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Radiation uses
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Radiation uses
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Materials under irradiation
What does it happen when we irradiate a material?

Irradiation generates damage/defects in materials. So,
generally, it modifies the physical and chemical properties
of the material.

Garner, Ch. 6. Irradiation
Performance of Cladding and
Structural Steels in Liquid Metals
Reactors, of Nuclear Materials part
1, Vol 10 A, Published by VCH,
Germany
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Materials under irradiation
Atomistic effects lead to material properties
changes/degradation

Distortion of a fuel rod

FuSource: AREVA
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Materials under irradiation

• High definition image from the ISS

https://youtu.be/wG4YaEcNlb0
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Materials under irradiation
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Irradiation modifies materials properties

• What would you think as an engineer if the properties of carefully selected materials
change over time?

• What would happen if you weren't able to predict those changes?

Understanding the fundamental aspects of radiation-matter interaction 
is crucial to develop more radiation resistant materials.

Desperate man by P. C. Robla 
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Atomistic effects
• Origin:

– Frenkel pairs
– Defect clustering
– Chemical reactions
– Gas interaction

• Effects
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Atomistic effects

• One of the essential characteristics of ionizing radiation (photons, neutrons,
charged particles, etc.) is their ability to penetrate and interact with matter.

• In these interactions, radiation loses part or all of its energy, yielding it to the
medium through which it passes through different interaction mechanisms that
essentially depend on:

– The type of particle (mass and charge).

– Particle energy.

– Medium with which it interacts (in terms of composition, density, physical state, etc.).

• These radiation-matter interaction processes are the origin of the radiation-
induced defects
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Radiation and materials

• The radiation induced changes strongly depends on the radiation environment (energy,
particle, temperature..) and on the material

• The first thing that is necessary to know when one considers studying and/or predicting
radiation-induced damage is the irradiation environment to which the material will face:

– Radiation species: X-ray, neutrons, ions

– Fluence

– Flow

– Temperature

– Energy

– Radiation nature: Pulsed or continuous

• Pulsed: pulse duration, repetition rate, and if the samples experiment thermal loads concurrent to the
pulses
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Radiation species

M. Tokitani et al. Plasma and Fusion Research: Regular Articles Volume 5, 012 (2010)

W irradiated with 
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Irradiation energy

D. Nishijima, 30th EPS Conference on Contr. Fusion and Plasma Phys., St. Petersburg, 7-11 July 2003 ECA Vol. 27A, P-2.163

W irradiated with He at different energies
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Irradiation fluence and sample 
morphology

He 20 eV
1100ºC

He 20 eV
1100ºC

Single crystal

Poly crystal

S. J. Zenobia, PhD thesis University of Wisconsin (2010)

W irradiated with 

The defect
configuration in
the as-grown
sample also play a
role in the
radiation damage
configuration
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Radiation-matter interaction: 
charged vs neutral particles

• Definition:
– Charged particles: those that have a charge (e-, H+, heavy

ion…)
– Neutral particles: those that have no charge (photon, neutron)

• Differences in effective cross-sections (σ)
– Charged particle σ~10-16 cm-2

– Neutral particle σ~ 10-24 -10-20 cm-2



Trieste, 10/02/2025 ICTP-IAEA-MAMBA School

• Mean free path (mfp)

Where: σ is the cross section
N is the matter density (N~1023 cm-3)

– Charged particles: mfp~Å
– Neutral particles: µm-cm

σN
mfp 1

=

Radiation-matter interaction: 
charged vs neutral particles
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Charged vs neutral particles
• Interaction

– Charged particles
• They interact practically with each atom along its path.
• They lose energy in each interaction:

– Electronic excitation
– Ionization

• They are characterized by their stopping power and penetration length
• Directly ionizing.

– Neutral particles
• They interact infrequently with the atoms of a target
• In each collision they are absorbed or dispersed from the original beam
• The intensity of the non-dispersed beam is attenuated proportionally to the mean

free path and its intensity decreases exponentially with the crossed distance
• Indirectly ionizing (interaction with matter can generate one or more charged

energy particles (photoelectron, Compton electron)
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The radiation-induced damage event

• It is defined as the energy transferred by the incident projectile to the target and the
consequent distribution of the atoms in the target once the interaction has occurred.

