
Shared Memory in Python

Concurrency vs. Parallelism --Why It Matters

• Concurrency: multiple tasks make progress by
interleaving their execution (not necessarily at
the same time).

• Parallelism: tasks execute at the same time on
different cores/processing units to increase
throughput.

Shared Memory in Python

Threads vs. Processes --MemoryModel

• Thread: is a thread of execution in a program. Aka,
lightweight process.

• Process: is an instance of a computer program that is
being executed.

• Implications:
• Threads share the memory and state of the

parent, process share nothing.
• Processes use inter-process communication

(IPC) to communicate, thread do not.
• A process can have 1 or several threads.

• Scheduling: the OS kernel schedules threads on CPU
cores; a process can host one or multiple threads.

Shared Memory in Python
Multi-threading Basics: Creating Threadswith
threading.Thread

• Two threads (t1, t2) are created to run the
worker function in parallel, each simulating
work with time.sleep(2).

• Because both threads sleep concurrently,
the total execution time is about 2 seconds
instead of 4.

1 Thread A starting
2 Thread B starting
3 Thread A done
4 Thread B done
5 Timing: 2.002 sec

1 import threading
2 import time
3
4 def worker(name):
5 print(f"Thread {name} starting")
6 time.sleep(2)
7 print(f"Thread {name} done")
8
9 # Create two threads
10 t1 =threading.Thread(target=worker, args=("A",))
11 t2 =threading.Thread(target=worker, args=("B",))
12
13 start =time.time()
14 t1.start()
15 t2.start()
16 t1.join()
17 t2.join()
18 end =time.time()
19
20 print("Timing: ", end -start, "sec")

Shared Memory in Python
Multi-threading Basics: Subclassing threading.Thread

• Step 1: Create a class inheriting from
threading.Thread.

• Step 2: Override the run() method with the
task logic.

• Step 3: Instantiate the class and call start().
• Step 4: Use join() to wait for completion.

1 Thread A starting
2 Thread B starting
3 Thread A done
4 Thread B done

1 import threading
2 import time
3
4 class Worker(threading.Thread):
5 def __init__(self, name):
6 super().__init__()
7 self.name =name
8
9 def run(self):
10 print(f"Thread {self.name} starting")
11 time.sleep(2)
12 print(f"Thread {self.name} done")
13
14 # Create and start threads
15 t1 =Worker("A")
16 t2 =Worker("B")
17 t1.start()
18 t2.start()
19 t1.join()
20 t2.join()

Shared Memory in Python
Multi-threading Basics: PrimeCalculationwith single Thread

• Compute the sum of all primes up to
200,000.

• Using 1 thread only.

1 def isPrime(n):
2 if n <2:
3 return False
4 if n ==2:
5 return True
6 max_val =int(math.ceil(math.sqrt(n)))
7 i = 2
8 while i <=max_val:
9 if n % i ==0:
10 return False
11 i +=1
12 return True
13
14 def sum_primes(n):
15 return sum([x for x in range(2, n) if isPrime(x)])

1 if __name__ =="__main__":
2
3 for i in range(0, 200000, 500):
4 sum_primes(i)

Shared Memory in Python
Multi-threading Basics: Profiling Single-Thread Prime
Calculation

• Profiling with cProfile shows most time
spent in:
• sum_primes, isPrime

• tottime = percalllocal x ncalls
• percallcumul = cumtime / ncalls

1 Execution time (1 thread) = 47.330 sec

4.139 + 38.625 + 2.470 + 2.081 + 0.014 = 47.33 secondes

Shared Memory in Python
Multi-threading Basics: PrimeCalculationwithMulti Thread (8
threads)

