Hatem Ltaief
Principal Research Scientist, KAUST

Advanced School on High-Performance Computing and
Applied Al for High-Resolution Regional Climate Modeling

September 8-19 2025

X M/ The Abdus Salam
7 College of > International Centre
7. Computing (CTP for Theoretical Physics

= ANTHER

El Capitan becomes #1 and third ExaScale system ever
* Frontieris #2 and Aurora #3
* These three system are installed at different DOE laboratories
Aurora and Frontier achieve over 10 Exaflop/s with mixed precisio!
MxP)
3 new systems in TOP10 (#1 El Capitan, #5 HPC6, #10 Tuolumne)
8 NVIDIA Grace Hopper systems on the list
6 NVIDIA Grace Hopper and 3 AMD Zen-4 Genoa systems in top10
of Green500
HPC systems are used longer and replaced less often
* Technological limits lead to strong concentration at the top
TOP500 shows further reduced growth-rates since 2017
 End of Moore's Law -Very unlikely to achieve 10 Exascale(HPL) by 2030
 However: New Workloads (Al) require new benchmarks!
* Chinese systems are missing in the equation

World’s fastest supercomputer EL CAPITAN

B Lawrence Livarmore S ,' e
Natioal Labcratory

/‘ . e -
(2)EERGY
Am- NYSA

. ELI HIPITI'Hiﬂ :

—_— .

ADVAN IDWDOGICOO PUTING

| / 7 / \ \ \\ s =

‘ Lawrence Livermore National Laboratory N A'S%
LA P o —— —— - S——

HPE has delivered a highly capable Q

AMD GPU-accelerated system EL CAPITAN
= System specifications:
— Peak 2.7929 DP exaflops
B Lavrdie . ' s] » * Per node peak of 250.8 DP teraflops
“”““‘“’*q “ ' B PR 5N A%, : * ~42.3 FP8 exaflops
o 224 b ¢l ' ‘ — Peak power 34.8 MW
EI. l nlpnrn‘n & J y : — AMD MI300A APU - 3D chiplet
- aon 2 | design w/AMD CDNA 3 GPU, “Zen

l"ru DN T ﬁl(‘F ™

4" CPU, cache memory, HBM3

. ey) — Slingshot interconnect
= HPE has provided several critical innovations

— HPE and LLNL have worked with ORNL jointly on non-recurring engineering (NRE) activities
— MI300A, world’s first data center APU directly addresses multiple challenges

— Uses TOSS software stack, enhanced with HPE software

— El Capitan includes an innovative near node local storage solution: the “Rabbits”

Late binding of the processor solution has ensured El Capitan provides the best possible value
I e e Lo — AMDZ1 NS4

AMD INSTINCT™ MI300A: The world’s first data center APU Q

A L1

= 4th Gen AMD Infinity Architecture:
AMD CDNA™ 3 and EPYC™ CPU “Zen 4” together

— CPU cores and GPU compute units share a unified
on-package pool of memory

* Groundbreaking 3D packaging
— CPU | GPU | Cache | HBM
— 24 Zend cores, 1468 transistors, 128GB HBM3

» Designed for leadership memory bandwidth and
application latency

= APU architecture designed for power savings
— compared to discrete implementation

‘ Lawrence Livermaee Nabonal Laboratory AMD:‘ N"S.\‘

LA A a0

AMD Instinct™ MI300 Modular Chiplet Package e

= 1/O Die (10D) = Accelerator Complex Die (XCD)
— 128 Channel HBM3 Interface — 6 x 38 AMD CDNA™ 3 Compute Units
— 256MB AMD Infinity Cache™
— Infinity Fabric Network-on-Chip S—
— 4 x16 PCle® 5 + 4th Gen Infinity Fabric™ Lmks
— 4 x16 4th Gen Infinity Fabric™ Links

= CPU Complex Die (CCD)
— 3 x8 “Zen 4” Cores
— Replaced by additional

XCDs on MI300X
= AMD Infinity Fabric™ AP

Interconnect

CHBM3 = 3.5D Package
Aa . Wy — 3D hybrid bonding

— 8 physical stacks
— 2.5D silicon interposer

— AMD Instinct™ MI300A: 128 GB (8H)
— AMD Instinct™ MI300X: 192 GB (12H)