• It is made up of different processes:
– The interaction of the incident energetic particle with the atom (part I).

– The transfer of kinetic energy to the atom giving rise to what is known as "primary Knock atom"
(PKA).

– The displacement of the atom from its lattice position (part II).

– The passage of displaced atoms through the network accompanied by the production of additional
PKAs.

– The production of the cascade (generation of point defects generated by the PKA).

– PKA completion as interstitial
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Radiation-induced damage

1. The radiation damage event
• Neutron-nucleus interaction
• Interaction between ions and atoms

2. The displacement of Atoms

3. The damage cascade

4. Point defect formation
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Cross section

• Each type of interaction can be characterized by its cross
section.

• The cross section, denoted typically by the symbol Ժ, describes
the interaction probability.

• It depends on: the particle and energy the neutron energy.

• The unit of the cross section is the barn. One barn is 10 -24 cm
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Radiation-induced damage

1. The radiation damage event
• Neutron-nucleus interaction
• Interaction between ions and atoms

2. The displacement of Atoms

3. The damage cascade

4. Point defect formation
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Neutron-nucleus interaction: general

• Neutrons have no charge. They interact via physical collisions with
nuclei (target nuclei).

• A neutron might scatter off the nucleus or combine with the nucleus.

• When the neutron combines with a nucleus, some type of particle
might be emitted (e.g., proton, alpha particle) and/or a “prompt”
gamma ray.

• Neutrons, like other indirectly ionizing radiation (e.g., ϒ rays), can travel
substantial distances.
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Neutron-nucleus interaction
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Neutron-nucleus interaction
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Neutron irradiation: transmutation reactions

• In addition to damage induced by direct collisions, neutron irradiation
produces transmutation reactions.

Important issues:

1. Radioactive nuclei are produced with very different decay times → safety

2. Transmuted nucleus → changes in the elemental composition of the material→
change in material properties

3. He and H accumulation inside the material → swelling
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Neutron-nucleus interaction
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Radiation-induced damage

1. The radiation damage event
• Neutron-nucleus interaction
• Interaction between ions and atoms

2. The displacement of Atoms

3. The damage cascade

4. Point defect formation
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Ion irradiation
In its passage through matter, an ion may interact with:

• THE ATOMIC ELECTRONS

and/or

• THE ATOMIC NUCLEI
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Ion irradiation: stopping power S(E)
Incoming ion penetrates into the matter interacting with it and slowing down.

• stopping power: energy loss per unit distance traveled by the charged particle.

– Nuclear stopping power, S(E)n: transfer of energy
from incoming ion to target nuclei (elastic collisions)

– Electronic stopping power, S(E)e: transfer of energy
from incoming ion to the electrons of target (inelastic
collisions)
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Ion irradiation: stopping power S(E)
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Ion irradiation: overview of the slowing down
process
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Ion irradiation: Bragg peak

Bragg peak

• Bragg peak occurs because the interaction cross section increases with decreasing the
energy of the charged particle.

• It occurs just before the particle comes to a complete stop because the energy lost is inversely
proportional to the square of the velocity of the charged particles.
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Why to measure stopping power?
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Ion irradiation: ion range
• The most interesting range quantity average projected range (Rp) and this is what

is usually measured.

– At high energies → Se >> Sn → R ∼ Rp.

– At low energies → Sn ∼ Se → Rp < R.
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Ion-atom or atom/atom interaction
• These kind of collisions are governed by interactions between:

– Electron clouds

– Electron cloud and the nucleus

– Nuclei.

• These interactions are described by interatomic potentials.

• To describe the energy transfer cross sections for interactions between atoms, we
need to describe the potential function that governs that interaction.

• Unfortunately, there exists no single function that describes all interactions, but
rather, the nature of the interaction is a strong function of the atom energies, and
hence their distance of closest approach of their nuclei.
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Summary: interatomic potentials
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Electrons and gammas

• Electrons can produce Frenkel pairs but to a much lower extend than neutrons
and ions.

