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Nov’24 Top500 Highlights

• El Capitan becomes #1 and third ExaScale system ever
• Frontier is #2 and Aurora #3
• These three system are installed at different DOE laboratories

• Aurora and Frontier achieve over 10 Exaflop/s with mixed precision (HPL-
MxP)

• 3 new systems in TOP10 (#1 El Capitan, #5 HPC6, #10 Tuolumne)
• 8 NVIDIA Grace Hopper systems on the list
• 6 NVIDIA Grace Hopper and 3 AMD Zen-4 Genoa systems in top10 

of Green500
• HPC systems are used longer and replaced less often

• Technological limits lead to strong concentration at the top
• TOP500 shows further reduced growth-rates since 2017

• End of Moore's Law -Very unlikely to achieve 10 Exascale(HPL) by 2030
• However: New Workloads (AI) require new benchmarks!
• Chinese systems are missing in the equation
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Welcome to El Capitan, the new crown!



4

Welcome to El Capitan, the new crown!



5

Under the hood…
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The Beast



7

Nvidia H100 “Hopper” SXM5 specs
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But we have a major bottleneck
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But we have a major bottleneck
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Specialization: Natures way of Extracting More Performance 
in Resource Limited Environment

Powerful General Purpose Many Lighter Weight

(post-Dennard scarcity)
Many Different Specialized

(Post-Moore Scarcity)

Xeon, Power KNL, AMD, Cavium/Marvell, GPU
Apple, Google, Amazon

Microsoft

Slide courtesy

J. Shalf, LBNL
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You may then want to compose architectures!

Slide courtesy

J. Shalf, LBNL
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Or even disaggregate hardware resources!

Current disaggregation solutions use Interconnect bandwidth (1 – 10 GB/s) 

But this is significantly inferior to RAM bandwidth (100 GB/s – 1 TB/s) 

Current server

Current rack
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Slide courtesy

J. Shalf, LBNL



Peak performance of four generations of NVIDIA GPUs

Slide courtesy

H. Bayraktar, NVIDIA



Peak performance of four generations of NVIDIA GPUs

Slide courtesy

H. Bayraktar, NVIDIA
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Feeling like a kid in a candy store 

HPC

AI

HPC
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Motivations for Mixed Precisions (2)
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The Landscape of Mixed Precision Hardware
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HPC is not the driver for hardware technology, AI/ML are!

❖ AI and ML have been around for a long time as 

research efforts

❖ Why now?

- Deluge of data (IoTs, Internet)

- Flops are free (hardware technology scaling)

- Development of new AI/ML algorithms (asynchronous, 

2nd order methods, Federated Learning)

- Market! Market! Market! Oh, did I say Market?!



19

Batching (not bashing!) AI workloads 
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Motivations for Mixed Precisions (1)

❖ Less communication: reduce memory and network 

traffic

❖ Reduce memory footprint

❖ Increase throughput: more flops per seconds

❖ Reduce time-to-solution

❖ Reduce energy consumption

❖ More science per joule!
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What if HPC algorithms could exploit these AI hw features?

❖ Use a mathematical technique

- Get an approximation in lower precision then use 

something like Newton’s method to enhance accuracy 

❖ Transfer less bytes, data transfer is expensive

- Store data in primary storage in full precision

- Transfer the data in short precision

- Once in registers, compute in full precision

❖ Apply algebraic compression

❖ Combine all above
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The HPL-MxP Benchmark
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Algorithms Matter, Perhaps More Than Hardware! (1)
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Algorithms Matter, Perhaps More Than Hardware! (2)



Revisiting the Hourglass

@KAUST_ECRC

https://www.facebook.com/ecrckaust

Shifting 

your I/O-bound 

applications 

to compute-bound



Reshaping Linear Algebra for Massively 
Parallel Architectures

• Enhance user-productivity using layers of abstraction

• Expose parallelism using fine-grained computations

• Achieve scalability using asynchronous executions

• Exploit data sparsity using low-rank approximations

• Maintain code portability using standard basic blocks

Are you willing to redesign your algorithm?

