@ Shared Memory in Python

Concurrency vs. Parallelism -- Why It Matters

® Concurrency: multiple tasks make progress by

interleaving their execution (not necessarily at
the same time). Concurrency Pamglielism
® Parallelism: tasks execute at the same time on [x P ‘
different cores/processing units to increase R ! ‘
I 1
throughput. o s »
® b ©
N]
g n
. ;
1) ". ‘
o® b o

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Threads vs. Processes -- Memory Model

® Thread: is a thread of execution in a program. Aka,

IghGvEIGHERIEEEEE [ooo J[oo [e)| oo [o= [o= |
® Process: is an instance of a computer program that is
. lregls(evs‘ stack ‘ registers ||| registers reglslers]
being executed.

stack ||| stack ||| stack] “

* |mplications:
e Threads share the memory and state of the rens irend
parent, process share nothing. - -
* Processes use inter-process communication
(IPC) to communicate, thread do not.
* A process can have 1 or several threads.
® Scheduling: the OS kernel schedules threads on CPU
cores; a process can host one or multiple threads.

MODULE | Parallel and Distributed Programming

single-threaded process multithreaded process

@ Shared Memory in Python

Multi-threading Basics: Creating Threads with

threading.Thread

e Two threads (t1, t2) are created to run the
worker function in parallel, each simulating
work with time.sleep(2).

® Because both threads sleep concurrently,
the total execution time is about 2 seconds

instead of 4.
Thread A starting
Thread B starting
Thread A done
Thread B done
Timing: 2.002 sec

MODULE

import threading
import time

def worker (name) :
print(£"Thread {name} starting")
time.sleep(2)
print (£"Thread {name} done")

Create two threads
t1 =threading.Thread(target=worker, args=("A",))
t2 =threading.Thread(target=worker, args=("B",))

start =time.time()
t1.start()
t2.start ()
t1.join()
t2.join()

end =time.time()

print("Timing: ", end -start, "sec")

| Parallel and Distributed Programming

@ Shared Memory in Python

Multi-threading Basics: Subclassing threading. Thread

® Step I: Create a class inheriting from

threading.Thread. import threading
b - import time
® Step 2: Override the run() method with the
task |OgiC. class Worker (threading.Thread):
def __init__(self, name):
® Step 3: Instantiate the class and call start (). super () . __init__()

4 i self.name =name
® Step 4: Use join() to wait for completion.
def run(self):
print (f"Thread {self.name} starting")
time.sleep(2)

Thread A starting print (f"Thread {self.name} done")
Thread B starting
Thread A done # Create and start threads
Thread B done t1 =Worker("A")
t2 =Worker("B")
t1.start()
t2.start ()
t1.join()
t2.join()

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-threading Basics: Prime Calculation with single Thread

® Compute the sum of all primes up to
QO0,000 if __name__ =="__main__":

® Using 1thread only. for i in range(0, 200000, 500):
sum_primes (i)

def isPrime(n):
if n <2:
return False
if n ==2:
return True
max_val =int(math.ceil(math.sqrt(n)))

i=2
while i <=max_val:
if n % i ==0:
return False
i+=1

return True

def sum_primes(n):
return sum([x for x in range(2, n) if isPrime(x)])

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-threading Basics: Profiling Single-Thread Prime
Calculation

® Profiling with cProfile shows most time
spent in:
® sum_primes, isPrime

® tottime = percallgeq X NCalls

® percallgymy = cumtime / ncalls

ncalls
1

1

400
39899202
39898803
39898803
400

1

to

w
connEsoo

ttime
.000
.000
139
.625
.470
.081
.014
.000

percall cumtime percall filename:lineno(function)
.600

coocooooe

47.330 47.330 {built-in method builtins.exec} cPUT 131% 40%
000 47.330 47.330 isprime.py:1(<modules) B cruz 10% 00%
010 47.330 0.118 isprime.py:16(sum_primes) L] cpus 100% 100,0 %
000 43.177 0.000 isprime.py:3(isPrime) B cPus 129% CPU9 15,0%
000 2.470 0.000 {built-in method math.sqrt} CPUS 242% B cputo 10%
008 2.681 0.000 {built-in method math.ceil} Mémoire et espace déchange
008 0.614 0.000 {built-in method builtins.sum}
808 0.800 0.000 {method 'disable' of '_lsprof.Profiler' objects)

