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Top10 fastest supercomputers for HPL (Nov’24)

# Site Manufacturer TOP10 Computer of the TOP500 Country Cores Rmax
[Pflops]

Power
[MW]

1
Lawrence Livermore

 National Laboratory
HPE

El Capitan

HPE Cray EX255a, 
AMD EPYC 24C 1.8GHz, Instinct MI300A, Slingshot-11

USA 11,039,616 1,742 29.6

2
Oak Ridge

 National Laboratory
HPE

Frontier

HPE Cray EX235a, 
AMD EPYC 64C 2.0GHz, Instinct MI250X, Slingshot-11

USA 9,066,176 1,353 24.6

3 Argonne National Laboratory Intel
Aurora

HPE Cray EX/Intel Exascale Compute Blade, 
Xeon Max 9470, Data Center GPU Max, Slingshot-11

USA 4,742,808 1,012 38.7

4 Microsoft Azure Microsoft
Eagle

Microsoft NDv5, 
Xeon Platinum 8480C, NVIDIA H100, Infiniband NDR

USA 1,123,200 561.2

5
Eni S.p.A. 

Center for Computational Science
HPE

HPC6

HPE Cray EX235a, 
AMD EPYC 64C 2.0GHz, Instinct MI250X, Slingshot-11

Italy 3,143,520 477.9 8.5

6
RIKEN 

Center for Computational Science
Fujitsu

Fugaku

Supercomputer Fugaku, 
A64FX 48C 2.2GHz, Tofu interconnect D

Japan 7,630,848 442.0 29.9

7
Swiss National 

Supercomputing Centre (CSCS)
HPE

Alps

HPE Cray EX254n, 
NVIDIA Grace 72C 3.1GHz, GH200, Slingshot-11

Switzerland 2,121,600 434.9 7.1

8 EuroHPC / CSC HPE
LUMI

HPE Cray EX235a, 
AMD EPYC 64C 2.0GHz, Instinct MI250X, Slingshot-11

Finland 2,752,704 379.7 7.1

9 EuroHPC / CINECA EVIDEN
Leonardo

Atos BullSequana XH2000, 
Xeon 32C 2.6GHz, NVIDIA A100, HDR Infiniband

Italy 1,824,768 241.2 7.5

10
Lawrence Livermore

 National Laboratory
HPE

Tuolumne

HPE Cray EX255a, 
AMD EPYC 24C 1.8GHz, Instinct MI300A, Slingshot-11

USA 1,161,216 208.1 3.4



Top10 fastest supercomputers for HPL-MxP (Nov’24)

Rank Site Computer Cores
HPL Rmax 
(Eflop/s)

TOP500 Rank
HPL-MxP 
(Eflop/s)

Speedup

1
DOE/SC/ANL
USA

Aurora, HPE Cray EX, Intel Max 9470 52C, 2.4 GHz, 
Intel GPU MAX, Slingshot-11 8,159,232 1.012 3 11.6 11.5

2
DOE/SC/ORNL
USA

Frontier, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 
2GHz, AMD MI250X, Slingshot-11 8,560,640 1.353 2 11.4 8.4

3
EuroHPC/CSC
Finland

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 2GHz, 
AMD MI250X, Slingshot-11 2,752,704 0.380 8 2.35 6.2

4
RIKEN Center for Comput. 
Science, Japan

Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D 7,630,848 0.442 6 2.00 4.5

5
EuroHPC/CINECA
Italy

Leonardo, BullSequana XH2000, Xeon 8358 32C 
2.6GHz, NVIDIA A100, QR NVIDIA HDR100 IB

1,824,768 0.241 9 1.80 7.5

6
CII, Institute of Science
Japan

TSUBAME 4, HPE Cray XD665, AMD EPYC 9654 96C 
2.4GHz, NVIDIA H100, Mellanox NDR200 172,800 0.025 47 0.64 25

7
NVIDIA
USA

Selene, DGX SuperPOD, AMD EPYC 7742 64C 2.25 
GHz, Mellanox HDR, NVIDIA A100 555,520 0.063 23 0.63 9.9

8
DOE/SC/LBNL/NERSC
USA

Perlmutter, HPE Cray EX235n, AMD EPYC 7763 64C 
2.45 GHz, Slingshot-10, NVIDIA A100 761,856 0.079 19 0.59 7.5

9
FZJ - Jülich 
Germany

JUWELS Booster Module, Bull Sequana XH2000 , 
AMD EPYC 24C 2.8GHz, HDR IB, NVIDIA A100 449,280 0.044 33 0.47 10