1 def do_work(q):
2 while True:
3 try:
4 x = q.get(block=False) # Get an item from the queue (non-blocking)
5 sum_primes(x) # Compute the sum of primes below x
6 except Empty:
7 break
8
9 if __name__ =="__main__":
10 work_queue =Queue()
11 for i in range(0, 200000, 500):
12 work_queue.put(i) # inserts the value i into the queue.
13
14 threads =[Thread(target=do_work, args=(work_queue,)) for _ in range(8)]
15
16 for t in threads:
17 t.start()
18 for t in threads:
19 t.join()

Shared Memory in Python

ProfilingMulti-Thread PrimeCalculation
• Profiling with cProfile highlights time spent in:

• threading.py:join
• isPrime
• _thread.lock.acquire

1 Execution time (8 threads) = 57.442 sec

Shared Memory in Python

Multi-threading Basics: The Global Interpreter Lock (GIL)
• Only one thread can run Python bytecode at a

time.
• CPU-bound: No true parallelism⇒ threads wait.
• I/O-bound: GIL is released during blocking I/O⇒

overlap possible.

1 def add(a, b):
2 return a +b

0 LOAD_FAST 0 (a)
2 LOAD_FAST 1 (b)
4 BINARY_OP 0 (+)
6 RETURN_VALUE

Shared Memory in Python

Multi-threading Basics: WhyMulti-threading in Python
Doesn't Scale for CPU-bound Tasks

• Consequence: Even on multi-core CPUs, threads run in a concurrent but not parallel
way.

• In Profiling:
• Real runtime ≈ 57s.
• Cumulative time (e.g., join = 171s) adds up waiting + scheduling overhead from

all threads.
• Takeaway:

• For I/O tasks→ threads can still improve responsiveness.
• For CPU-heavy work→ use multiprocessing (separate processes, separate GILs).

Shared Memory in Python

Multithreading vs. Multiprocessing
• Multithreading⇒ Concurrency

• Multiple threads share the same memory inside
one process.

• Good for I/O-bound tasks (overlap waiting times).
• Limited by the GIL: no true parallel CPU execution.

• Multiprocessing⇒ Parallelism
• Each process has its own memory and

interpreter.
• Achieves true parallelism across CPU cores.
• Higher cost: inter-process communication (IPC).

• Key takeaway: threading = concurrency (I/O-bound).
multiprocessing = parallelism (CPU-bound).

Shared Memory in Python

Multi-processing Basics: Elements of Programming

• Memory Isolation
• Processes do NOT share memory address

space
• Fork/Join Execution Model

• Fundamental way of expressing concurrency
within a computation

• Fork creates a new child process
• Parent continues after the Fork operation
• Child begins operation separate from the

parent
• Parent waits until child joins (continues

afterwards)

Shared Memory in Python

Multi-processing Basics: Race Conditions
• A Race Condition occurs if:

• Two or more processes manipulate a shared resource concurrently
• The outcome depends on the order of access

Process P1:
(1) MOV SUM, Reg1
(2) ADD #1, Reg1
(3) MOV Reg1, SUM

Process P2:
(1’) MOV SUM, Reg1
(2’) ADD #1, Reg1
(3’) MOV Reg1, SUM

Possible interleavings:
• (1’)(1)(2)(3)(2’)(3’) ⇒ SUM = SUM+1
• (1)(1’)(2’)(3’)(2)(3) ⇒ SUM = SUM+1
• (1)(2)(3)(1’)(2’)(3’) ⇒ SUM = SUM+2

Solution
Synchronization needed to prevent race
conditions
Mutual Exclusion: prevents simultaneous
access to a shared resource.

Shared Memory in Python

Multi-processing Basics: Synchronization

Variable Mutex: S
• Boolean: 0 / 1
• General: Integer ≥ 0

Functions:
• Lock(S)

• If S == 0 then wait until S > 0
• If S > 0 then S = S− 1

• Unlock(S)
• S = S+ 1

• (1’)(2’)(3’)(1)(2)(3) ⇒ SUM = SUM+2
• (1)(2)(3)(1’)(2’)(3’) ⇒ SUM = SUM+2

Shared Memory in Python

Multi-processing Basics: Join/ForkModel

• The multiprocessing module provides an easy
API for parallelism.

