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Outline of the talk

❑ Experimental and theoretical motivations.

❑ From Boltzmann transport equation to hydrodynamic models.

❑ From hydrodynamic models to (simplified) energy transport models.

❑ Electrons (an holes) as a fluid.

❑ Generation & recombination in highly excited insulators.

❑ Excitons and band gap renormalisation.



Highly excited insulators

❑ For instance, upon proton irradiation of a-SiO2.

𝑝+

❑ Very localised excitation of electron-holes pairs.

❑ Question: How does the excited insulator relax?

Conduction band

Valence band

𝑟𝑐 =
ℏ𝑣𝑖𝑜𝑛

2𝐸𝑔𝑎𝑝

𝐸𝑔 = 8.7 eV



What do we want to achieve?

❑ Model the relaxation of highly excited insulators.

❑ Use a model that is good for both bulk and nanostructure materials.

❑ Capitalise on the know-how from semiconductor modelling.

❑ Explain some unexpected experimental results.



❑ Ultrashort proton pulses (~3.5 ps)

❑ Optical streaking (chirped IR pulse ~ 1.2 ns) 

Spatially resolved (<1 mm) transient 
absorption

M. Coughlan et al. New J. Phys. 22 103023 (2020)
B. Dromey et al.  Nature Comm. 7 10642 (2016)

Proton “pump” + IR (1053 nm) “probe”

Experimental background



Image: NASA

M. Coughlan et al. New J. Phys. 22 103023 (2020)
B. Dromey et al.  Nature Comm. 7 10642 (2016)

Decay constant ~ 3.5 ps Decay constant ~ 620 ps Decay constant ~ 300 ps

Fused silica (a-SiO2) Borosilicate glass (BK7) Silica aerogel (10%)

Band gap: 8.7 eV

Density: 2.66 g/cm3

Band gap: 4 eV

Density: 2.23 g/cm3

Band gap: 8.7 eV

Density: 0.26 g/cm3

B. Dromey (unpublished)

Experimental background



~ 10 fs ~ 0.1–1 ps Exciton, Auger, SRH, 
radiative…

Te

TL

Electron-hole generation & recombination



Knowledge transfer

❑ An inspiring paper: S. Klaumünzer, Thermal-Spike Models for Ion Track Physics: A critical Examination, 2006.

“Thermal-spike models are only not used in ion-track physics, but also to describe the behaviour of excited 
carriers generated by femtosecond lasers or by strong electrical fields in submicron semiconductor devices. 
Though these various models deal with similar physical problems, they do not take too much notice of each 
other. The consequence is that knowledge, which has been gained in one field, is not transferred to the 
others.”

❑ The rest of this talk is just my attempt to explore this “Klaumünzer’s programme”.

http://publ.royalacademy.dk/books/163/1017?lang=en


The Thermal-spike model

❑ An established  model of track formation.

“A severe deficiency of the currently used thermal-spike models in ion track physics is the missing distinction 
between the two kinds of excitations in semiconductors and insulators, namely electrons in the conduction 
bands and holes in the valence band. However, this distinction is essential to exploit the wealth of 
information available in the physics of semiconductors and insulators.”

𝐶𝑣,𝐿

𝜕𝑇𝐿

𝜕𝑡
+ ∇ ⋅ 𝒒𝐿 = 𝑔 𝑇𝑒 − 𝑇𝐿

𝐶𝑣,𝑒

𝜕𝑇𝑒

𝜕𝑡
+ ∇ ⋅ 𝒒𝑒 = −𝑔 𝑇𝑒 − 𝑇𝐿 + 𝐵 𝒓, 𝑡 𝒒𝑒 = −𝜅𝑒∇𝑇𝑒

𝒒𝐿 = −𝜅𝐿∇𝑇𝐿



Statistical description

❑ Atomistic approaches are very accurate for bulk properties, e.g., transport coefficients.

❑ For nanostructure materials, e.g., aerogels, it is more convenient to model continuous media, e.g., fluids.

❑ We don’t look at the properties of the individual atoms, but at their “average properties”.



Boltzmann transport equation

❑ Equation of motion for the distribution function, 𝑓𝛼 𝒓, 𝒗, 𝑡 , of species 𝛼:

𝜕𝑓𝛼

𝜕𝑡
+ 𝒗 ⋅ ∇𝑓𝛼 + 𝒂 ⋅ ∇𝑣𝑓𝛼 =

𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

Bittencourt, Fundamentals of Plasma, 3rd edition, 2004 --- Chapter 5

𝒓

𝒗 𝑁6

Source: Wikipedia

❑ For gases: kinetic energy ≫ potential energy.

❑ Only binary collisions (default).

❑ Without collisions, the distribution is just “transported”.

𝑓𝛼 𝒓, 𝒗, 𝑡 ≃ 𝑓𝛼 𝒓 − 𝒗Δ𝑡, 𝒗 − 𝒂Δ𝑡, 𝑡 − Δ𝑡



Method of Moments

❑ Velocity moments of the distribution function, 𝑓𝛼 𝒓, 𝒗, 𝑡 , of species 𝛼.

❑ The microscopic velocity, 𝒗, does not have a fixed value (stochastic variable).

𝜒 𝒗 𝛼 =
 𝑑3𝒗 𝜒 𝒗 𝑓𝛼 𝒓, 𝒗, 𝑡

 𝑑3𝒗 𝑓𝛼 𝒓, 𝒗, 𝑡

Bittencourt, Fundamentals of Plasma, 3rd edition, 2004 --- Chapter 6

න 𝑑3𝒗 𝑓𝛼 𝒓, 𝒗, 𝑡 =
𝑁𝛼

𝑉
= 𝑛𝛼

𝑣𝑖 𝛼 =
 𝑑3𝒗 𝑣𝑖𝑓𝛼 𝒓, 𝒗, 𝑡

𝑛𝛼
= 𝑢𝛼,𝑖

𝑣𝑖𝑣𝑗 𝛼
=

 𝑑3𝒗 𝑣𝑖𝑣𝑗𝑓𝛼 𝒓, 𝒗, 𝑡

𝑛𝛼
=

Π𝛼,𝑖𝑗

𝑚𝛼𝑛𝛼
=

Π𝛼,𝑖𝑗

𝜌𝛼

Source: Wikipedia

Source: L.S.