Lawrence Livermore National Laboratory AMDAO NS4 ‘

LANCPRES M00d0t

Architecture

« 80 B Transistors

* ~ 1.8 GHz clock speed

« ~ 144 “SM'=s
« 128 SP “cores” each (FMA)
* 64 DP “cores” each (FMA)
* 4 “Tensor Cores” each

= 2:1 SP:DP
performance

« ~ 34 TFlop/s DP peak (FP64)
» 50 MiB L2 Cache

« 80 GB HBM3
* MemBW ~ 3300 GB/s (theoretical)
* MemBW ~ 3000 GB/s (measured)

AMD,FP

| —@— Intel,FP

AMD,BW
{ -@- Intel,BW

2014

2012

2010

10000 7

1000 A
100 -

5/s21Ag9 pue s/sdo|49

2018 2020 2022 2024

2016

2008

Year

2,100

1,800

1,500

1,200

GB / sec

900

600

300

e High-performance interconnect for emerging dense GPU systems

4" Generation NVLink

37 Generation NVLink

Allows Load-Store operations between all GPUs

A NVLink bandwidth

per GPU

Maximum Number
of Links per GPU

Supported NVIDIA
Architectures

B
1" Generation NVLUInk
2014 « » 2024

Architecture Release

NVLink Performance Trends

Second
Generation

300GB/s

NVIDIA
Volta™
architecture

Third
Generation

600GB/s

12

NVIDIA
Ampere
architecture

Fourth
Generation

900GB/s

18

NVIDIA
Hopper™
architecture

Courtesy: NVIDIA

Fifth
Generation

1,800GB/s

18

NVIDIA
Blackwell
architecture

Many Lighter Weight Many Different Specialized
(post-Dennard scarcity) (Post-Moore Scarcity)

% @

nsect catching

Fiker feeding : ’

Genin eating Conifercus-seed siting

fais ishing Pursu fishing ~=’ i

Powerful General Purpose

il
Scavenging Raptorial Sabics e Scyming

_ Apple, Google, Amazon
Xeon, Power KNL, AMD, Cavium/Marvell, GPU Microsoft

Slide cou}Pesy
J. Shalf, LBNL

Datacenter

Traditional Rack
TOR Switch

Compute Node
1 CPU | CPU | CPU
l| CPU || CPU || CPU
Accelerator Node
\‘GPU “GPU \'GPU
.’ GPU || GPU | GPU
Compute/Accelerator Node
‘| CPU | CPU | CPU
.’ GPU || GPU || GPU

Storage Node

=L
«Q
=r
oy}
Q
=
Qo
2
Qo
=
=
m
—~
=%
)
e
=
o
QO
=
a
=~
o
-
=
=h
=3
o
Q
=
o

Low Latency CXL

Datacenter

Composable Rack
TOR Switch

Compute Node

| Bcru [Beru |Beru

| CPU lCPU ‘CPU

Accelerator Node
| Beru || Berpu | Beru
Eeru || Boru || BerPu

Memory Node

‘ Memory Memory Memory
\

| ox

| Memory Memory Memory

Storage Node

puegiuyu| Jo/pue Joussyl yipimpueg ybiH

Slide couﬁesy
J. Shalf, LBNL

Pool and compose

Current server

N\

Current rack

N

Current disaggregation solutions use Interconnect bandwidth (1 — 10 GB/s)
But this is significantly inferior to RAM bandwidth (100 GB/s — 1 TB/s)

Slide cou}lzesy
J. Shalf, LBNL

Peak performance of four generations of NVIDIA GPUs

Performance in TFLOP/s or TOP/s

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Hardware Evolution for Mixed-Precision Support

&
&
3R
B AD ¥
o o
\-.{L-
[
v
A IR IONEN
o & R AENEY
A, ~ Gy-ndiag
— = —
Volta (V100) Ampere (A100) Hopper (H200) Blackwell (B200)
m FPG64 m FPE4 Tensor mFP32 mTF32 Tensor mFP16 Tensor

Slide courtesy
BF16 Tensor mFP8 Tensor ©INT8 Tensor FP4 Tensor H. Bayraktar, NVIDIA

Peak performance of four generations of NVIDIA GPUs

Hardware Evolution for Mixed-Precision Support 0555)

