adaptable”




Limitations of Parallel Computing

Fraction of serial code limits parallel speedup

Degree to which tasks/data can be subdivided

is limit to concurrency and parallel execution
o

. ® .
. " Tl | &
Load imbalance: %% o
o B W A &
e parallel tasks have a different amount of work ......0. &
* CPUs are partially idle | oo ®

@
* redistributing work helps but has limitations

e communication and synchronization overhead ® ®




Shared Resources

* |n parallel programming, developers must manage
exclusive access to shared resources

e Resources are in different forms:

— concurrent read/write (including parallel write) to
shared memory locations

— concurrent read/write (including parallel write) to
shared devices

— a message that must be send and received




Fundamental Tools of Parallel Programming




Programming Parallel Paradigms

* Are the tools we use to express the parallelism
for on a given architecture

* They differ in how programmers can manage and
define key features like:

— parallel regions

@
— concurrency

— process communication — (S nviDia. |
— synchronism CUDA.




Workload Management: system level, High-throughput

Python: Ensemble simulations, workflows

MPI: Domain partition

OpenMP: Node Level shared mem

CUDA/OpenCL/OpenAcc:
floating point accelerators

Challenge: code maintainability




Multidimensional FFT

1) For any value of j and k
transform the column (1...N, j, k)

2) For any value of i and k
transform the column (i, 1...N, k)

h(l...N, ], k)
y \ 3) For any value of 1 and j
X transform the column (i, j, 1...N)

\ 4

N:—1 Ny—1 N.-1

Fond) = g 2 (3 (3 Fluvu)etnf) e einis

z=0 y—O

>

DFT long x—dimension

DFT long }r-dimension
DFT long ;dimension 23




Parallel 3DFFT / 1

PO

_/

I\

P1

)
\

P2

P3

N




@\
~—
_l
Ll
L
O
o)
[
(©
| -
O
an

o
o o

(3] (2]
o o




Parallel 1/0O

T
S

File
System

S




Parallel I/0O

yipimpueg
o/1

iPIMmpueg

O/I

3pimpueg
O/1

29

File

File

File




Serial I/O

T
-

File

Sistem




Parallel 1/0
Py P,

e 8

MPI I/0 & Parallel I/0 Libraries
(Hdf5, Netcdf, etc...)

-~ Parallel File System

- ¥ e