Average

Normalisation

Average velocity

Momentum transfer tensor



Momentum flux tensor

𝒗 = 𝒖𝛼 𝒓, 𝑡 + 𝒄𝛼

Π𝛼,𝑖𝑗 𝒓, 𝑡 = 𝜌𝛼 𝒓, 𝑡 𝑣𝑖𝑣𝑗 𝛼
= 𝜌𝛼 𝒓, 𝑡 𝑐𝛼,𝑖𝑐𝛼,𝑗 𝛼

− 𝜌𝛼 𝒓, 𝑡 𝑢𝛼,𝑖 𝒓, 𝑡 𝑢𝛼,𝑗 𝒓, 𝑡

𝑷𝛼,𝑖𝑗 = 𝜌𝛼 𝒓, 𝑡 𝑐𝛼,𝑖𝑐𝛼,𝑗 𝛼

❑ The microscopic velocity, 𝒗, does not have a fixed value (stochastic variable).

❑ The macroscopic velocity field, 𝒖𝛼 𝒓, 𝑡 , is well-defined (average).

Pressure Shear stress

Pressure tensor



Kinetic energy density

𝑊𝛼 = 𝑛𝛼 𝒓, 𝑡
𝑚𝛼

2
𝒗𝛼

2

𝛼
=

𝜌𝛼 𝒓, 𝑡

2
න 𝑑3𝒗 𝒖𝛼 𝒓, 𝑡 + 𝒄𝛼

2𝑓𝛼 𝒓, 𝒗, 𝑡

=
𝜌𝛼 𝒓, 𝑡

2
𝒖𝛼

2 𝒓, 𝑡 +
𝜌𝛼 𝒓, 𝑡

2
න 𝑑3𝒗 𝒄 𝛼

2 𝑓𝛼 𝒓, 𝒗, 𝑡

❑ The microscopic velocity, 𝒗, does not have a fixed value (stochastic variable).

❑ The macroscopic velocity field, 𝒖𝛼 𝒓, 𝑡 , is well-defined (average).

❑ Both contribute to the kinetic energy (classical).

𝑊𝛼 =
𝜌𝛼 𝒓, 𝑡

2
𝒖𝛼

2 𝒓, 𝑡 +
1

2
Tr 𝑷𝛼 



Energy flow

𝑛𝛼 𝒓, 𝑡
𝑚𝛼

2
𝒗𝛼𝒗𝛼

2

𝛼
= 𝑊𝛼 𝒓, 𝑡 𝒖𝛼 𝒓, 𝑡 + 𝒖𝛼 𝒓, 𝑡 ⋅ 𝑷𝛼 𝒓, 𝑡 + 𝒒𝛼 𝒓, 𝑡

𝒒𝛼 𝒓, 𝑡 = 𝑛𝛼 𝒓, 𝑡
𝑚𝛼

2
𝒄𝛼𝒄𝛼

2

𝛼
=

𝜌𝛼 𝒓, 𝑡

2
𝒄𝛼𝒄𝛼

2
𝛼

❑ The microscopic velocity, 𝒗, does not have a fixed values (stochastic variable).

❑ The macroscopic velocity field, 𝒖𝛼 𝒓, 𝑡 , is well-defined (average).

❑ Both contribute to the kinetic energy (classical).

ColdHot

Heat flux (irreversible)



Check point 1



Macroscopic transport equations

𝜕𝑓𝛼

𝜕𝑡
+ 𝒗 ⋅ ∇𝑓𝛼 + 𝒂 ⋅ ∇𝑣𝑓𝛼 =

𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

න 𝑑3𝒗 𝜒 𝒗
𝜕𝑓𝛼

𝜕𝑡
+ න 𝑑3𝒗 𝜒 𝒗 𝒗 ⋅ ∇𝑓𝛼 + න 𝑑3𝒗 𝜒 𝒗 𝒂 ⋅ ∇𝑣𝑓𝛼 = න 𝑑3𝒗 𝜒 𝒗

𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

𝜕

𝜕𝑡
𝑛𝛼 𝜒 𝛼 + ∇ ⋅ 𝑛𝛼 𝜒𝒗 𝛼 − 𝑛𝛼 𝒂 ⋅ ∇𝑣𝝌 = න 𝑑3𝒗 𝜒 𝒗

𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

Source: Wikipedia

❑ Velocity moments of the distribution function, 𝑓𝛼 𝒓, 𝒗, 𝑡 , of species 𝛼.

❑ The microscopic velocity, 𝒗, does not have a fixed value (stochastic variable).

𝜒 𝒗 = 𝑚𝛼 𝜒 𝒗 = 𝑚𝛼𝒗 𝜒 𝒗 =
𝑚𝛼

2
𝒗2



Macroscopic transport equations

𝜕𝜌𝛼

𝜕𝑡
+ ∇ ⋅ 𝜌𝛼𝒖𝛼 = 𝑚𝛼 න 𝑑3𝒗

𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

𝜌𝛼

𝜕𝒖𝛼

𝜕𝑡
+ 𝒖𝛼 ⋅ ∇ 𝒖𝛼 + ∇ ⋅ 𝑷𝛼 − 𝜌𝛼 𝒂 𝛼 = 𝑚𝛼 න 𝑑3𝒗 𝒗

𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

− 𝑚𝛼𝒖𝛼 න 𝑑3𝒗
𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

1

2

𝜕Tr 𝑷𝛼 

𝜕𝑡
+ 𝒖𝛼 ⋅ ∇ Tr 𝑷𝛼 +

Tr 𝑷𝛼 

2
∇ ⋅ 𝒖𝛼 + 𝑷𝛼 ⋅ ∇ ⋅ 𝒖𝛼 + ∇ ⋅ 𝒒𝛼

=
𝑚𝛼

2
න 𝑑3𝒗 𝒗2𝜒 𝒗

𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

− 𝑚𝛼𝒖𝛼 ⋅ න 𝑑3𝒗 𝒗
𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

+
𝑚𝛼

2
𝒖𝛼

2 න 𝑑3𝒗
𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

𝜒 𝒗 = 𝑚𝛼

𝜒 𝒗 = 𝑚𝛼𝒗

𝜒 𝒗 =
𝑚𝛼

2
𝒗2

Mass balance (continuity)

Momentum balance

(kinetic) energy balance



Local Maxwell-Boltzmann distribution

❑ Velocity moments of the distribution function, 𝑓𝛼 𝒓, 𝒗, 𝑡 , of species 𝛼.