10000
5|

A X 1154 Y ‘
$ Ry
q‘b@@%@ - R4 |
1000

q@

X 225

Log scale 100

10

Performance in TFLOP/s or TOP/s

Volta (V100) Ampere (A100) Hopper (H200) Blackwell (B200)

mFPG4 B FP64 Tensor WMFP32 B TF32 Tensor EMFP16 Tensor

BF16 Tensor mFP8 Tensor 1 INT8 Tensor ' FP4 Tensor Slide courtesy

H. Bayraktar, NVIDIA

Feeling like a kid in a candy store

m Exponent bit Fraction bit

ece reos[IEE I
ece ez [0 IEEDD

Traditional HPC

NVIDIA TF32

ieee Fr16 [[EIIERD Neural Networks

Google BF16 [[IENEA

NviDIAFPg [|EJE
NvIDIA FP8 [|EE]

NVIDIA FP4 IEI } Quantization / Inference

Transformers

HPC

Al

HPC

IBM Cell Apple NVIDIA Kepler NVIDIA NVIDIA
Broadband ARM K10, K20, K40, Volta/Turing Volta/Turing

Engine Cortex-A9 K80

14x X 3x 2X 16x
32 bits / 64 bits 32 bits / 64 bits 32 bits / 64 bits 32 bits / 64 bits 16 bits / 64 bits

Peak Performance in TF/s | V100 NVLink | A100 NVLink m B200

FP64
FP32 19.5 180

FP64 Tensor Core 15 19.5 40
FP/TF32 Tensor Core 8x 1125

FP16 Tensor Core 120 2250 225x
FP8/INT8 Tensor Core - 1980 4500

FP4 Tensor Core - 9000

-Mixed-Precision Startups and their

hardware
- GraphCore
. Colossus
- Habana
. Labs Gaudi
- Cerebras
. Wafer Scale Chip
- Blaize
. Graph Streaming Processor
- Groqg
. Tensor Streaming Processor
- SambaNova
. Cardinal
- Tenstorrent
. Grayskull

NVIDIA mixed-precision hardware

- Pascal
. FP16 units only
- Volta
. Tensor Cores and FP16
- Turing
. Tensor Cores and FP16
- Ampere
. Tensor Cores for FP16 and FP64
- Hopper
. Double-, single-, half-, and
quarter-precision formats in
scalar and tensor units

17

“* Al and ML have been around for a long time as
research efforts

* Why now? - (-
- Deluge of data (loTs, Internet)
- Flops are free (hardware technology scaling)
- Development of new Al/ML algorithms (asynchronous,
2"d order methods, Federated Learning)

- Market! Market! Market! Oh, did | say Market?!

Deep Learning Needs Small Matrix Operations

Matrix Multiply is the time-consuming part.

Emergence of Al-Specific Hardware
Ecosystem

=
e

MYTHIC .
Convolution Layers and Fully Connected Layers require matrix multiply ?EE!?H.: SRAFHEORE
& thinci WAVE=
There are many GEMM's of small matrices, perfectly parallel, can get by RAIN comrurive
with 16-bit floating point aWS Google rinte
(2 s G s n n; ~—" flexlogiXx
input feature maps feature mapsfeature mapsfeature maps output o \(((gerebras
32)(_32 — _28)(_28_ 1_4le ﬂxlo_ R 5x5 P n 9 i' XILINX
N) e N s sambaNova
N I P == AN\ =9,
e — ==\ B
~E L e \ N\F
| = | . il
56 N e L ‘ _‘—_\\ N
convolution N\ 22 s Lo \\ fully N\
subsampling convolution %2 % connected
;R T, g

feature extraction

Convolution Step
S5 In this case 3x3 GEMM

classification

X

a, Wi Wi Wi
= X2

a Wa Wi Wi
RE

Fully Connected
Classification

4

.0

®

o

4

o

4

o

4

o

4

o

*

Less communication: reduce memory and network
traffic

Reduce memory footprint

Increase throughput: more flops per seconds
Reduce time-to-solution

Reduce energy consumption

More science per joule!

20

* Use a mathematical technique

- Get an approximation in lower precision then use
something like Newton’'s method to enhance accuracy
* Transfer less bytes, data transfer is expensive

- Store data in primary storage in full precision

- Transfer the data in short precision

- Once in registers, compute in full precision
*» Apply algebraic compression
¢ Combine all above

A A\

6.
7.