10
GENCI-CINES
France

Adastra, HPE Cray EX235a, AMD EPYC 64C 2GHz, 
AMD 250X, Slingshot-11 319,072 0.046 30 0.30 6.5



Most energy efficient architectures

Computer Host Interconnect Device
Rmax/

Power

JEDI, BullSequana XH3000
Grace Hopper Superchip 72C 

3GHz

Quad-Rail NVIDIA 

InfiniBand NDR200
NVIDIA Grace *72.73

ROMEO-2025, BullSequana XH3000
Grace Hopper Superchip 72C 

3GHz

Quad-Rail NVIDIA 

InfiniBand NDR200
NVIDIA Grace *70.91

Adastra 2, HPE Cray EX255a AMD EPYC 24C 1.8GHz Slingshot-11 AMD MI300A *69.10

Isambard-AI phase 1, HPE Cray EX254n NVIDIA Grace 72C 3.1GHz Slingshot-11 NVIDIA Grace *68.83

Capella, Lenovo ThinkSystem SD650 V3 AMD EPYC 9334 32C 2.7GHz InfiniBand NDR200 NVIDIA H100 *68.05

JETI - JUPITER Exascale Transition Instrument, 

BullSequana XH3000

Grace Hopper Superchip 72C 

3GHz

Quad-Rail NVIDIA 

InfiniBand NDR200
NVIDIA Grace *67.96

Helios GPU, HPE Cray EX254n NVIDIA Grace 72C 3.1GHz Slingshot-11 NVIDIA Grace *66.95

Henri, ThinkSystem SR670 V2
Intel Xeon Platinum 8362 32C 

2.8GHz
Infiniband HDR NVIDIA H100 65.40

HoreKa-Teal, ThinkSystem SD665-N V3 AMD EPYC 9354 32C 3.25GHz Infiniband NDR200 NVIDIA Grace 62.96

rzAdams, HPE Cray EX255a AMD EPYC 24C 1.8GHz Slingshot-11 AMD MI300A 62.80 [Gflops/Watt]



Feeling like a kid in a candy store 

HPC

AI

HPC



Feeling again like a kid in a candy store

HL, Y. Hong, A. Dabah, R. Alomairy, S. Abdulah, C. Goreczny, P. Gepner, M. Ravasi, D. Gratadour & D. Keyes, Steering Customized AI Architectures for HPC Scientific Applications, ISC23. 



The journey toward linear algebra Renaissance

S. Tomov, R. Nath, HL and J. Dongarra, Dense linear algebra solvers for multicore with GPU accelerators, IEEE IPDPS, 2010.
N. Higham and T. Mary, Mixed Precision Algorithms in Numerical Linear Algebra, Acta Numerica, 2022.

HL, M. Genton, D. Gratadour, D. Keyes and M. Ravasi, Responsibly Reckless Matrix Algorithms for HPC Scientific Applications, Computing in Science & Engineering, 2022.

9/19/2025

Don’t over-solve: maintain just enough accuracy for the application purpose
Don’t over-store: no extra copies of the original matrix

business as usual
(2018)

linear algebraic
renaissance

(2022)



Tile-Centric MxP Cholesky-based Solver



PaRSEC: a dynamic runtime system of the DOE ECP

https://icl.utk.edu/parsec/

DAG: directed acyclic graph
PTG: parameterized task graph
DSL: domain specific language



Applications developer: do not oversolve!



Challenging Scientific Applications

Computational 
Astronomy

Seismic
Processing

Computational
Biology

Best Paper
PASC18

Gordon Bell Finalist
SC23

Gordon Bell Finalist
SC24

Gordon Bell Finalist SC22
Gordon Bell Winner SC24

Climate
Simulations / Emulations



Adaptive optics: outsmarting the atmospheric turbulence 

The sun observed with a compact camera

• Disturbs the trajectory of light rays
• Reduces astronomical images quality



Adaptive Optics: tomographic reconstructor, real-time 

controller

N. Doucet, HL, D. Gratadour and D. Keyes, Mixed-Precision Tomographic Reconstructor Computations on Hardware Accelerators, IEEE/ACM SC19 IA3 Workshop.
HL, D. Sukkari, O. Guyon, and D. Keyes, Extreme Computing for Extreme Adaptive Optics: The Key to Finding Life Outside our Solar System, ACM PASC18.
HL, J. Cranney, D. Gratadour, Y. Hong, L. Gatineau, and D. Keyes, Meeting the real-time challenges of ground-based telescopes using low-rank matrix computations, IEEE/ACM SC21.