• Only in the case of ceramic materials when the generated electronic density is
very high they can produce atom displacement by complex mechanisms (as it is
the case of swift heavy ions).

• In general we will consider them a source of energy that leads to heating of the
material
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Atomistic effects: origin

• Atomic displacements (nuclear stopping power, Sn)

– Dominant damage processes in metals

– Significant for semiconductors, ceramics and polymers

– Units- displacement per atom, dpa

• Ionization and excitation (electronic stopping power, Se)

– Generally negligible for metals

– Important for polymers, ceramics and semiconductors

– Units- Gray, Gy, absorbed dose 1 J / Kg.

• Transmutation reactions

– Products of transmutation, especially isotopes of H, He and neutron-induced reactions

– Units appm / dpa
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Radiation-induced damage

1. The radiation damage event
• Neutron-nucleus interaction
• Interaction between ions and atoms

2. The displacement of Atoms

3. The damage cascade

4. Point defect formation
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Displacement of atoms: ions and neutrons
• When the energy of the incoming particle (radiation) is high enough, above

a certain threshold, it will produce atomic displacements leading to Frenkel
pair formation (vancy-interstitial).

Displacement cascade damage from
movement of Si  atom after primary collision

SIAs

Vs

Cortesía de M. J. Caturla
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The displacements of atoms: definitions
• Primary knock-on atom (PKA): is the first atom

that an incident particle encounters in the
target. After it is displaced from its initial lattice
site, the PKA can induce the subsequent lattice
site displacements of other atoms if it has
sufficient energy, or come to rest in the lattice at
an interstitial site if it does not.

• Collision cascade: is a spatial cluster of lattice
vacancies and atoms residing as interstitials in a
localized region of the lattice.

The initiation of the displacement cascade

Seeger (1958)

v2

v1
2

1

Collision cascade

PKA
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Displacement per atom (dpa)

• 1 dpa means that each atom has displaced once (on average).
– Fusion: The half-life time of a PFM is ~ 100 dpa.

• A way to quantify radiation damage in a highly questionable and unreliable
way.

• Ignore dose rate and cascade overlap

• Stongly dependent on material
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Characteristic of radiation-induced damage
• Very important. For similar projectile energies, The averaged energy transferred

by neutrons is larger than that transferred by ions. Therefore, neutrons generate
dispersed PKA, but each PKA generates a high concentration of defects (dense
cascade).

Cu irradiated with:

Fundamentals of Radiation Materials 
Science: Metals and Alloys, Gary S. Was, 
Springer, ISBN 978-3-540-49471-3
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But do all the created Frenkel pairs survive?



Trieste, 10/02/2025 ICTP-IAEA-MAMBA School

Stages of Cascade Development
• The final state of the cascade is extremely important because the end of the

cascade is the starting point for defect diffusion, agglomeration and destruction that
forms the basis for the observable effects of irradiation

• Cascades evolve in stages given as follows:
1. Collisional (<1 ps)

2. Thermal spike (~ 0.1 ps)

3. Quenching (~ 10 ps)
Not all the created Frenkel pairs
survive

4. Annealing (ns-months)

MD simulation of a 30keV displacement cascade in Cu at 300K at 2ps and 
18ps into the collision (calculations performed at the Barcelona 
Supercomputer center, courtesy of M. Catula and Tomas Diaz de la Rubia)

End of the quench phase is completed within ∼
10ps of the initial collision event.
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Radiation-induced damage: time scale
Cascade Creation

10-13 s

Unstable Matrix
10-11 s

Interstitial Diffusion
10-6 s

Vacancy Diffusion
100 s

Microstructural evolution
106 s
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Radiation-induced damage

1. The radiation damage event
• Neutron-nucleus interaction
• Interaction between ions and atoms

2. The displacement of Atoms

3. The damage cascade

4. Stable defects
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Stable defects

• When Frenkel pairs do not anneal (vancancy-interstial recombination) defects are generated
in the material.

• These vacancies and interstitials form the foundation for all observed effects of irradiation on
the physical properties of materials.