Generate random linear system Ax=b k‘

Represent the matrix A in low precision (16-bit floating point)

Factor A in lower precision into LU by Gaussian elimination

N

Compute approximate solution with LU factors in low precision

Perform up to 50 iterations of refinement, e.g., GMRES to get
accuracy up to 64-bit floating point

a. Use LU factors for preconditioning

Iterative refinement for dense systems, Ax = b, can work this way.

L U =Iu(A) O(n3)
x = U\(L\b) o(n?)
GMRes preconditioned by the LU to solve Ax=b FP64 precision O(n2)
. . . Ax — b
Validate the answer is correct: scaled residual small 1 I 0(1

X <
[lAl||[lxI| + |Ibl] me
2 nd

Compute performance rate as §><—

time

0)

22

HPC algorithmic efficiency tracked by Poisson solvers

Consider a Poisson solve in a 3D n x n x n box; natural ordering gives bandwidth of n?

Year Method Reference Storage Flops
1947 GE (banded) | Von Neumann & Goldstine n> n_7
1950 Optimal SOR | Young n3 n4log n
1971/77 | MILU-CG Reid/Van der Vorst n3 n3slog n
1984 | Full MG Brandt n @

If n =64, this implies an overall reduction in flops of ~16 million =

*Six months is reduced to 1 second (recall: 3.154 x 107 seconds per year)

23

Algorithms improve exponents; Moore only adjusts the base

* To scale to extremes, one must start with algorithms with optimal
asymptotic complexity, O(N log’ N), p =0, 1, 2

* These are typically (not exclusively) recursively hierarchical
* Some such algorithms through the decades:

— Fast Fourier Transform (1960’s): N?>— Nlog N

— Multigrid (1970’s): N*¥3log N > N

— Fast Multipole (1980’s): N2 —> N

— Sparse Grids (1990’s): NY— N (log N)*!
— ‘H matrices (2000’s): N3 — k* N (log N)?
— MLMC (2000’s): N¥? — N (log N)?

— Randomized matrix algorithms (2010’s): N° — N? log k
— ?7?(2020’s): 2272 27

Revisiting the Hourglass
Shifting
your 1/O-bound
applications
to compute-bound

ECRC is
right

here

\

YW @AuUsT ECRC
n https://www.facebook.com/ecrckaust

Reshaping Linear Algebra for Massively
Parallel Architectures

Enhance user-productivity using layers of abstraction
Expose parallelism using fine-grained computations
Achieve scalability using asynchronous executions
Exploit data sparsity using low-rank approximations
Maintain code portability using standard basic blocks
Are you willing to redesign your algorithm?

One possible productive solution: Matricization

Computational efficiency through tuned approximation:

A journey with tile low-rank and mixed precisions
0

DDense DP - DDense DP C:l] DDense DP
i = rinop
E::EZDC‘:']D I-TLRSP
a2 oo o)

‘ o oo U)
R R R
mEEEREn

C oo oo)
‘BE R

I- TLR SP

C] Dense DP
. Dense SP
D Dense HP

D Dense DP
. Dense SP
D Dense HP

1. Don’t oversolve: maintain just enough accuracy for the application purpose
2. Economize on storage: no extra copies of the original matrix 27

Example of Accelerated Applications

Seismic Computational Radar Climate/Weather
Imaging Astronomy Applications Prediction
R Tempelfature

8 X \

7 ||]

10

-10

Memory: up to 63X smaller Memory: up to 4X smaller Memory: up to 4X smaller Memory: up to 50X smaller
Analytics: up to 150X faster Analytics: up to 100X faster Analytics: up to 30X faster Analytics: up to 12X faster

28

Compress to Impress

Soil Moisture Wind Speed Evapotranspiration

Lobtudes

Total E ra ation (kg m-2 3-1)

<
0000000 0.00000% 0000010 0.00001% OOM)O 0.00002% 0000030

Storage
From ¢750M © $15M

Analytics
up to || ()) faster

Memory

up to 5, ()) smaller

Temperature

w

Longitude

Compute
From ¢400M © $40M

29

Critical component for many scientific applications:

- cardio-magnetism, wave guide propagation, image processing, quantum
chemistry/physics, atomic structure calculations, electromechanics,
geophysics/seismology, nonlinear mechanics, computational astronomy,
computational fluid dynamics, geospatial statistics, climate/weather prediction,
smart health, smart agriculture, smart satellite, etc...