The Advanced Machinery Operating at 14,000 feet Surviving at 14,000 feet



Adaptive Optics: deformable mirrors

N. Doucet, HL, D. Gratadour and D. Keyes, Mixed-Precision Tomographic Reconstructor Computations on Hardware Accelerators, IEEE/ACM SC19 IA3 Workshop.
HL, D. Sukkari, O. Guyon, and D. Keyes, Extreme Computing for Extreme Adaptive Optics: The Key to Finding Life Outside our Solar System, ACM PASC18.
HL, J. Cranney, D. Gratadour, Y. Hong, L. Gatineau, and D. Keyes, Meeting the real-time challenges of ground-based telescopes using low-rank matrix computations, IEEE/ACM SC21.



Adaptive Optics: deformable mirrors

N. Doucet, HL, D. Gratadour and D. Keyes, Mixed-Precision Tomographic Reconstructor Computations on Hardware Accelerators, IEEE/ACM SC19 IA3 Workshop.
HL, D. Sukkari, O. Guyon, and D. Keyes, Extreme Computing for Extreme Adaptive Optics: The Key to Finding Life Outside our Solar System, ACM PASC18.
HL, J. Cranney, D. Gratadour, Y. Hong, L. Gatineau, and D. Keyes, Meeting the real-time challenges of ground-based telescopes using low-rank matrix computations, IEEE/ACM SC21.

System
Parameters

Turbulence
Parameters

matcov Cmm Ctm ToR

matcov Cmm Ctm

Ctt

Cee CvvBLAS BLAS

Inter-
sample

R

ToR computation

Observing sequence



Asynchronous Many Tasks Execution

N. Doucet, HL, D. Gratadour and D. Keyes, Mixed-Precision Tomographic Reconstructor Computations on Hardware Accelerators, IEEE/ACM SC19 IA3 Workshop.
HL, D. Sukkari, O. Guyon, and D. Keyes, Extreme Computing for Extreme Adaptive Optics: The Key to Finding Life Outside our Solar System, ACM PASC18.
HL, J. Cranney, D. Gratadour, Y. Hong, L. Gatineau, and D. Keyes, Meeting the real-time challenges of ground-based telescopes using low-rank matrix computations, IEEE/ACM SC21.
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Adaptive Optics: tomographic reconstructor, real-time 

controller and deformable mirrors

N. Doucet, HL, D. Gratadour and D. Keyes, Mixed-Precision Tomographic Reconstructor Computations on Hardware Accelerators, IEEE/ACM SC19 IA3 Workshop.
HL, D. Sukkari, O. Guyon, and D. Keyes, Extreme Computing for Extreme Adaptive Optics: The Key to Finding Life Outside our Solar System, ACM PASC18.
HL, J. Cranney, D. Gratadour, Y. Hong, L. Gatineau, and D. Keyes, Meeting the real-time challenges of ground-based telescopes using low-rank matrix computations, IEEE/ACM SC21.



Splitting the matrix into tiles 

and looking at ranks

● Tiles size aligned with system 

parameters

● Data sparse, opportunity for low-

rank matrix approximations

● Assuming constant tile size 

(may be sub-optimal), ranks 

distributed

Ranks Analysis

18

Accelerating RT 
Computations For Giant 
Telescopes 



How to leverage data sparsity?

19

Tile Dense

Matrix-Vector Multiplication
x

A

y

4 x 6 tiles

Accelerating RT 
Computations For Giant 
Telescopes



TLR-MVM

20

1) Compress

(SVD-like algorithms)
x

A

y

U bases

Accelerating RT 
Computations For Giant 
Telescopes 

V bases



TLR-MVM

21

2) Stack the bases

x

A

y

U bases V bases

Accelerating RT 
Computations For Giant 
Telescopes 



TLR-MVM

22

3) Calculate (per red part):

 Yv = V . x
x

Yv

V bases

Accelerating RT 
Computations For Giant 
Telescopes 



TLR-MVM
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4) Translate

Yv (V bases) to Yu (U bases)

Yu

Yv

Accelerating RT 
Computations For Giant 
Telescopes 



TLR-MVM
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5) Calculate

y = U . Yu

Yu

U bases
y

Accelerating RT 
Computations For Giant 
Telescopes 



TLR-MVM
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5) Calculate

y = U . Yu

Yu

U bases
y

Accelerating RT 
Computations For Giant 
Telescopes 



Numerical Accuracy Assessment on MAVIS Datasets
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Accelerating RT 
Computations For Giant 
Telescopes 