Execution time

(1 thread) = 47.330 sec

4139 + 38.625 + 2470 + 2.081 + 0.014 = 47.33 secondes

MODULE

| Parallel and Distributed Programming

[JcPuil 13,0%
[Jcputz 00%
[JcPuiz 79%
I cPu1d 9,0%
B crU1s 11,0%

I cPUts 4,0%
[JcPut7 13,0%
[cPut1s 40%
[|cPu19 70%
[cPu20 12,0%

@ Shared Memory in Python

Multi-threading Basics: Prime Calculation with Multi Thread (8
threads)

def do_work(q):
while True:

try:
x =q.get(block=False) # Get an item from the queue (non-blocking)
sum_primes (x) # Compute the sum of primes below x
except Empty:
break
if __name =="__main__":

work_q—u_eue =Queue ()
for i in range(0, 200000, 500):
work_queue.put (i) # inserts the value i into the queue.

threads =[Thread(target=do_work, args=(work_queue,)) for _ in range(8)]

for t in threads:
t.start()

for t in threads:
t.join()

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Profiling Multi-Thread Prime Calculation

® Profiling with cProfile highlights time spent in:
* threading.py:join
® isPrime
®* _thread.lock.acquire

tottime percall cumtime percall filename:lineno(function)

0.000 0.000 171.816 21.477 threading.py:1115(join)

0.000 0.000 171.811 21.476 threading.py:1153(_wait_for_tstate_lock)

0.001 0.000 114.813 0.261 {method 'acquire' of ' thread.lock' objects} cPU

50.089 0.000 57.532 0.001 thread_sqrt.py:6(isPrime)

0.000 0.000 57.442 57.442 {built-in method builtins.exec}

0.000 0.000 57.442 57.442 thread_sqrt.py:1(<module>) Ty = = ==

0.003 0.000 57.440 57.440 threading.py:1016(_bootstrap) P S B

6.008 0.001 57.440 57.440 threading.py:1056(_bootstrap_inner) W cru1 82 [cPus 140% [cPuts 20

2.978 0.000 2.978 0.000 {built-in method math.sqrt} [cru2 CPUT 37,4% B cpu17

2.525 0.000 2.525 0.000 {built-in method math.ceil} [cpus 15,0 B crus 90 B cruts
B cPus 00% B crus 250% | cPuts 50
[crus 360% [cPut0 0,0% [cPu20 80%
Mémoire et espace d'échange

Execution time (8 threads) = 57.442 sec —

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-threading Basics: The Global Interpreter Lock (GIL)
® Only one thread can run Python bytecode at a
time.
® CPU-bound: No true parallelism = threads wait.

e |/O-bound: GlL is released during blocking 1/0 = Thread2
overlap possible.
R
CPU
def add(a, b): Global Interpreter
return a +b Lock (GIL)
CPU

0 LOAD_FAST 0 (a)
2 LOAD_FAST 1 (b)
4 BINARY_OP O (+)
6 RETURN_VALUE

MODULE | Parallel and Distributed Programming

CPU

CPU

<] [<] <] <]
g g g g
o @ o @
B w N =

@ Shared Memory in Python

Multi-threading Basics: Why Multi-threading in Python
Doesn't Scale for CPU-bound Tasks

® Conseqguence: Even on multi-core CPUs, threads run in a concurrent but not parallel
way.
® |n Profiling:
* Real runtime ~ 57s.
 Cumulative time (e.g, join = 171s) adds up waiting + scheduling overhead from
all threads.
® Takeaway:

e For I/O tasks — threads can still improve responsiveness.
e For CPU-heavy work — use multiprocessing (separate processes, separate GiLs).

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multithreading vs. Multiprocessing

® Multithreading = Concurrency
* Multiple threads share the same memory inside
one process.
* Good for I/0-bound tasks (overlap waiting times).
* Limited by the GIL: no true parallel CPU execution.

Multiprocessing Multithreading

® Multiprocessing = Parallelism
* Each process has its own memory and
interpreter.
* Achieves true parallelism across CPU cores.
* Higher cost: inter-process communication (IPC).

* Key takeaway: threading = concurrency (I/0-bound).
multiprocessing = parallelism (cPU-bound).

| Process n ‘

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Elements of Programming

®* Memory Isolation

* Processes do NOT share memory address
space

e Fork/Join Execution Model fork)
* Fundamental way of expressing concurrency Process B

within a computation

* Fork creates a new child process

* Parent continues after the Fork operation

* Child begins operation separate from the join()
parent

* Parent waits until child joins (continues
afterwards)

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Race Conditions

® A Race Condition occurs if:
* Two or more processes manipulate a shared resource concurrently
* The outcome depends on the order of access

Possible interleavings:

Process PI:

(1) MOV suM, Reg o (NM2)(B)(2)(3) = suM = sum+1

(2) ADD #1, Regl o N(M(2)(3)(2)(38) = suM = sum+1
e M@)B)(1M(2)(3) = suM = suM+2

(38) MOV Reg], suM

Process P2: Solution
() MOV suy, Reg] Synchronization needed to prevent race
(2) ADD #1, Regl conditions

; Mutual Exclusion: prevents simultaneous
(3) MOV Reg], sum access to a shared resource.