Ax-borAx_Ax

Sparse

Implu:lt

Dlrect

30

Dense Iterative Explicit

Dense solvers: systems of linear equations, eigenvalue /

singular value problems
Sparse iterative solvers: sparse matrix-vector multiplication

(SpMV)
Sparse explicit solvers: stencil computations

Ax_borAx_.\x

Sparse

Implu:lt

Dlrect

31

Dense Iterative Explicit

 Dense solvers: systems of linear equations, eigenvalue
| singular value problems

« Sparse iterative solvers: sparse matrix-vector multiplication
(SpMV)

« Sparse explicit solvers: stencil computations

Ax_borAx_Ax

Sparse

Impllclt

Dlrect

Dense Iterative Explicit 32

* By using the existing hardware features (sometimes comes

for free)
* By redesigning the numerical methods and optimizing the
actual implementation (requires effort and time)

Separation of concerns:
* Abstracting the hardware complexity: dynamic runtime

systems
* Novel Algorithmic challenges: numerical accuracy/stability

33

Basic blocks for large applications

Highly-tuned by vendors if the software becomes mainstream
Provide abstraction

Impacting the scientific community

34

Freely Available Software for Linear Algebra (August 2021)

Here is a list of freely available software for the solution of linear algebra problems. The interest is in software for high-performance computers that’s available in “open source” form on the
web for solving problems in numerical linear algebra, specifically dense, sparse direct and iterative systems, and sparse iterative eigenvalue problems. Please let us know about updates and
corrections.

Send corrections and updagtes to Dalal.

An old survey of Iterative Linear System Solver Packages can be found at:

http://www.netlib.org/utk/papers/iterative-survey/

Thanks,
Jack Dongarra and
Dalal Sukkari

SUPPORT ROUTINES |License Support Type 1 Mode Dense | Sparse Last release date | Updated | New
Real | Complex Shared | Accel. | Dist

| Armadillo Mozilla yes X X C++ X X X 2018-06-26 X

Armas LGPL yes X C X X 2015-12-22

ATLAS BSD like yes X X F77/F95/C X X 2018-10-05 X

BLAS BSD yes X X F77/F95/C X X 2017-11-01

| BLIS New BSD yes X X F77/F95/C X X 2021-03-22 X

Blitz++ LGPLv3+ ves X X C++ X X 2019-08-01 X

| BML, BSD yes X X F77/F95/C X X X X X 2020-09-10 X

cIBLAS Apache yes X X C/C++ X [¢) X 2017-01-18 X

GHOST BSD yes X X C/C++ X C/X M X 2020-09-03 X
Apache2 ves X X C X X X 2021-01-19 X

KBLAS BSD yes X X C/C++ X C X 2017-11-15 X

KSVD BSD yes X C X M SVD 2018-11-08 X

librsb LGPLv3 ves X X F77/F95/C/C++ X X 2017-06-04 X

LINALG * ? ? n/a

MR3-SMP New BSD yes X F77/F95/C X X 2013-06-24

MTL Boost yes X X C++ X X 2014-05-22

NEWMAT Own yes X C++ X X 2008-11-20

| NIST Sparse BLAS PD yes X X C/C++ X X 2009-04-27

OpenBLAS BSD yes). X F77/F95/C X X 2020-12-12 X

| PMRRR New BSD ves X X F77/F95/C X X 2014-02-23

pOSKI BSD yes X X F77/F95/C/C++ X X 2012-04-27

PSBLAS BSD yes X X F90 X M X 2020-06-30 X

QDWH BSD yes X C X M X 2017-02-27 =

| Scotch CeCILL-C ves F77/F95/C X M X 2020-09-03

I_S%b_f_t PD yes X b.§ C/C++ X X 2008-10-30

| Trilinos/Epetra BSD ves X F77/F95/C/C++ X M X 2015-05-07

https://docs.google.com/spreadsheets/d/11ESR3uucNvVKEoIcalP9gR7ApaOElLwmE5sAS-VRMOM/edit?gid=90156307#gid=90156307
https://docs.google.com/spreadsheets/d/11ESR3uucNvVKEoIcalP9gR7ApaOElLwmE5sAS-VRMOM/edit?gid=90156307#gid=90156307
https://docs.google.com/spreadsheets/d/11ESR3uucNvVKEoIcalP9gR7ApaOElLwmE5sAS-VRMOM/edit?gid=90156307#gid=90156307