❑ Local equilibrium for species 𝛼

𝑓𝛼
0 𝒓, 𝒗, 𝑡 = 𝑛𝛼 𝒓, 𝑡

𝑚𝛼

2𝜋𝑘𝐵𝑇𝛼 𝒓, 𝑡

3
2

𝑒
−

𝑚𝛼 𝒗−𝒖𝛼 𝒓,𝑡
2

2𝑘𝐵𝑇𝛼 𝒓,𝑡

Bittencourt, Fundamentals of Plasma, 3rd edition, 2004 --- Chapter 7

න 𝑑3𝒗 𝑓𝛼
0 𝒓, 𝒗, 𝑡 =

𝑁𝛼

𝑉
= 𝑛𝛼 𝒓, 𝑡

𝑣𝑖 𝛼
0 =

 𝑑3𝒗 𝑣𝑖𝑓𝛼
0 𝒓, 𝒗, 𝑡

𝑛𝛼 𝒓, 𝑡
= 𝑢𝛼,𝑖 𝒓, 𝑡

𝑣𝑖𝑣𝑗 𝛼

0
=

 𝑑3𝒗 𝑣𝑖𝑣𝑗𝑓𝛼
0 𝒓, 𝒗, 𝑡

𝑛𝛼 𝒓, 𝑡
=

𝑘𝐵𝑇𝛼 𝒓, 𝑡

𝑚𝛼
𝛿𝑖𝑗 − 𝑢𝛼,𝑖 𝒓, 𝑡 𝑢𝛼,𝑗 𝒓, 𝑡

𝑣𝑖𝑣2
𝛼
0 =

 𝑑3𝒗 𝑣𝑖𝑣2𝑓𝛼
0 𝒓, 𝒗, 𝑡

𝑛𝛼 𝒓, 𝑡
= 0

Kinetic temperature

Normalisation

Average velocity

Heat flux

Source: Wikipedia



Conservation laws & collisions

න 𝑑3𝒗
𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

= 0 𝑚𝛼 න 𝑑3𝒗 𝒗
𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

= 0
𝑚𝛼

2
න 𝑑3𝒗 𝒗2𝜒 𝒗

𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

= 0

❑ Mass, momentum and energy conserved in homogeneous (i.e., same species) collisions.

❑ Ideal fluid behaviour.



Euler’s hydrodynamics

𝜕𝜌𝛼

𝜕𝑡
+ ∇ ⋅ 𝜌𝛼𝒖𝛼 = 0

𝜌𝛼

𝜕𝒖𝛼

𝜕𝑡
+ 𝒖𝛼 ⋅ ∇ 𝒖𝛼 + ∇𝑝𝛼 − 𝜌𝛼 𝒂 𝛼 = 0

3

2

𝜕𝑝𝛼

𝜕𝑡
+ 𝒖𝛼 ⋅ ∇ 𝑝𝛼 +

5

2
𝑝𝛼 ∇ ⋅ 𝒖𝛼 = 0

❑ No viscosity: 𝑷𝛼,𝑖𝑗 = 𝑝𝛼𝛿𝑖𝑗 = 𝑛𝛼 𝒓, 𝑡 𝑘𝐵𝑇𝛼 𝒓, 𝑡 𝛿𝑖𝑗.

❑ No irreversible heat transfer: 𝒒𝛼,𝑖 = 0.

❑ Compressible ideal fluid.  

Source: Wikipedia



Adiabaticity

𝜕𝜌𝛼

𝜕𝑡
+ 𝒖𝛼 ⋅ ∇ 𝜌𝛼 + 𝜌𝛼 ∇ ⋅ 𝒖𝛼 = 0

𝜌𝛼

𝜕𝒖𝛼

𝜕𝑡
+ 𝒖𝛼 ⋅ ∇ 𝒖𝛼 + ∇𝑝𝛼 − 𝜌𝛼 𝒂 𝛼 = 0

𝜕𝑝𝛼

𝜕𝑡
+ 𝒖𝛼 ⋅ ∇ 𝑝𝛼 +

5

3
𝑝𝛼 ∇ ⋅ 𝒖𝛼 = 0 𝛾 =

5

3

𝑐𝑠,𝛼 = 𝛾
𝑝𝛼

0

𝜌𝛼
0 =

𝛾𝑘𝐵𝑇𝛼
0

𝑚𝛼

𝜕

𝜕𝑡
+ 𝒖𝛼 ⋅ ∇ ln 𝑝𝛼𝜌𝛼

−𝛾
= 0

❑ No viscosity: 𝑷𝛼,𝑖𝑗 = 𝑝𝛼𝛿𝑖𝑗 = 𝑛𝛼 𝒓, 𝑡 𝑘𝐵𝑇𝛼 𝒓, 𝑡 𝛿𝑖𝑗.

❑ No irreversible heat transfer: 𝒒𝛼,𝑖 = 0.

❑ Compressible ideal fluid.  

Adiabatic index

Speed of “sound”



Bernoulli’s law

❑ Potential flow, 𝒖𝛼 = −∇Ψ𝛼 if ∇ × 𝒖𝛼 = 0 (irrotational).

❑ From the Euler’s equation (inviscid flow).

❑ Barotropic fluid, 𝜌 𝑝 . E.g., adiabatic ideal gas, 𝜌 ∝ 𝑝
1

𝛾 (polytropic).  

𝒖𝛼 ⋅ ∇ 𝒖𝛼 = ∇
𝒖𝛼

2

2
− 𝒖𝛼 × ∇ × 𝒖𝛼

∇
𝜕Ψ𝛼

𝜕𝑡
−

∇Ψ𝛼
2

2
− 𝑤 𝑝𝛼 −

𝑞𝛼𝑉

𝑚𝛼
= 0 𝑤 𝑝 = න

0

𝑝 d𝑝′

𝜌 𝑝′
=

𝛾

𝛾 − 1

𝑝

𝜌

❑ Hydrodynamic formulation of the Schrödinger eq. F. Bloch, Z. Phys., 1933 (also see S. Lundqvist, 1983) 

Lautrup, Physics of Continuous Matter, 2nd  edition, 2011 --- Chapter 14

Source: Wikipedia

Pressure potential

https://doi.org/10.1007/BF01344553
https://doi.org/10.1007/978-1-4899-0415-7


Check point 2



Drude-Lorentz model

❑ Provisionally assume neither generation nor recombination:  𝑑3𝒗
𝛿𝑓𝛼

𝛿𝑡 𝑐𝑜𝑙𝑙.
= 0. 