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Synchronization

Variable Mutex: S :
e Boolean: 0 /1 e

® General: Integer > 0

i Lock(S) ! Lock(S) :
lsioulont: SUM=SUM+1 i sUM = SUM+1 ¢
® Lock(S) ~. Unlock(S) Unlock(S) .

e If S == 0then waituntil S > 0 R -

e IfS>0thenS=S-1

® Unlock(S)
OFS =951

(1N(2)(3)(1)(2)(8) = suM = sumM+2
M(2)(3)(1)(2)(38") = suM = sumM+2

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Join/Fork Model

import multiprocessing

def print_cube(num):

® The multiprocessing module provides an easy
API for parallelism.

def print_square(num):

® Steps:
1. Create a Process structure with target 1f8-"namess RS mains o) oL
. pl =multiprocessing.Process(target=print_square, args=(10,
5 fSL;nCttIOn +args ith O p2 =multiprocessing.Process(target=print_cube, args=(10,))
g art processes wi .start
3. Wait for processes to finish with . join() o)
- : 1 p2.start ()
® This model avoids the GIL by using separate
pl.join()
pprocesses. p2.join0)

print("Done!")

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Shared Memory

import multiprocessing

* Each process has its own memory space. result =l
® Global variables are not shared between 68 e e e,
global result
pl’OCGSS@S. for num in mylist:
. 5 e o qo g result.append (num *num)
géoer;ﬁft é?%i?}é::gpoogé?ﬁ?ol listina PIOcEss print("In process:", result)
if __name__ =="__main__":

mylist =[1,2,3,4]
pl =multiprocessing.Process(target=square_list, args=(mylist,))

In process: [1, 4, 9, 16]
In main: [] pl.start()
pl.join()

print("In main:", result)

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Shared Memory with Array and Value

® The multiprocessing module provides import multiprocessing
objects to share data:

def square_list(mylist, result, square_sum):

e Array: ctypes array allocated in shared 8o ik, G) TR AAe
result[idx] =num *num
memaory. i ; square_sum.value +=result[idx]
* Value: d ctypes variable allocated in
if __name__ =="__main__":
shared memory. mylist =[1,2.3,4]
e These ObjeCtS must be pOSSGd as result =multiprocessing.Array('i', 4)
orguments to pI’OCGSSGS square_sum =multiprocessing.Value('i')
° Enobles efﬂcient communicotion between pl =multiprocessing.Process(target=square_list, args=(mylist, <
result, square_sum))
processes.
pl.start()
pl.join()
]slesul;: array: !:1504’ 9, 16] print("Result array:", result[:])
um ol squares: print("Sum of squares:", square_sum.value)

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Shared Memory with Manager
(Advanced)

® multiprocessing.Manager dllows sharing complex

objects: | result |
e list, dict, Queue, Array, etc.
e A single Manager can be used by multiple @ ﬁ
processes, even across different machines.

e Slower than direct shared memory (Array /
Value).

MODULE | Parallel and Distributed Programming

@ Process Communication

Multi-processing Basics: Shared Memory with
multiprocessing.Manager

from multiprocessing import Manager, Process

def worker(shared_list, idx):
each worker squares its index
shared_list[idx] =shared_list[idx] #**2
if __name__ =="__main__":
with Manager() as manager:
data =manager.list([i for i in range(10)])

processes =[Process(target=worker, args=(data, i)) for i in range(len(data))]

for p in processes:
p.start()

for p in processes:
p.join()

print("Final result:", list(data))

Final result: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

MODULE Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Using multiprocessing.Queue

® Queue is A simple way to communicate
between processes.

® Can pass any Python object.

® Key functions:
* put() : insert a value into the queue.
* get() : read/remove a value from the
queue.
* empty() : check if the queue is empty.

e Useful for synchronizing and sharing results
between workers.