One possible productive solution: Matricization



Computational efficiency through tuned approximation:
A journey with tile low-rank and mixed precisions

1. Don’t oversolve: maintain just enough accuracy for the application purpose

2. Economize on storage: no extra copies of the original matrix 27



Memory: up to 63X smaller

Analytics: up to 150X faster

Memory: up to 4X smaller

Analytics: up to 100X faster

Memory: up to 4X smaller

Analytics: up to 30X faster

Memory: up to 50X smaller

Analytics: up to 12X faster

Example of Accelerated Applications

Seismic

Imaging

Computational

Astronomy

Radar

Applications

Climate/Weather

Prediction

28



Temperature
Saudi Arabia

Evapotranspiration
Western Asia

Wind Speed
Middle East

Soil Moisture
USA

up to 50X smaller
Memory

up to 10X faster
Analytics

From $750M to $15M
Storage

From $400M to $40M
Compute

29

Compress to Impress
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Linear Algebra 101

Critical component for many scientific applications:

- cardio-magnetism, wave guide propagation, image processing, quantum 

chemistry/physics, atomic structure calculations, electromechanics, 

geophysics/seismology, nonlinear mechanics, computational astronomy, 

computational fluid dynamics, geospatial statistics, climate/weather prediction, 

smart health, smart agriculture, smart satellite, etc...
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Linear Algebra 101

• Dense solvers: systems of linear equations, eigenvalue / 

singular value problems

• Sparse iterative solvers: sparse matrix-vector multiplication 

(SpMV)

• Sparse explicit solvers: stencil computations
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Linear Algebra 101

• Dense solvers: systems of linear equations, eigenvalue 

/ singular value problems

• Sparse iterative solvers: sparse matrix-vector multiplication 

(SpMV)

• Sparse explicit solvers: stencil computations
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The Two Distinct Optimization Paths

• By using the existing hardware features (sometimes comes 

for free)

• By redesigning the numerical methods and optimizing the 

actual implementation (requires effort and time)

Separation of concerns:

• Abstracting the hardware complexity: dynamic runtime 

systems

• Novel Algorithmic challenges: numerical accuracy/stability



34

Why software libraries are so important?

• Basic blocks for large applications

• Highly-tuned by vendors if the software becomes mainstream

• Provide abstraction

• Impacting the scientific community
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Survey on LA software

https://docs.google.com/spreadsheets/d/11ESR3uucNvVKEoIcalP9gR7ApaOElLwmE5sAS-VRMOM/edit?gid=90156307#gid=90156307

https://docs.google.com/spreadsheets/d/11ESR3uucNvVKEoIcalP9gR7ApaOElLwmE5sAS-VRMOM/edit?gid=90156307#gid=90156307
https://docs.google.com/spreadsheets/d/11ESR3uucNvVKEoIcalP9gR7ApaOElLwmE5sAS-VRMOM/edit?gid=90156307#gid=90156307
https://docs.google.com/spreadsheets/d/11ESR3uucNvVKEoIcalP9gR7ApaOElLwmE5sAS-VRMOM/edit?gid=90156307#gid=90156307
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A Look back to software evolution
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Facts on LAPACK / ScaLAPACK

• Open-source packages (downloaded more than 60 million 

times)

• Large community contributors

• Integrated in open-source libraries (PETSc, SLEPc, MUMPS, 

CPMD, CP2K ...)

• Integrated in vendor numerical software (Mathworks, Intel, 

Cray, IBM, HP, Fujitsu ...)

• Critical library for many scientific application
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Block Algorithms: Fork-Join Paradigm 
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The Three Siblings

• BLAS: kernels for dense linear algebra

• LAPACK: sequential dense linear algebra

• ScaLAPACK: parallel distributed dense linear algebra
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BLAS: Basic Linear Algebra Subroutines (BLAS)



41

BLAS: Basic Linear Algebra Subroutines (BLAS)
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Data Locality

• Can only do arithmetic on data at the top of the hierarchy
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Why Higher Level BLAS?
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BLAS Performance
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Linear Algebra Package (LAPACK)
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Linear Algebra Package (LAPACK)
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Fork-Join Paradigm
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Scalable Linear Algebra Package (ScaLAPACK)
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Example of typical parallel machine
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ScaLAPACK's Overall Structure
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Putting them all together…



52

Distributed Data Layout
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(R)Evolution
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Tile Data Layout Format
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PLASMA: Tile Algorithms

+ OpenMP
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Example: Least-square solver
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DAG can be Large and Complex
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Dynamic Runtime System
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DataFlow Programming
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SLATE-CPU Vs SLATE-GPU
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