• Steps:
1. Create a Process structure with target

function + args
2. Start processes with .start()
3. Wait for processes to finish with .join()

• This model avoids the GIL by using separate
processes.

1 import multiprocessing
2
3 def print_cube(num):
4 ...
5
6 def print_square(num):
7 ...
8
9 if __name__ =="__main__":
10 p1 =multiprocessing.Process(target=print_square, args=(10,))
11 p2 =multiprocessing.Process(target=print_cube, args=(10,))
12
13 p1.start()
14 p2.start()
15
16 p1.join()
17 p2.join()
18
19 print("Done!")

Shared Memory in Python

Multi-processing Basics: SharedMemory

• Each process has its own memory space.
• Global variables are not shared between

processes.
• Example: modifying a global list in a process

does not affect the parent.

1 In process: [1, 4, 9, 16]
2 In main: []

1 import multiprocessing
2
3 result =[]
4
5 def square_list(mylist):
6 global result
7 for num in mylist:
8 result.append(num *num)
9 print("In process:", result)
10
11 if __name__ =="__main__":
12 mylist =[1,2,3,4]
13 p1 =multiprocessing.Process(target=square_list, args=(mylist,))
14
15 p1.start()
16 p1.join()
17
18 print("In main:", result)

Shared Memory in Python
Multi-processing Basics: SharedMemorywith Array and Value

• The multiprocessing module provides
objects to share data:
• Array: a ctypes array allocated in shared

memory.
• Value: a ctypes variable allocated in

shared memory.
• These objects must be passed as

arguments to processes.
• Enables efficient communication between

processes.

1 Result array: [1, 4, 9, 16]
2 Sum of squares: 30

1 import multiprocessing
2
3 def square_list(mylist, result, square_sum):
4 for idx, num in enumerate(mylist):
5 result[idx] =num *num
6 square_sum.value +=result[idx]
7
8 if __name__ =="__main__":
9 mylist =[1,2,3,4]
10 result =multiprocessing.Array('i', 4)
11 square_sum =multiprocessing.Value('i')
12
13 p1 =multiprocessing.Process(target=square_list, args=(mylist, ←↩

result, square_sum))
14
15 p1.start()
16 p1.join()
17
18 print("Result array:", result[:])
19 print("Sum of squares:", square_sum.value)

Shared Memory in Python

Multi-processing Basics: SharedMemorywith Manager
(Advanced)

• multiprocessing.Manager allows sharing complex
objects:
• list, dict, Queue, Array, etc.

• A single Manager can be used by multiple
processes, even across different machines.

• Slower than direct shared memory (Array /
Value).

Process Communication
Multi-processing Basics: SharedMemorywith
multiprocessing.Manager

1 from multiprocessing import Manager, Process
2
3 def worker(shared_list, idx):
4 # each worker squares its index
5 shared_list[idx] =shared_list[idx] **2
6
7 if __name__ =="__main__":
8 with Manager() as manager:
9 data =manager.list([i for i in range(10)])
10
11 processes =[Process(target=worker, args=(data, i)) for i in range(len(data))]
12
13 for p in processes:
14 p.start()
15
16 for p in processes:
17 p.join()
18
19 print("Final result:", list(data))

1 Final result: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Shared Memory in Python
Multi-processing Basics: Using multiprocessing.Queue

• Queue is a simple way to communicate
between processes.

• Can pass any Python object.
• Key functions:

• put() : insert a value into the queue.
• get() : read/remove a value from the

queue.
• empty() : check if the queue is empty.

• Useful for synchronizing and sharing results
between workers.