𝜕𝑛𝑒

𝜕𝑡
+ ∇ ⋅ 𝑛𝑒𝒖𝑒 = 0

𝑱𝑒 = −𝑒𝑛𝑒𝒖𝑒

𝑛𝑒

𝜕𝒖𝑒

𝜕𝑡
+ 𝒖𝑒 ⋅ ∇ 𝒖𝑒 +

∇𝑝𝑒

𝑚𝑒
+

𝑒𝑛𝑒𝑬

𝑚𝑒
= න 𝑑3𝒗 𝒗

𝛿𝑓𝑒

𝛿𝑡
𝑐𝑜𝑙𝑙.

න 𝑑3𝒗 𝒗
𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

= −
𝑛𝑒𝒖𝑒

𝜏𝑝,𝑒
=

𝑱𝑒

𝑒𝜏𝑝,𝑒

𝑱𝑒 = 𝜇𝑒 ∇𝑝𝑒 + 𝑒𝑛𝑒𝑬 = 𝜇𝑒 𝑘𝐵∇ 𝑛𝑒𝑇𝑒 + 𝑒𝑛𝑒𝑬 𝜇𝑒 =
𝑒𝜏𝑝,𝑒

𝑚𝑒
> 0

❑ Stationary (Lagrange frame): 
𝐷𝒖𝑒

𝐷𝑡
=

𝜕𝒖𝑒

𝜕𝑡
+ 𝒖𝑒 ⋅ ∇ 𝒖𝑒 = 0. 

Electron mobility

Source: Wikipedia

Electron-impurity Electron-phonon



Electronic pressure

❑ Electrons can be treated as a fluid. 

❑ Pressure given by e.g., Thomas-Fermi approximation: 𝑃𝑒 =
ℏ2 3𝜋2

2
3

5𝑚𝑒
𝑛𝑒

5

3 .

❑ Barotropic fluid, 𝜌 ∝ 𝑝
1

𝛾 with 𝛾 =
5

3
.

𝑛𝑒

𝜕𝒖𝑒

𝜕𝑡
+ 𝒖𝑒 ⋅ ∇ 𝒖𝑒 + 𝑣𝑠

2∇𝑛𝑒 +
𝑒𝑛𝑒

𝑚𝑒
𝑬 = −

𝑛𝑒𝒖𝑒

𝜏𝑝,𝑒

Source: Wikipedia

Plasmonic modes
N.A. Mortensen, Nanophotonics, 2021

❑ Generalised to arbitrary functional (DFT): 𝑤 𝑝 =
1

𝑚𝑒

𝛿𝐺

𝛿𝑛
. N.A. Mortensen, Nanophotonics, 2021

𝑣𝑠
2 = 𝛾

𝑃𝑒

𝑛𝑒
=

ℏ2 3𝜋2
2
3

3𝑚𝑒
2 𝑛𝑒

2
3 =

𝑣𝐹
2

3

+

+

+
+

-

-

-
-

+

+

+
+

-

-

-
-

https://doi.org/10.1515/nanoph-2021-0156


Thermal equilibrium

❑ Provisionally assume neither generation nor recombination:  𝑑3𝒗
𝛿𝑓𝛼

𝛿𝑡 𝑐𝑜𝑙𝑙.
= 0.

❑ Constant electronic temperature, 𝑇𝑒.

❑ No electric current.

𝑱𝑒 = 𝜇𝑒 𝑘𝐵∇ 𝑛𝑒𝑇𝑒 + 𝑒𝑛𝑒𝑬 = 𝜇𝑒𝑛𝑒 𝑘𝐵𝑇𝑒

∇𝑛𝑒

𝑛𝑒
− 𝑒∇V = 0 𝑛𝑒 𝒓, 𝑇𝑒 ∝ exp

𝑒𝑉

𝑘𝐵𝑇𝑒
Boltzmann factor

❑ At constant 𝑇𝑒, same as drift-diffusion model for semiconductors.

❑ Einstein relation: 𝑒𝐷𝑒 = 𝑘𝐵𝑇𝑒𝜇𝑒.

❑ Electro-chemical potential: 𝜉𝑒 𝒓, 𝑇𝑒 = 𝐸𝑐 𝒓 −
𝐸𝑔

2
−

3

4
𝑘𝐵𝑇𝑒 ln

𝑚𝑒

𝑚ℎ
+ 𝑘𝐵𝑇𝑒 ln

𝑛𝑒 𝒓,𝑇𝑒

𝑛𝑖 𝑇𝑒

𝑱𝑒 = −𝑒𝑛𝑒𝜇𝑒∇
𝜉𝑒

𝑒
𝑬 = −∇𝑉 =

∇𝐸𝑐

𝑒

+
+
+
+

-
-
-
-

𝑬

p-doped n-doped



Energy equation

3

2

𝜕𝑝𝑒

𝜕𝑡
+ 𝒖𝑒 ⋅ ∇ 𝑝𝑒 +

5

2
𝑝𝑒 ∇ ⋅ 𝒖𝑒 + ∇ ⋅ 𝒒𝑒 =

𝑚𝑒

2
න 𝑑3𝒗 𝒗2𝜒 𝒗

𝛿𝑓𝑒

𝛿𝑡
𝑐𝑜𝑙𝑙.

− 𝑚𝑒𝒖𝑒 ⋅ න 𝑑3𝒗 𝒗
𝛿𝑓𝑒

𝛿𝑡
𝑐𝑜𝑙𝑙.

න 𝑑3𝒗 𝒗
𝛿𝑓𝑒

𝛿𝑡
𝑐𝑜𝑙𝑙.

=
𝑱𝑒

𝑚𝑒𝜇𝑒

𝑚𝛼

2
න 𝑑3𝒗 𝒗2𝜒 𝒗

𝛿𝑓𝛼

𝛿𝑡
𝑐𝑜𝑙𝑙.

= −
𝑛𝑒 𝑊 − 𝑊0

𝜏𝑊,𝑒
= −

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒

❑ Provisionally assume neither generation nor recombination:  𝑑3𝒗
𝛿𝑓𝛼

𝛿𝑡 𝑐𝑜𝑙𝑙.
= 0.