Software infrastructure and algorithmic design follow hw evolution in time:

@ 70's - LINPACK, vector operations:
Level-1 BLAS operation

@ 80's - LAPACK, block, cache-friendly:
Level-3 BLAS operation

@ 90's - ScaLAPACK, distributed memory:

PBLAS Message passing
@ 00’'s:

e PLASMA, MAGMA:
x86 multicore + GPU, DAG scheduler

@ 10’'s:
e SLATE:
Standard (MPIl + OpenMP), Applications
@ 20’s:

e HiCMA, numerical approximations:
algebraic compression, mixed precisions

rrrrrrrrrrrrrrr

36

Open-source packages (downloaded more than 60 million
times)

Large community contributors

Integrated in open-source libraries (PETSc, SLEPc, MUMPS,
CPMD, CP2K ...

Integrated in vendor numerical software (Mathworks, Intel,
Cray, IBM, HP, Fuijitsu ...)

Critical library for many scientific application

37

N iR =

38

 BLAS: kernels for dense linear algebra
 LAPACK: sequential dense linear algebra
 ScalLAPACK: parallel distributed dense linear algebra

ScalAPACK Users' Gunde

LAPATCK

L-A P-A C-K '
LAPA--C-K .::fi
L-A P-A CK Laes o
LA-P-A CK &
L-A-P A C-K g '

Users’ Guide

Third Cdkion

llllllllllllllllllllllll

@ Level 1 BLAS
Consider AXPY (y = alpha.x + y): 2n flops on 3n read/write
operations
Computational intensity = (2n)/(3n) = 2/3
Too low to run near peak speed (read/write dominates).
@ Level 2 BLAS
Standard library of 25 operations (mostly) on matrix/vector pairs
“GEMV": y = alpha-A-x + beta:x, “GER": A = A + alphax.y”
Up to 4 versions of each (S/D/C/Z), 66 routines
Why BLAS 2 ? They do O(n?) ops on O(n?) data
So computational intensity still just (2n?)/(n?) = 2
OK for vector machines, but not for machine with cache memory.

40

o Level 3 BLAS
Standard library of 9 operations (mostly) on matrix/matrix pairs
“GEMM": C = alpha-A-B + beta-C, C = alpha-A-AT + beta-C
Up to 4 versions of each (S/D/C/Z), 30 routines
Why BLAS 3 ? They do O(n®) ops on O(n?) data
So computational intensity (2n%)/(4n?) = n/2 — big at last!
Good for machines with caches and many memory hierarchy levels

41

« Can only do arithmetic on data at the top of the hierarchy

Processor Tertiary
Secondar SHOTage
Y | |(Disk/Tape
Control Storage (D1 pe)
/ (Disk)
Level Main
2 Q S 2 and 3 Memory Distributed || Remote
Datapath|2. || | & A Cache (DRAM) | |Memory Cluster
= = (SRAM) Memory

BLAS Memory| Flops Flops/
Refs
Level 1 3n 2n
y=y+OX
Level 2 n2 2n2
y=y+AX
Level 3 4n2 2n3

C=C+AB

43

Level 3 BLAS: DGEMM

GFLOPS

Level 2 BLAS: DGEMV
~==Level 1 BLAS: DAXPY

200 400 600 800 1000 2000 3000 4000 5000
Matrix Size

Algorithms we can turn into (nearly) 100% BLAS 3
Linear Systems: solve A.x = b for x
Least Squares: choose x to minimize ||Ax — b||»

Algorithms that are only 50% BLAS 3 (so far)
“Eigenproblems”: Find A and x where Ax = Ax
Singular Value Decomposition (SVD): (AT.A).x = 02.x

Generalized problems (eg A.x = AB.x)
Error bounds for everything

Lots of variants depending on A’s structure (banded, A= A’ etc)

45

PACK is in FOR™
PACK is SEQUE

'RAN Column Major
NTIAL

PACK is a REFE

RENCE implementation

46

Parallelization of LU and QR.

Parallelize the update:

* Easy and done in any reasonable software.
* This is the 2/3n3 term in the FLOPs count.