MODULE

import multiprocessing

def square_list(mylist, q):
for num in mylist:
q.put (num *num)

def print_queue(q):
print ("Queue elements:")
while not q.empty():
print(q.get())
if __name__ =="__main__":
mylist =[1, 2, 3, 4]
q =multiprocessing.Queue()

pl =multiprocessing.Process(target=square_list, args=(mylist, q))
p2 =multiprocessing.Process(target=print_queue, args=(q,))

pl.start(); p2.start()
pl.join(); p2.join()

| Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Prime Calculation Queue (8
processes)

® Overhead comes from process
management (fork/join, waiting).

e Different from threads: no acquire Or GIL tottime percall cumtime percall filename:lineno(function)
T 0.000 0.000 11.893 11.893 {built-in method builtins.exec}
0.000 0.000 11.893 11.893 process_sqrt.py:1(<module>)
contention. 0.600 0.600 11.879 1.485 process.py:142(join)
0.600 0.600 11.879 0.330 popen_fork.py:24(poll)
0.600 0.600 11.879 1.485 popen_fork.py:36(wait)
11.879 ©.330 11.879 0.339 {built-in method posix.waitpid}
A8 mewe o gedm g 0.000 0.000 0.019 0.005 <frozen importlib._bootstrap>:1349(_find_and_load)
== == == == 3 0.000 0.000 0.019 0.005 <frozen importlib._bootstrap>:1304(find and load_unlocked))
work_queue =Queue () ©.000 0.0 0.018 0.005 <frozen importlib. bootstrap>:911(_load_unlocked)
for i in range(0, 200000, 500): 0.000 0.000 0.018 0.004 <frozen importlib._bootstrap_external>:989(exec_module)
s > :
work_queue.put (i)
processes =[Process(target=do_work, args=(work_queue,))<—
for _ in range(8)]
Star?—tlme = time.tine() Execution time (8 process) = 11.893 sec
for p in processes:
p.start()
for p in processes:
p-join()

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Race Conditions

def withdraw(balance):
for _ in range(10000):
balance.value -=1

def deposit(balance):

® Race condition occurs when multiple for _ in range(10000):
processes access a shared variable LR
concurrently. if __name__ =="__main__":
® Without synchronization, final result is B .
5 # initial balance (in shared memory)
UﬂpredICtOb|e. balance =multiprocessing.Value('i', 100)
. - Wi i i
EXOmple' Withdraw and depOS|t mOdlfy the pl =multiprocessing.Process(target=withdraw, args=(balance,))
same Value. p2 =multiprocessing.Process(target=deposit, args=(balance,))
pil.start(); p2.start()
pl.join(); p2.join()

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Locks to Prevent Race Conditions

® multiprocessing.Lock() ensures mutual
exclusion.

® Only one process can access the shared
resource at a time.

® Prevents data corruption, ensures consistent
results.

Final balance: 100

MODULE

def withdraw(balance, lock):
for _ in range(10000):
with lock:
balance.value -=1
def deposit(balance, lock):
for _ in range(10000):
with lock:
balance.value +=1
if __name =="__main__"

balance =multiprocessing.Value('i', 100)
creating a lock object
lock =multiprocessing.Lock()

creating new processes
pl =multiprocessing.Process(target=withdraw, args=(balance,lock))

p2 =multiprocessing.Process(target=deposit, args=(balance,lock))

pl.start(); p2.start()

=

pl.join(); p2.join()

| Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Using multiprocessing.Pool

® Pool represents a pool of worker processes.
® Allows tasks to be distributed automatically.

® Methods:
* map(func, iterable) — apply function to
list of inputs.
* apply() — run function once.
* apply_async() — asynchronous
execution.

Efficient for data-parallel computations.

import multiprocessing
import os

def square(n):
print(£"Id for {n}: {os.getpid(}")
return n *n

if __name__ =="__main__

mylist =[1,2,3,4,5]

creating a pool object
p =multiprocessing.Pool()

map list to target function
result =p.map(square, mylist)

print (result)

MODULE | Parallel and Distributed Programming

@ Shared Memory in Python

Multi-processing Basics: Prime Calculation using Pool (8
processes)

tottime percall cuntime percall filename:lineno(function)
.000 1 64

0.000 0 . 0.505 connection.py:246(recv)
i ——n : w. 0.000 0.600 16.163 0.505 connection.py:429(_recv_bytes)
if __name__ —-main__": 0.000 0.000 16.161 0.253 connection.py:390(recv)
LIMIT =200000 5.486 0.081 16.161 0.253 {built-in method posix.read}
STEP =500 0.000 0.000 10.704 10.704 {built-in method builtins.exec}
0.000 0.000 10.704 10.704 pool_sqrt.py:1(<module>)
N_PROCESSES =8 0.000 0.000 10.692 10.692 pool.py:738(__exit__)
0.000 0.000 10.686 10.686 pool.py:654(terminate)
0.000 0.600 10.678 10.678 util.py:208(__call__)
list of jobs 0.000 0.600 10.678 10.678 pool.py:680(_terminate_pool)
tasks =list(range(0, LIMIT, STEP)) 2
with multiprocessing.Pool(processes=N_PROCESSES) as pool:
results =pool.map(sum_primes, tasks) # apply sum_primes for <—
each job Execution time (8 process) = 10.704 sec

MODULE | Parallel and Distributed Programming