❑ Thermal equilibrium between electrons and lattice, 𝑇𝑒 = 𝑇𝐿 

Momentum relaxation

(Kinetic) energy relaxation



Energy equation

3𝑝𝑒

2
=

3𝑘𝐵

2
𝑛𝑒𝑇𝑒 = 𝑐𝑣,𝑒𝑛𝑒𝑇𝑒

5𝑝𝑒

2
=

5𝑘𝐵

2
𝑛𝑒𝑇𝑒 = 𝑐𝑝,𝑒𝑛𝑒𝑇𝑒

3𝑘𝐵

2

𝜕

𝜕𝑡
𝑛𝑒𝑇𝑒 + ∇ ⋅

5𝑘𝐵

2
𝑛𝑒𝑇𝑒𝒖𝑒 + 𝒒𝑒 = −

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒
+ 𝑬 ⋅ 𝑱𝑒

𝑛𝑒𝑺 =
5𝑘𝐵

2
𝑛𝑒𝑇𝑒𝒖𝑒 + 𝒒𝑒 = −

5𝑘𝐵𝑇𝑒

2𝑒
𝑱𝑒 − 𝜅𝑒∇𝑇𝑒

❑ Provisionally assume neither generation nor recombination:  𝑑3𝒗
𝛿𝑓𝛼

𝛿𝑡 𝑐𝑜𝑙𝑙.
= 0.

❑ Thermal equilibrium between electrons and lattice, 𝑇𝑒 = 𝑇𝐿.

❑ Ideal gas EoS.

Internal energy Enthalpy

𝒒𝑒 = −𝜅𝑒∇𝑇𝑒Irreversible heat flux

Source: Wikipedia



Some criticisms

𝑛𝑒

𝜕𝒖𝑒

𝜕𝑡
+ 𝒖𝑒 ⋅ ∇ 𝒖𝑒 +

∇𝑝𝑒

𝑚𝑒
+

𝑒𝑛𝑒𝑬

𝑚𝑒
= න 𝑑3𝒗 𝒗

𝛿𝑓𝑒

𝛿𝑡
𝑐𝑜𝑙𝑙.

= −
𝑛𝑒𝒖𝑒

𝜏𝑝,𝑒

𝛿𝑓𝑒

𝛿𝑡
𝑐𝑜𝑙𝑙.

= −
𝑓𝑒 − 𝑓𝑒

0

𝜏𝑝,𝑒
′ 𝑓𝑒 𝒓, 𝒗, 𝑡 ≈ 𝑓𝑒

0 𝒓, 𝒗, 𝑡 − 𝜏𝑝,𝑒
′

𝜕𝑓𝑒
0

𝜕𝑡
+ 𝒗 ⋅ ∇𝑓𝑒

0 + 𝒂 ⋅ ∇𝑣𝑓𝑒
0

T. Grasser et al. Proceedings of the IEEE, 2003
Huang, Statistical Mechanics, 2nd  edition, 1987 --- Chapter 5

𝜏𝑝,𝑒
′ 𝐸 = 𝜏0

′
𝐸

𝑘𝐵𝑇𝐿

𝑟

❑ No band structure effects (“parabolic bands”). It can be fixed by using effective masses, multiple valleys.

❑ Non-degenerate carriers. It can be fixed by using Fermi-Dirac.

❑ The moment equations are correct, the approximations comes from the closure(s). Use more moments.

❑ Inaccurate transport coefficients (e.g., Peltier coefficient). They can be computed from first principles, but…

❑ We used a macroscopic relaxation time approximation (RTA). The microscopic RTA is different!

❑ The microscopic RTA cannot be implemented directly. Perturbation theory is used.

https://doi.org/10.1109/JPROC.2002.808150


Check point 3 + Pause



Hydrodynamic equations
❑ For electrons and holes.

❑ Provisionally assume neither generation nor recombination.

∇ ⋅ 𝑬 =
𝑒 𝑛ℎ − 𝑛𝑒

𝜀0𝜀𝑟

𝑚𝑒𝑛𝑒

𝜕𝒖𝑒

𝜕𝑡
+ 𝒖𝑒 ⋅ ∇ 𝒖𝑒 + 𝑘𝐵∇ 𝑛𝑒𝑇𝑒 + 𝑒𝑛𝑒𝑬 =

𝑱𝑒

𝜇𝑒

𝑚ℎ𝑛ℎ

𝜕𝒖ℎ

𝜕𝑡
+ 𝒖ℎ ⋅ ∇ 𝒖ℎ + 𝑘𝐵∇ 𝑛ℎ𝑇ℎ − 𝑒𝑛ℎ𝑬 = −

𝑱ℎ

𝜇ℎ

𝜕𝑛𝑒

𝜕𝑡
+ ∇ ⋅ 𝑛𝑒𝒖𝑒 = 0

𝜕𝑛ℎ

𝜕𝑡
+ ∇ ⋅ 𝑛ℎ𝒖ℎ = 0

3𝑘𝐵

2

𝜕

𝜕𝑡
𝑛𝑒𝑇𝑒 + ∇ ⋅

5𝑘𝐵

2
𝑛𝑒𝑇𝑒𝒖𝑒 + 𝒒𝑒 = −

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒
+ 𝑬 ⋅ 𝑱𝑒

3𝑘𝐵

2

𝜕

𝜕𝑡
𝑛ℎ𝑇ℎ + ∇ ⋅

5𝑘𝐵

2
𝑛ℎ𝑇ℎ𝒖ℎ + 𝒒ℎ = −

3𝑘𝐵

2

𝑛ℎ 𝑇ℎ − 𝑇𝐿

𝜏𝑊,ℎ
+ 𝑬 ⋅ 𝑱ℎ

𝑱𝑒 = −𝑒𝑛𝑒𝒖𝑒

𝑱ℎ = 𝑒𝑛ℎ𝒖ℎ

𝒒𝑒 = −𝜅𝑒∇𝑇𝑒

𝒒ℎ = −𝜅ℎ∇𝑇ℎ



Energy transfer equations

𝜕𝑛𝑒

𝜕𝑡
− ∇ ⋅

𝑱𝑒

𝑒
= 0

𝜕𝑛ℎ

𝜕𝑡
+ ∇ ⋅

𝑱ℎ

𝑒
= 0

❑ For electrons and holes

❑ Provisionally assume neither generation nor recombination.