* Can be done efficiently with LAPACK+multithreaded BLAS

dgemm

i -

dgetf2

I‘- IuI)

dtrsm (+ dswp)
== Ry QY ===

dgemm

= -

\\V/

;

AN

£l
i

o

47

Library of software dealing with dense & banded routines
Distributed Memory - MPI

MIMD Computers and Networks of Workstations
Clusters of SMPs

Relies on LAPACK / BLAS and BLACS / MPI

Includes PBLAS (Parallel BLAS)

Sca
Sca

Sca

LA
LA

LA

PAC
PAC

PAC

K is in FORTRAN and C
K is for PARALLEL DISTRIBUTED

K is a REFERENCE implementation

48

Example of typical parallel machine

@ Shared memory within a node

@ Distributed within a single cabinet

/7 7
Chip,)l&;»bcket

/
K

49

@ Object based - Array descriptor
Contains information required to establish mapping between a global
array entry and its corresponding process and memory location.

Provides a flexible framework to easily specify additional data
distributions or matrix types.

@ Currently supports dense, banded matrix structure

@ Using the concept of context

50

ScaLAPACK
PBLAS

51

2D Block-Cyclic Data Distribution:

Processes Grid Logical View (Matrix) Local View (CPUs)

52

LINPACK (70's)
(Vector operations)

LAPACK (80's)

(Blocking, cache
friendly)

ScalL APACK (90's)
(Distributed Memory)

PLASMA (00's)
New Algorithms
(many-core friendly)

Software/Algorithms follow hardware evolution in time

Rely on

- Level-1 BLAS
operations

Rely on

- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

Rely on
- a DAG/scheduler
- block data layout
- some extra kernels

53

LAPACK: column-major format

PLASMA: tile format

Y Y y
Y Y y
y y y
Y y \

54

Parallelism is brought to the fore
May require the redesign of linear algebra algorithms
Tile data layout translation

Remove unnecessary synchronization points between Panel-Update
sequences

DAG execution where nodes represent tasks and edges define
dependencies between them

Dynamic runtime system environment QUARK + OpenMP

55

FOR k = 0..TILES-1

Alk][k], T[k][k] « DGRQRT(A[KI[k])
FOR m = k+1..TILES-1

A[kI[k], A[m][k], TIm][k] « DTSQRT(A[kI[k], Alm][k], T[m][k])
FOR n = k+1..TILES-1

A[k][n] « DLARFB(A[KI[K], T[KI[k], AlkI[n])

FOR m = k+1..TILES-1

Alk][n], Alm][n] « DSSRFB(A[m][k], T[m][k], A[k][n]. A[m][n])

DGEQRT DLARFB DLARFB

NN < ANl

DTSQRT DSSRFB DSSRFB

DTSQRT DSSRFB DSSRFB

Fine granularity;
Tile algorithms;
Productivity

DAG scheduler framework.

56

R

.

A

"

s
s —

e A e D S s R e
P

smane
A LTI S0 1 STty U B Yes >
‘»-’f.‘“\‘_‘?}:??)('/ze/—/

57

@ Conceptually similar to out-of-order processor scheduling

because it has:
@ Dynamic runtime DAG scheduler

@ Out-of-order execution flow of fine-grained tasks

@ Task scheduling as soon as dependencies are satisfied

@ Producer-Consumer

58

Five decades OLD concept
Programming paradigm that models a program as a directed graph of
the data flowing between operations (cf. Wikipedia)

Think "how things connect” rather than "how things happen”
Assembly line
Inherently parallel

59

QR panel on CPU host, n = 1024 QR panel on GPU device, n = 1024

25 25 -
-- 8 nodes -- 8 nodes
20 4 =@ 4 nodes 20 4 =@ 4 nodes
-$- 2 nodes - 2 nodes
15 41 =& 1 node © 15 4 =& 1 node
e
10 - F 10 -
——v
S - F% E—E—E—i 5 - b
0 - 0 - T T T T
0 2M 4M 6M 8M 10M 0 2M 4M 6M 8M 10M
number of rows, m number of rows, m

60

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Peak performance of four generations of NVIDIA GPUs
	Slide 14: Peak performance of four generations of NVIDIA GPUs
	Slide 15: Feeling like a kid in a candy store
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Computational efficiency through tuned approximation: A journey with tile low-rank and mixed precisions
	Slide 28: Example of Accelerated Applications
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