1 import multiprocessing
2
3 def square_list(mylist, q):
4 for num in mylist:
5 q.put(num *num)
6
7 def print_queue(q):
8 print("Queue elements:")
9 while not q.empty():
10 print(q.get())
11
12 if __name__ =="__main__":
13 mylist =[1, 2, 3, 4]
14 q = multiprocessing.Queue()
15
16 p1 =multiprocessing.Process(target=square_list, args=(mylist, q))
17 p2 =multiprocessing.Process(target=print_queue, args=(q,))
18
19 p1.start(); p2.start()
20 p1.join(); p2.join()

Shared Memory in Python
Multi-processing Basics: PrimeCalculation Queue (8
processes)

• Overhead comes from process
management (fork/join, waiting).

• Different from threads: no acquire or GIL
contention.

1 if __name__ =="__main__":
2 work_queue =Queue()
3 for i in range(0, 200000, 500):
4 work_queue.put(i)
5
6 processes =[Process(target=do_work, args=(work_queue,))←↩

for _ in range(8)]
7
8 # start_time = time.time()
9 for p in processes:
10 p.start()
11 for p in processes:
12 p.join()

1 Execution time (8 process) = 11.893 sec

Shared Memory in Python

Multi-processing Basics: Race Conditions

• Race condition occurs when multiple
processes access a shared variable
concurrently.

• Without synchronization, final result is
unpredictable.

• Example: Withdraw and deposit modify the
same Value.

1 def withdraw(balance):
2 for _ in range(10000):
3 balance.value -=1
4
5 def deposit(balance):
6 for _ in range(10000):
7 balance.value +=1
8
9 if __name__ =="__main__":
10
11 # initial balance (in shared memory)
12 balance =multiprocessing.Value('i', 100)
13
14 p1 =multiprocessing.Process(target=withdraw, args=(balance,))
15 p2 =multiprocessing.Process(target=deposit, args=(balance,))
16
17 p1.start(); p2.start()
18
19 p1.join(); p2.join()

Shared Memory in Python
Multi-processing Basics: Locks to Prevent Race Conditions

• multiprocessing.Lock() ensures mutual
exclusion.

• Only one process can access the shared
resource at a time.

• Prevents data corruption, ensures consistent
results.

1 Final balance: 100

1 def withdraw(balance, lock):
2 for _ in range(10000):
3 with lock:
4 balance.value -=1
5 def deposit(balance, lock):
6 for _ in range(10000):
7 with lock:
8 balance.value +=1
9
10 if __name__ =="__main__":
11 balance =multiprocessing.Value('i', 100)
12 # creating a lock object
13 lock =multiprocessing.Lock()
14
15 # creating new processes
16 p1 =multiprocessing.Process(target=withdraw, args=(balance,lock))
17 p2 =multiprocessing.Process(target=deposit, args=(balance,lock))
18
19 p1.start(); p2.start()
20
21 p1.join(); p2.join()

Shared Memory in Python
Multi-processing Basics: Using multiprocessing.Pool

• Pool represents a pool of worker processes.
• Allows tasks to be distributed automatically.
• Methods:

• map(func, iterable) – apply function to
list of inputs.

• apply() – run function once.
• apply_async() – asynchronous

execution.
• Efficient for data-parallel computations.

1 import multiprocessing
2 import os
3
4 def square(n):
5 print(f"Id for {n}: {os.getpid()}")
6 return n *n
7
8 if __name__ =="__main__":
9 mylist =[1,2,3,4,5]
10
11 # creating a pool object
12 p = multiprocessing.Pool()
13
14 # map list to target function
15 result =p.map(square, mylist)
16
17 print(result)

Shared Memory in Python

Multi-processing Basics: PrimeCalculation using Pool (8
processes)

1 if __name__ =="__main__":
2 LIMIT =200000
3 STEP =500
4 N_PROCESSES =8
5
6 # list of jobs
7 tasks =list(range(0, LIMIT, STEP))
8
9 with multiprocessing.Pool(processes=N_PROCESSES) as pool:
10 results =pool.map(sum_primes, tasks) # apply sum_primes for ←↩

each job 1 Execution time (8 process) = 10.704 sec