3𝑘𝐵

2

𝜕

𝜕𝑡
𝑛𝑒𝑇𝑒 + ∇ ⋅ −

5𝑘𝐵𝑇𝑒

2𝑒
𝑱𝑒 + 𝒒𝑒 = −

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒
+ 𝑬 ⋅ 𝑱𝑒

3𝑘𝐵

2

𝜕

𝜕𝑡
𝑛ℎ𝑇ℎ + ∇ ⋅

5𝑘𝐵𝑇ℎ

2𝑒
𝑱ℎ + 𝒒ℎ = −

3𝑘𝐵

2

𝑛ℎ 𝑇ℎ − 𝑇𝐿

𝜏𝑊,ℎ
+ 𝑬 ⋅ 𝑱ℎ

∇ ⋅ 𝑬 =
𝑒 𝑛ℎ − 𝑛𝑒

𝜀0𝜀𝑟

𝑱𝑒 = 𝑘𝐵𝜇𝑒∇ 𝑛𝑒𝑇𝑒 + 𝑒𝑛𝑒𝜇𝑒𝑬

𝑱ℎ = −𝑘𝐵𝜇ℎ∇ 𝑛ℎ𝑇ℎ + 𝑒𝑛ℎ𝜇ℎ𝑬

𝒒𝑒 = −𝜅𝑒∇𝑇𝑒

𝒒ℎ = −𝜅ℎ∇𝑇ℎ



Lattice dynamics
❑ Neglect phonon mass & momentum transport.

❑ Energy balance.

❑ Thermal equilibrium between electrons and lattice, 𝑇𝑒 = 𝑇ℎ = 𝑇𝐿.

𝑐𝑣,𝐿𝑛𝐿

𝜕𝑇𝐿

𝜕𝑡
+ ∇ ⋅ 𝒒𝐿 =

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒
+

3𝑘𝐵

2

𝑛ℎ 𝑇ℎ − 𝑇𝐿

𝜏𝑊,ℎ

3𝑘𝐵

2

𝜕

𝜕𝑡
𝑛𝑒𝑇𝑒 + ∇ ⋅ −

5𝑘𝐵𝑇𝑒

2𝑒
𝑱𝑒 + 𝒒𝑒 = −

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒
+ 𝑬 ⋅ 𝑱𝑒

3𝑘𝐵

2

𝜕

𝜕𝑡
𝑛ℎ𝑇ℎ + ∇ ⋅

5𝑘𝐵𝑇ℎ

2𝑒
𝑱ℎ + 𝒒ℎ = −

3𝑘𝐵

2

𝑛ℎ 𝑇ℎ − 𝑇𝐿

𝜏𝑊,ℎ
+ 𝑬 ⋅ 𝑱ℎ

𝒒𝑒 = −𝜅𝑒∇𝑇𝑒

𝒒ℎ = −𝜅ℎ∇𝑇ℎ

𝒒𝐿 = −𝜅𝐿∇𝑇𝐿



Two-temperature model
❑ Neglect phonon mass & momentum transport.

❑ Energy balance.

❑ Thermal equilibrium between electrons and lattice, 𝑇𝑒 = 𝑇ℎ = 𝑇𝐿.

❑ No currents: 𝑱𝑒 = 0 and  𝑱ℎ = 0. If no generation & recombination, 𝑛𝑒 and 𝑛ℎ are constant.

𝑐𝑣,𝐿𝑛𝐿

𝜕𝑇𝐿

𝜕𝑡
+ ∇ ⋅ 𝒒𝐿 =

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒
+

3𝑘𝐵

2

𝑛ℎ 𝑇ℎ − 𝑇𝐿

𝜏𝑊,ℎ

3𝑘𝐵

2
𝑛𝑒

𝜕𝑇𝑒

𝜕𝑡
+ ∇ ⋅ 𝒒𝑒 = −

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒

3𝑘𝐵

2
𝑛ℎ

𝜕𝑇ℎ

𝜕𝑡
+ ∇ ⋅ 𝒒ℎ = −

3𝑘𝐵

2

𝑛ℎ 𝑇ℎ − 𝑇𝐿

𝜏𝑊,ℎ

𝒒𝑒 = −𝜅𝑒∇𝑇𝑒

𝒒ℎ = −𝜅ℎ∇𝑇ℎ

𝒒𝐿 = −𝜅𝐿∇𝑇𝐿



Ambipolar diffusion
❑ Local neutrality, 𝑛ℎ = 𝑛𝑒, maintained if 𝑱ℎ = −𝑱𝑒.

❑ Generation & recombination assumed to be local processes.

𝑱𝑒 = 𝑘𝐵𝜇𝑒∇ 𝑛𝑒𝑇𝑒 + 𝑒𝑛𝑒𝜇𝑒𝑬

𝑱ℎ = −𝑘𝐵𝜇ℎ∇ 𝑛ℎ𝑇ℎ + 𝑒𝑛ℎ𝜇ℎ𝑬

𝑬 = −
𝑘𝐵 𝜇𝑒∇ 𝑛𝑒𝑇𝑒 − 𝜇ℎ∇ 𝑛ℎ𝑇ℎ

𝑒𝑛𝑒 𝜇𝑒 + 𝜇ℎ

𝑱𝑒 = 𝑘𝐵

1

𝜇𝑒
+

1

𝜇ℎ

−1

∇ 𝑛𝑒𝑇𝑒 + ∇ 𝑛𝑒𝑇ℎ

❑ Remove dependence on 𝑬

❑ Diffusion dictated by the species with the lowest mobility.

❑ Bipolar thermodiffusion effect. Peltier heat flow can occur also without net electric current.



Simplified energy transfer equations

𝜕𝑛𝑒

𝜕𝑡
− ∇ ⋅

𝑱𝑒

𝑒
= 0

❑ Local neutrality, 𝑛ℎ = 𝑛𝑒, maintained if 𝑱ℎ = −𝑱𝑒.

❑ Provisionally assume neither generation nor recombination.

3𝑘𝐵

2

𝜕

𝜕𝑡
𝑛𝑒𝑇𝑒 + ∇ ⋅ −

5𝑘𝐵𝑇𝑒

2𝑒
𝑱𝑒 + 𝒒𝑒 = −

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒

3𝑘𝐵

2

𝜕

𝜕𝑡
𝑛𝑒𝑇ℎ + ∇ ⋅ −

5𝑘𝐵𝑇ℎ

2𝑒
𝑱𝑒 + 𝒒ℎ = −

3𝑘𝐵

2

𝑛𝑒 𝑇ℎ − 𝑇𝐿

𝜏𝑊,ℎ

𝑱𝑒 = 𝑘𝐵

1

𝜇𝑒
+

1

𝜇ℎ

−1

∇ 𝑛𝑒𝑇𝑒 + ∇ 𝑛𝑒𝑇ℎ

𝑐𝑣,𝐿𝑛𝐿

𝜕𝑇𝐿

𝜕𝑡
+ ∇ ⋅ 𝒒𝐿 =

3𝑘𝐵

2

𝑛𝑒 𝑇𝑒 − 𝑇𝐿

𝜏𝑊,𝑒
+

3𝑘𝐵

2

𝑛𝑒 𝑇ℎ − 𝑇𝐿

𝜏𝑊,ℎ

𝒒𝑒 = −𝜅𝑒∇𝑇𝑒

𝒒ℎ = −𝜅ℎ∇𝑇ℎ

𝒒𝐿 = −𝜅𝐿∇𝑇𝐿



Mobility models (“hot” carriers)
❑ Carrier velocity saturates to 𝑣𝑠𝑎𝑡 at large 𝑬.