Hardware / Software Specifications
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Accelerating RT 
Computations For Giant 
Telescopes 



Hardware / Software Specifications
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Accelerating RT 
Computations For Giant 
Telescopes 

x86

MPI + OpenMP



Hardware / Software Specifications
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Accelerating RT 
Computations For Giant 
Telescopes 

ARM

MPI + OpenMP



Hardware / Software Specifications
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Accelerating RT 
Computations For Giant 
Telescopes 

Accelerators

ROCm / CUDA



Hardware / Software Specifications
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Accelerating RT 
Computations For Giant 
Telescopes 

Vector

MPI + OpenMP



Hardware / Software Specifications
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Accelerating RT 
Computations For Giant 
Telescopes 

HBM



Hardware / Software Specifications
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Accelerating RT 
Computations For Giant 
Telescopes 

GPU

CUDA

x86 - ARM - Vector

MPI + OpenMP



Hardware / Software Specifications
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Accelerating RT 
Computations For Giant 
Telescopes 



Sustained Bandwidth on Synthetic Datasets
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Accelerating RT 
Computations For Giant 
Telescopes Higher

is

better



Time to Solution on Synthetic Datasets

36

Accelerating RT 
Computations For Giant 
Telescopes Lower

is

better



Dense Vs TLR MVM:  Time Breakdown on Synthetic 
Datasets
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Accelerating RT 
Computations For Giant 
Telescopes 

Lower

is

better
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Accelerating RT 
Computations For Giant 
Telescopes 

Sustained Bandwidth on MAVIS Datasets

Higher

is

better
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Accelerating RT 
Computations For Giant 
Telescopes

Time to Solution on MAVIS Datasets

Lower

is

better



Roofline Performance Model
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Accelerating RT 
Computations For Giant 
Telescopes
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Performance Across AMD x86 Generations



Challenging Scientific Applications

Computational 
Astronomy

Seismic
Processing

Computational
Biology

Best Paper
PASC18

Gordon Bell Finalist
SC23

Gordon Bell Finalist
SC24

Gordon Bell Finalist SC22
Gordon Bell Winner SC24

Climate
Simulations / Emulations



Multi-Dimensional Convolution operator

48 Cerebras CS-2 systems, i.e.,

35,784,000 processing elements



Multi-Dimensional Convolution operator



Compress to Impress: tile low-rank approximation

P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.Y. L'Excellent, and C. Weisbecker, Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM SISC, 2015.
K. Akbudak, HL, A. Mikhalev, A. Charara, A. Esposito, and D. Keyes, Exploiting Data Sparsity for Large-Scale Matrix Computations, ISC, 2017.
P. Amestoy, A. Buttari, J.Y. L'Excellent, and T. Mary, Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM TOMS, 2019.



GPU Implementation w/ CUDA Graph

• Streams to reach high occupancy on the GPU
• CUDA Graph to reduce kernel launch overheads



GPU Implementation w/ CUDA Graph + MxP

(Cj ⇥1)(Cj ⇥nb)

(Ri ⇥1)(nb⇥Ri )

MVM 

Accumulate

(nb⇥1)

upscale to 

FP32 and

cast to FP16

downscale

Phase 1 DownscaleDownscale

Phase 2

MVM 

Accumulate

MVM 

Accumulate

Phase 3

(nb⇥1)

Ui (Yu ) i Yi

FP32 FP16 INT32 INT8 

Yv Yu

Reshuffle

YuYv Yu

Reshuffle

Downscale

MVM 

Accumulate

upscale to 

FP32

RiCj : rank sum along each Column / Row

FP32 

TLR-MVM

MP INT8 

TLR-MVM

MP INT8 

TLR-MVM

FP32 

TLR-MVM

FP32 

TLR-MVM

MP INT8 

TLR-MVM

Vj X j (Yv ) j

/



Accuracy Results



Performance Results

TLR-MVM on NVIDIA A100 GPU

ScalabilityMemory footprint Breaking the 
ms barrier!