• Various types of defects exist in any crystalline lattice. These include:
– Point defects (0D): vacancies and interstitials
– Line defects (1D): dislocation lines
– Planar defects (2D): dislocation loops
– Volume defects (3D): voids, bubbles, stacking fault tetrahedra

• Moreover, the defects generation by light ions (He, H, D) and the generation of transmutation
products (neutron irradiation) is critical.
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Radiation-induced damage
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Summarizing

Fundamentals of Radiation Materials Science: Metals and 
Alloys, Gary S. Was, Springer, ISBN 978-3-540-49471-3
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PartII: macroscopic effects
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Objectives

• Relate the microscopic defects with modification in the materials 
(macroscopic) properties:

– Elemental composition

– Dimensional instabilities
• Swelling
• Creep

– Thermal conductivity

– Electrical conductivity

– Mechanical properties

– Optical properties
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Objectives
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Origin of radiation effects in materials
Elemental composition
• Transmutation

Chemical composition:
• Diffusion (Formation of new chemical phases)
• Segregation

Dimensions:
• Volume change: swelling
• Shape change: creep, fuzz

Physical properties:
• Decease in the electrical conductivity (low temperatures)
• Decrease in the thermal conductivity (ceramic materials)
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Transmutation: changes in the elemental composition

• Thermal conductivity
• Mechanical properties

Y. Ueda et al. Nucl. Fusion 57 (2017) 092006

T. Tanabe et al. Materials Letters 57 (2003) 2950–2953
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Transmutation reactions: safety

U. Fischer and S.P. Simakov, 
June 2003
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Transmutation reactions: He and H production

M.R.Gilbert. Transmutation and He Production in W and W-alloys

K. Yutani et al.  JNM 367–370 (2007) 423

W irradiated with neutrons
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Transmutation reactions: He and H production

K. Yutani et al.  JNM 367–370 (2007) 423
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Neutron irradiation: transmutation reactions

Important issues:

1. Radioactive nuclei are produced with very different decay times →
safety

2. Transmuted nucleus → changes in the elemental composition of the
material→ change in material properties

3. He and H accumulation inside the material → swelling
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Radiation-induced segregation (RIS)

G. Gupta et al. Journal of Nuclear Materials 351 (2006) 162–173

RIS after irradiation to 10 dpa at 450°C with 2.0 MeV protons
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Precipitate formation
HT9 irradiated with 5 MeV Fe to 20 dpa at 420ºC

C. Zheng et al. Journal of Nuclear Materials 491 (2017) 162-176
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Swelling
Light species (H-isotopes and He) occupying cavities

H. Lee et al. Phil Mag. A 61 (1990) 733
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Thermal conductivity
• Radiation decrease the thermal conductivity because points defects act as:

– phonon scattering centres.
– e- scattering centres

25.8 MeV krypton, 1020m-2, 1.77 × 1015 m−2 s−1

Se

Sn

L. David et al., J. Phys. D: Appl. Phys. 41 (2008) 035502
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Thermal conductivity

L.L. Snead et al. Journal of Nuclear Materials 329–333 (2004) 524–529
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Thermal conductivity

S. Cui et al. Journal of Nuclear Materials 486 (2017) 267e273

He plasma irradiation: 60 eV,  1 x1026 m-2 sample temperature of 773 K
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Radiation induced conductivity (RIC)
• RIC depends on: 

– Dose 
– Temperature

L.L. Snead et al. Journal of 
Nuclear Materials 329–333 (2004) 
524–529
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Conclusions

• The study of materials under irradiation is very important
for diverse applications.

• The development of more radiation resistant materials is
crucial for improving device performance.

Do you want to join our comunity?
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Nuclear fusion teaching activities

https://www.industriales.upm.es/docencia/master-en-ciencia-y-tecnologia-
nuclear/

https://din.industriales.upm.es/index.php/docencia/masteres/master-sarena
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Nuclear fusion teaching activities

https://www.materiales.upm.es/inicio/masters-
degree-in-materials-engineering

https://www.industriales.upm.es/docencia/doble-master-en-ciencia-y-
tecnologia-nuclear/

https://www.upm.es/estudiantes/estudios_titulaciones/estudios_master/progra
mas?id=5.9&fmt=detail
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Upsala GlacierNanostructured W film

Thank you for your attention
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