❑ The electronic temperature 𝑇𝑒  scales as 𝑬2.

❑ Neglecting Peltier effect, 𝑱𝑒 ∝ 𝑒𝑛𝑒𝜇𝑒𝑬

❑ Assume the joule heating is entirely dissipated to the lattice (R.H.S. of the energy equation).

“Hot” electrons
3𝑘𝐵

2

𝑛𝑒 𝑇𝑒−𝑇𝐿

𝜏𝑊,𝑒
= 𝑬 ⋅ 𝑱𝑒 ∝ 𝑒𝑛𝑒𝜇𝑒𝑬2 𝑇𝑒 = 𝑇𝐿 +

2𝑒𝜏𝑊,𝑒𝜇𝑒

3𝑘𝐵
𝑬2  

𝜇𝑒 𝑇𝑒 =
𝜇𝑒

0 𝑇𝐿

1 +
3𝑘𝐵
2𝑒

𝜇𝑒
0 𝑇𝐿

𝜏𝑊,𝑒𝑣𝑠𝑎𝑡
2 𝑇𝑒 − 𝑇𝐿

W. Hänsch & M. Miura-Mattausch, J. Appl. Phys. 1986

❑ In SiO2 the hole mobility is activated, 𝜇𝑒
0 ∝ 𝑒

−
𝐸𝑎

𝑘𝐵𝑇𝐿.

https://doi.org/10.1063/1.337408


Bulk, cube side 40 nm side Aerogel, cube 110 nm side, 11%

Results: a-SiO2 vs aerogel
❑ Initial conditions for one 10 eV proton, Gaussian distribution of e-h density, 𝑊 = 3𝐸𝑔 per e-h pair.

❑ Lattice temperature, 𝑇𝐿, evolution.

J. Smyth, PhD thesis (unpublished)



Lattice temperature, 𝑻𝑳 𝒕Electron density, 𝒏𝒆 𝒕

One point, centre of the track One point, centre of the track

Results: a-SiO2 vs aerogel
❑ Initial conditions for one 10 eV proton, Gaussian distribution of e-h density, 𝑊 = 3𝐸𝑔 per e-h pair.

❑ CAVEAT: Very simple model, no e-h recombination.

J. Smyth, PhD thesis (unpublished)



Check point 4



Generation & recombination rates

𝜕𝑛𝑒

𝜕𝑡
+ ∇ ⋅ 𝑛𝑒𝒖𝑒 = − 𝑅𝑟𝑎𝑑 + 𝑅𝑠𝑟ℎ + 𝑅𝑎𝑢𝑔 + 𝑅𝑥 + ⋯ + reverse processes

❑ Radiative processes are typically slow.

❑ Excitonic processes are typically fast.

𝑅𝑟𝑎𝑑 = −𝐴𝑛𝑒

❑ “ABC” model of recombination (Piprek, 2010)

𝑅𝑠𝑟ℎ = −𝐵𝑛𝑒𝑛ℎ 𝑅𝑎𝑢𝑔 = −𝐶𝑛𝑒
2𝑛ℎ

Conduction band

Valence band

photon

Conduction band

Valence band

phonons

phonons

Conduction band

Valence band

Conduction band

Valence band

Free exciton

https://doi.org/10.1002/pssa.201026149


Band-to-band Auger processes
❑ Band-to-band Auger is an activated process.

❑ The reverse process is analogue to impact ionisation.

❑ Drive electron-hole equilibrium at large 𝑇𝑒.

𝑅𝑎𝑢𝑔 = − 𝐶𝑒𝑛𝑒 + 𝐶ℎ𝑛ℎ 𝑛𝑒𝑛ℎ − 𝑛𝑖
2

Blakemore, Semiconductor Statistics, 1987 --- Chapter 6

𝐶𝑒,ℎ 𝑇𝑒,ℎ ∝
𝐸𝑔

𝑘𝐵𝑇𝑒,ℎ 

−
3
2

exp −
𝑠𝐸𝑔

𝑘𝐵𝑇𝑒,ℎ

𝑛𝑖
2 = 𝑛𝑒

𝑒𝑞
𝑛ℎ

𝑒𝑞

Conduction band

Valence band

Law of mass action

❑ The activation energy is of the order of the band gap, 𝐸𝑔. 

Conduction band

Valence band

Conduction band

Valence band

Conduction band

Valence band



The “chemistry” of the excitons

Free excitonFree hole

Free electron

❑ Electrons and holes can bind together to form a free exciton.

❑ The process can be modelled as a chemical reaction: 𝑒 + ℎ 𝑥 

Conduction band

Valence band

Free exciton

❑ The condition for chemical equilibrium is 𝜉𝑒 + 𝜉ℎ = 𝜉𝑥.

P. Würfel, The chemical potential of radiation, 1982
F. Herrmann & P. Würfel, Light with nonzero chemical potential, 2005

https://dx.doi.org/10.1088/0022-3719/15/18/012
https://doi.org/10.1119/1.1904623


“Chemical” equilibrium
❑ Electrons and holes can bind together to form a free exciton.

❑ The process can be modelled as a chemical reaction: 𝑒 + ℎ 𝑥.

❑ Local neutrality, 𝑛ℎ = 𝑛𝑒.

❑ At thermal and chemical equilibrium, 𝑇ℎ = 𝑇𝑒  and 𝜉𝑒 + 𝜉ℎ = 𝜉𝑥 = 0.