Performance Results

Comparisons against other chips



Scaling up on Cerebras CS-2 Wafer Scale

Strong scaling up to 48 CS-2 systems

Performance comparisons against the Top5 
fastest Supercomputers

As per June 2023 Top500, 92.58 PB/s is:​
- 2.3X > vs theo bw of Lumi #3​
- 3X > vs theo bw of Leonardo #4 / Summit #5​
- 35% > vs theo bw of Frontier #1​
- close to est. sust. bw of Fugaku #2​
- 3X > vs theo bw of Oceanlite



Challenging Scientific Applications

Computational 
Astronomy

Seismic
Processing

Computational
Biology

Best Paper
PASC18

Gordon Bell Finalist
SC23

Gordon Bell Finalist
SC24

Gordon Bell Finalist SC22
Gordon Bell Winner SC24

Climate
Simulations / Emulations



Genome-Wide Association Studies (GWAS 101)

A training population (size NP1) is 
sequenced for SNPs and 

characterized by additional 
environmental factors (generalized 

genotype size NS)

The same population is 
characterized by prevalent traits, 

such as body features and diseases 
(phenotype size NT)

A test population (size NP2) is 
sequenced and members’ 

susceptibility to disease predicted

Genotype variants are associated 
to phenotypic traits in 

“Manhattan plots” for potential 
diagnoses and (ultimately) genetic 

therapies



Kernel Ridge Regression for Genetic Epistasis

G. Chávez, Y. Liu, P. Ghysels, X. S. Li and E. Rebrova, Scalable and Memory-Efficient Kernel Ridge Regression, IEEE IPDPS, 2020.

Genetic epistasis occurs when the effect of one gene is influenced by 
one or more other genes, altering the expected genetic outcome.



Generic KRR ALgorithms



- Compute Euclidean distance between 
each pair of individual (slow)
- Exponent the results
- Generate the covariance matrix 

Build Phase



Associate Phase

- Perform adaptive precision
- Execute Cholesky-based solver 
against a list of phenotypes
- Save the weights



Predict Phase

- Perform inference with W
- Rely on the build phase
- Determine the likelihood



GWAS surfing the AI wave w/ low precision arithmetic

Precision heatmaps

2Nick Higham and Theo Mary, Mixed Precision Algorithms in Numerical Linear Algebra, Acta Numerica, 2022.

2

• Precision assessment after constructing the kernel matrix for a real dataset comprising 
305K patients and 43K genotypes (SNPs) after the Build phase.



Hero run: Alps vs Frontier / Leonardo / Summit

Five orders of magnitude faster than 
SOTA CPU-only REGENIE

# Patients = 13.2M
# SNPs = 20.6M



Challenging Scientific Applications

Computational 
Astronomy

Seismic
Processing

Computational
Biology

Climate
Simulations / Emulations
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Gordon Bell Finalist
SC23

Gordon Bell Finalist
SC24

Gordon Bell Finalist SC22
Gordon Bell Winner SC24













First Gordon Bell Prize in the Middle East!

Our Team



Accelerating AI Training and Inference with HPC

Introducing the BLAS of AI model training/inference



Low-rank approximations with TopK on LLaMA

Prompt: Explain the concept of quantum entanglement in simple terms.

Answer with K=100%:
What is it used for? Quantum entanglement is a phenomenon that occurs when two or more particles are linked together such that their properties are correlated, even if they 

are separated by large distances. This means that measuring one particle can instantly affect the other, regardless of how fa r apart they are. For example, consider two 

electrons that have been entangled. If we measure the spin of one electron and find that it is up, then we know that the spin  of the other electron must be down

Answer with K=55%:
How does it relate to quantum teleportation? Quantum Entanglement is a property of two particles that are created together and then separated. It is impossible to measure one 

particle without affecting the other particle. Quantum Teleportation is when you take an unknown state and combine it with an other known state, then you can use this new state 

to determine what the original state was. Quantum Entanglement is a property of two particles that are created together and then separated. It is impossible to measure

Answer with K=50%:
Quantum Entanglement

The 2018 Nobel Prize in Physics was awarded to Dr. Sergey M. Kiritchov, a Russian physicist who discovered that there were two types of particles: photons and electrons. 
They are both made up of matter, but they have different properties.

In 2017, the Nobel Prize in Physics was given to Dr. Sergey M. Kirichov, a Russian physicist who found that there were two types of

Answer with K=40%:
son French-- bat apple------------------------ pleasure-------------------- bat bat---- bat-- bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat 

bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat bat

Accelerating AI Training and Inference with HPC



Monitoring Oil Spills with transformer-based model 
inference accelerated with HACK

© AlgoDoers



Monitoring Oil Spills with transformer-based model 
inference accelerated with HACK

© AlgoDoers



Monitoring Oil Spills with transformer-based model 
inference accelerated with HACK

© AlgoDoers



Do Linear Algebra, See the World!

Questions?
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