Conduction band

Valence band

𝜉𝑒

𝐸𝑔 − 𝜉ℎ

𝜉𝑒 𝒓, 𝑇𝑒 = 𝐸𝑐 𝒓 −
𝐸𝑔

2
−

3

4
𝑘𝐵𝑇𝑒 ln

𝑚𝑒

𝑚ℎ
+ 𝑘𝐵𝑇𝑒 ln

𝑛𝑒 𝒓, 𝑇𝑒

𝑛𝑖 𝑇𝑒

𝜉ℎ 𝒓, 𝑇𝑒 = −𝐸𝑣 𝒓 −
𝐸𝑔

2
−

3

4
𝑘𝐵𝑇𝑒 ln

𝑚ℎ

𝑚𝑒
+ 𝑘𝐵𝑇𝑒 ln

𝑛𝑒 𝒓, 𝑇𝑒

𝑛𝑖 𝑇𝑒

Chemical potential electrons

Chemical potential holes

𝑛𝑖 𝑇𝑒 =
2

Λ𝑒
3Λℎ

3

exp −
𝐸𝑔

2𝑘𝐵𝑇𝑒
Intrinsic carrier concentration

Free excitonFree hole

Free electron



“Chemical” equilibrium
❑ Electrons and holes can bind together to form a free exciton.

❑ The process can be modelled as a chemical reaction: 𝑒 + ℎ 𝑥.

❑ Local neutrality, 𝑛ℎ = 𝑛𝑒.

❑ At thermal equilibrium, 𝑇ℎ = 𝑇𝑒.

𝜉𝑒 𝒓, 𝑇𝑒 = 𝐸𝑐 𝒓 −
𝐸𝑔

2
−

3

4
𝑘𝐵𝑇𝑒 ln

𝑚𝑒

𝑚ℎ
+ 𝑘𝐵𝑇𝑒 ln

𝑛𝑒 𝒓, 𝑇𝑒

𝑛𝑖 𝑇𝑒

𝜉ℎ 𝒓, 𝑇𝑒 = −𝐸𝑣 𝒓 −
𝐸𝑔

2
−

3

4
𝑘𝐵𝑇𝑒 ln

𝑚ℎ

𝑚𝑒
+ 𝑘𝐵𝑇𝑒 ln

𝑛𝑒 𝒓, 𝑇𝑒

𝑛𝑖 𝑇𝑒

Chemical potential electrons

Chemical potential holes

Conduction band

Valence band

𝜉𝑒

𝐸𝑔 − 𝜉ℎ

❑ If electrons and holes are not in chemical equilibrium, 𝜉𝑒 + 𝜉ℎ = 𝜉ℎ ≠ 0 

𝑛𝑖 𝑇𝑒 =
2

Λ𝑒
3Λℎ

3

exp −
𝐸𝑔

2𝑘𝐵𝑇𝑒
Intrinsic carrier concentration

Free excitonFree hole

Free electron



Saha equation
❑ Electrons and holes can bind together to form a free exciton.

❑ The process can be modelled as a chemical reaction: 𝑒 + ℎ 𝑥.

❑ Local neutrality, 𝑛ℎ = 𝑛𝑒.

❑ At thermal equilibrium, 𝑇ℎ = 𝑇𝑒.

𝜉𝑥 𝒓, 𝑇𝑒 = 𝑘𝐵𝑇𝑒 ln
𝑛𝑥 𝒓, 𝑇𝑒

𝑛𝑥
𝑒𝑞

𝑇𝑒
Chemical potential excitonsConduction band

Valence band

❑ If electrons and holes are not in chemical equilibrium, 𝜉𝑒 + 𝜉ℎ = 𝜉ℎ ≠ 0 

𝑛𝑥
𝑒𝑞

𝑇𝑒 =
4

Λ𝑥
3 exp −

𝐸𝑥

𝑘𝐵𝑇𝑒
Equilibrium exciton concentration

𝑛𝑥

𝑛𝑒
2 =

Λ𝑒
3 Λℎ

3

Λ𝑥
3 exp

𝐸𝑔 − 𝐸𝑥

𝑘𝐵𝑇𝑒
=

2𝜋ℏ2

𝑚𝑥
⋆𝑘𝐵𝑇𝑒

exp
𝐸𝑏

𝑘𝐵𝑇𝑒

“Ionisation” equilibrium

Free excitonFree hole

Free electron

𝐸𝑔 − 𝜉ℎ

𝜉𝑒



Exciton Mott transition (EMT) @ 𝒏𝒆 𝒓𝒔 = 𝟏. 𝟗𝟒 ⋅ 𝟏𝟎𝟏𝟗 cm-3

Unstable exciton

Conduction band

Valence band

High e-h density

Vashishta  Kalia, 1982

❑ “Universal” exchange-correlation energy for homogenous e-h liquid (Vashishta & Kalia, 1982)

❑ Dimensionless exciton Wigner-Seitz radius, 𝑟𝑠 =
4𝜋𝑛𝑒

3

−
1

3
/𝑎𝑥

Band gap renormalisation

Δ𝜇𝑒ℎ = 𝜀𝑥𝑐 𝑟𝑠 + 𝑛𝑒

𝑑𝜀𝑥𝑐

𝑑𝑛𝑒
𝜀𝑥𝑐 𝑟𝑠 ∝

𝑎 + 𝑏𝑟𝑠

𝑑 + 𝑑𝑟𝑠 + 𝑟𝑠
2

Conduction band

Valence band

Low e-h density

Free exciton

https://doi.org/10.1103/PhysRevB.25.6492


Initial e-h density

Simplified model, no transport
❑ Decay of electron-hole plasma in highly excited a-SiO2

❑ Model includes Auger recombination and decay to both free and self-trapped excitons (STE).

❑ Band gap renormalisation (BGR) also included.

❑ Carrier and heat diffusion is neglected. Model only provides an upper limit.

𝑇𝑒 0 = 67,300 𝐾

𝐸𝑠𝑡𝑒 = 3.1 𝑒𝑉

𝑚𝑥 = 3.25 𝑚𝑒

𝑎𝑥 = 4.9 𝐴

𝜏 = 0.1 𝑝𝑠

𝐸𝑔 = 8.7 𝑒𝑉

L.S. et al. Eur. Phys. J. D (2021) 75:203

Free excitonFree hole

Free electron

STE



Conclusions

❑ Energy transport models based on the moment equations to model relaxation of highly excited insulators.

❑ Composite and nanostructured material (e.g., aerogels) can be modelled.

❑ Existing numerical implementations for semiconductor device modelling can be adapted.

❑ Energy transport in bulk and nanostructure materials looks qualitatively differently, although a quantitative 

explanation is still missing.  



Thank You
Any question?
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